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Inertia-gravity waves (motivation)

I Atmospheric gravity waves carry momentum from the location of
generation and deposit it where they “break”

I play an important role in driving circulation
(cf. QBO, cold summer mesopause)

I Spatial scales from below model grid and observational instrument
resolution (tens of metres) to synoptic scales (hundreds of kilometres)

⇒ effect on mean flow in climate and forecast models must be

parameterized:

I Relate dynamics of breaking
(time scales, saturation amplitude, . . . )

I to properties of the background (stratification, shear, . . . )
I and wave properties (amplitude, wavelength, direction, . . . )

I Requires reliable Large Eddy Simulation scheme

I Gravity wave breaking is a physically relevant test case for LES of
stratified turbulence
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Inertia-gravity waves

I Consider the inviscid Boussinesq Equations on an f plane with constant
background stratification N:

Du

Dt
− fv = −∂P

∂x
,

Db

Dt
+ N2w = 0,

Dv

Dt
+ fu = −∂P

∂y
,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

Dw

Dt
− b = −∂P

∂z
,

I An inertia-gravity wave is a solution of the form

[û, v̂ , ŵ , b̂] exp [i(kx + mz − ωt)]

where:
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IGW stability problem (Achatz Phys. Fluids 2005, JAS 2007)

I Stability problem best solved in a
reference frame rotated such that vertical
is parallel to the wavevector of wave and
moving with the phase speed of the wave.
Let ξ be the rotated x-coordinate, ζ the
rotated vertical coordinate, and (uξ,wζ)
the corresponding velocity components.

I Boussinesq equations in the rotated frame:

Duξ

Dt
− f sin Θ v +

∂p

∂ξ
+ cos Θ b = ν∇2uξ,

Db

Dt
+ N2(− cos Θ uξ + sin Θ wζ) = µ∇2b,

Dv

Dt
+ f (sin Θ uξ + cos Θ wζ) +

∂p

∂y
= ν∇2v ,

∂uξ

∂ξ
+
∂v

∂y
+
∂wζ

∂ζ
= 0,

Dwζ

Dt
− f cos Θ v +

∂p

∂ζ
− sin Θ b = ν∇2wζ .

I Equations are discretized in space and time and solved numerically.



IGW stability problem (Achatz Phys. Fluids 2005, JAS 2007)

I Inertia gravity wave (IGW) case study:

I wavelength 6 km; propagation angle 89.5◦

I nondim. amplitude 1.2 ⇒ statically unstable
I Very long period (∼ 8 hours)

I Linearize system about IGW solution, seek normal modes:
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IGW stability problem (Achatz Phys. Fluids 2005, JAS 2007)

I Linear instability modes used to initialize “2.5 dimensional” nonlinear
simulations

I e.g. buoyancy perturbation from IGW pertubed by leading transverse
mode (20 minute integration):



IGW stability problem (Achatz Phys. Fluids 2005, JAS 2007)

I 2.5D nonlinear simulations initialized with leading transverse and parallel
normal modes, projected onto IGW mode:

I Nonlinear DNS shows transverse normal mode leads to more dissipation
of the wave.

The DNS take weeks days . . . can an LES method get same result?



Comparison of 2.5D LES of breaking IGW

1. Smagorinsky scheme

I Filtered Reynolds’ average stress and heat flux modeled as an
eddy viscosity and diffusion, with eddy viscosity proportional to
local rate of strain

v ′i v
′
j ≈ −νsgs

(
∂v i

∂xj
+
∂v j

∂xi

)
, νsgs = (Cs∆)2

√√√√1
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(
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∂xj
+
∂v j

∂xi

)2

2. MUSCL

I Monotone Upwind-centred Schemes for Conservation Laws
I Finite-volume scheme using flux limiting: high-order

central-difference discretization everywhere except near local
extrema where low-order upwind scheme used.

I Due to numerical dissipation of upwind scheme, behave
somewhat like an implicit LES.

3. Implicit LES scheme ALDM . . .
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ALDM (Hickel et al. JCP 2006, Hickel & Adams Phys. Fluids 2007)

I Generic 1-D conservation law:

∂u

∂t
+

∂

∂x
[F (u)] = 0

Filtering: LES model:

∂uN
∂t

+
∂

∂x
FN(uN) = GSGS

Discretization: Finite Volume Method:

∂uN
∂t

+
∂

∂x
FN(uN) = Gnum

I In practice, Gnum is comparable in size to GSGS , which motivates . . .
Implicit LES:

I Discretize FN and uN such that the truncation error Gnum acts
as an implicit sub-gridscale model GSGS .

I Principle behind Adaptive Local Deconvolution Method
(ALDM)



ALDM (Hickel et al. JCP 2006, Hickel & Adams Phys. Fluids 2007)

I Reconstructed ũ at each cell face is a function of 6 interpolating
polynomials pk,r (x) (where k = 1, . . . , 3 and r = 0, . . . , k − 1):
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ũ =
3∑

k=1

k−1∑
r=0
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1

3
γk,rβk,r (u)

I βk,r – smoothness of stencil (k, r), γk,r – tunable parameters



ALDM (Hickel et al. JCP 2006, Hickel & Adams Phys. Fluids 2007)

I Add nonlinear numerical viscosity:

u u

u i u i+1

LR

i i+1FN

F̃N(xi+1/2) = F

(
ũR
i+1/2 + ũL

i+1/2

2

)
− σi+1/2(ũR

i+1/2 − ũL
i+1/2)

where σi+1/2 = σρu |ui+1 − ui | (σρu is another tunable parameter)

I 5 independent parameters σ, γ0
31, γ+

31, γ+
32, γ+

21 tuned once and for all so
that spectral energy flux matches DNS for 3D, homogeneous, isotropic
turbulence.



Comparison of 2.5D LES of breaking IGW
I Projection of nonlinear solution onto free-mode corresponding to unstable

3 km IGW as a function of time.
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I Quantity of interest for gravity wave drag parameterization is final
amplitude to which a wave decays after it breaks

I MUSCL and Smagorinsky w/ Cs = 0.2 too dissipative at low resolution.



Comparison of 2.5D LES of breaking IGW

I ξ-averaged energy spectra after one and two hours model time.
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Comparison of 2.5D LES of breaking IGW

I Total energy dissipation vs. time
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Three-Dimensionalization (Fruman & Achatz, JAS 2012)

I Linearize Boussinesq equations about time dependent 2.5D nonlinear
integration

I Seek singular vectors: initial perturbations whose energy grows by largest
factor in given optimization time
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I Identify length scale of fastest growing perturbations in third dimension



3D DNS of breaking IGW

I Initial condition of buoyancy field for 3D DNS:

I Unstable IGW + transverse NM + secondary SV
I Domain 3 km × 4 km × 400 m.

I Movie of Q criterion



3D DNS of breaking IGW

I Projection of solution on IGW (thicker line)

I Total energy dissipation (thinner line)
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3D DNS of breaking IGW

Energy fluctuations (total energy less
mean in ξ direction)

Total buoyancy frequency N

(dashed line represents point fixed in space)



Summary

I Inertia-gravity wave breaking is important to the circulation in the
atmosphere but, due to the wide range of scales involved, is difficult to
study in detail.

I Linear stability analysis in a reference frame moving with the wave gives
the dominant length scales of the breaking in the plane perpendicular to
the wavevector.

I Gravity-wave breaking a physically relevant test case for LES of stratified
turbulence.

I Comparison of LES schemes in 2.5D:

I Classic Smagorinsky scheme with coefficient Cs = 0.1 agrees
best with DNS in terms of the amplitude decay of the wave
and the spectral energy density, but results very sensitive to
choice of Cs .

I Implicit LES scheme ALDM somewhat too dissipative but
shows consistent performance under change of resolution.

I At sufficiently high resolution, numerical scheme MUSCL
might be an effective LES.
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Summary

I 3D DNS initialized with a leading secondary singular vector performed

I IGW dissipation diagnostic agrees roughly with 2.5D result

I Intermittent bursts of dissipation as wave moves through
generated turbulence

I Next:

I Comparison with other LES (MPDATA?)

I 3D LES (underway)
I Pseudoincompressible equations LES of wavepackets

(underway)
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