Mark Fruman Ulrich Achatz IAU, Goethe Universität-Frankfurt

Sebastian Remmler Stefan Hickel Technische Universität München De

Felix Rieper Deutscher Wetterdienst

MetStröm

EULAG workshop, Loughborough, UK, June 27, 2012

Breaking of Inertia-Gravity Waves (IGW)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Breaking of Inertia-Gravity Waves (IGW)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Comparison of LES in two dimensions

- Breaking of Inertia-Gravity Waves (IGW)
- Comparison of LES in two dimensions
- Three-dimensionalization of IGW breaking

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Breaking of Inertia-Gravity Waves (IGW)
- Comparison of LES in two dimensions
- Three-dimensionalization of IGW breaking
- Three-dimensional DNS of a breaking IGW

Inertia-gravity waves (motivation)

- Atmospheric gravity waves carry momentum from the location of generation and deposit it where they "break"
- play an important role in driving circulation (cf. QBO, cold summer mesopause)
- Spatial scales from below model grid and observational instrument resolution (tens of metres) to synoptic scales (hundreds of kilometres)

Inertia-gravity waves (motivation)

- Atmospheric gravity waves carry momentum from the location of generation and deposit it where they "break"
- play an important role in driving circulation (cf. QBO, cold summer mesopause)
- Spatial scales from below model grid and observational instrument resolution (tens of metres) to synoptic scales (hundreds of kilometres)
- ⇒ effect on mean flow in climate and forecast models must be parameterized:
 - Relate dynamics of breaking (time scales, saturation amplitude, ...)
 - to properties of the background (stratification, shear, ...)
 - and wave properties (amplitude, wavelength, direction, ...)

(日) (同) (三) (三) (三) (○) (○)

Requires reliable Large Eddy Simulation scheme

Inertia-gravity waves (motivation)

- Atmospheric gravity waves carry momentum from the location of generation and deposit it where they "break"
- play an important role in driving circulation (cf. QBO, cold summer mesopause)
- Spatial scales from below model grid and observational instrument resolution (tens of metres) to synoptic scales (hundreds of kilometres)
- ⇒ effect on mean flow in climate and forecast models must be parameterized:
 - Relate dynamics of breaking (time scales, saturation amplitude, ...)
 - to properties of the background (stratification, shear, ...)
 - and wave properties (amplitude, wavelength, direction, ...)

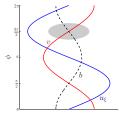
(日) (同) (三) (三) (三) (○) (○)

- Requires reliable Large Eddy Simulation scheme
- Gravity wave breaking is a physically relevant test case for LES of stratified turbulence

Inertia-gravity waves

Consider the inviscid Boussinesq Equations on an f plane with constant background stratification N:

$$\begin{split} \frac{Du}{Dt} - fv &= -\frac{\partial P}{\partial x}, & \frac{Db}{Dt} + N^2 w = 0, \\ \frac{Dv}{Dt} + fu &= -\frac{\partial P}{\partial y}, & \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0, \\ \frac{Dw}{Dt} - b &= -\frac{\partial P}{\partial z}, \end{split}$$



An inertia-gravity wave is a solution of the form

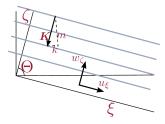
 $[\hat{u}, \hat{v}, \hat{w}, \hat{b}] \exp[i(kx + mz - \omega t)]$

where:

$$\omega^2 = \left(\frac{k^2}{k^2 + m^2}\right)N^2 + \left(\frac{m^2}{k^2 + m^2}\right)f^2 \quad \text{and} \quad \boxed{[\hat{u},]}$$

$$d \quad \left[\hat{u}, \hat{v}, \hat{w}, \hat{b}\right] = a \left[\frac{\omega}{k}, -i\frac{f}{k}, -\frac{\omega}{m}, i\frac{N^2}{m}\right]$$

Stability problem best solved in a reference frame rotated such that vertical is parallel to the wavevector of wave and moving with the phase speed of the wave. Let ξ be the rotated x-coordinate, ζ the rotated vertical coordinate, and (u_ξ, w_ζ) the corresponding velocity components.



Boussinesq equations in the rotated frame:

$$\begin{aligned} \frac{Du_{\xi}}{Dt} &-f\sin\Theta \ v + \frac{\partial p}{\partial \xi} + \cos\Theta \ b = \nu \nabla^2 u_{\xi}, \quad \frac{Db}{Dt} + N^2 (-\cos\Theta \ u_{\xi} + \sin\Theta \ w_{\zeta}) = \mu \nabla^2 b, \\ \frac{Dv}{Dt} &+ f(\sin\Theta \ u_{\xi} + \cos\Theta \ w_{\zeta}) + \frac{\partial p}{\partial y} = \nu \nabla^2 v, \qquad \qquad \frac{\partial u_{\xi}}{\partial \xi} + \frac{\partial v}{\partial y} + \frac{\partial w_{\zeta}}{\partial \zeta} = 0, \\ \frac{Dw_{\zeta}}{Dt} &- f\cos\Theta \ v + \frac{\partial p}{\partial \zeta} - \sin\Theta \ b = \nu \nabla^2 w_{\zeta}. \end{aligned}$$

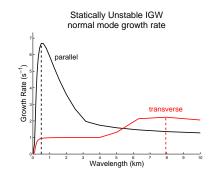
Equations are discretized in space and time and solved numerically.

- Inertia gravity wave (IGW) case study:
 - wavelength 6 km; propagation angle 89.5°
 - nondim. amplitude 1.2 \Rightarrow statically unstable

Very long period (~ 8 hours)

Inertia gravity wave (IGW) case study:

- wavelength 6 km; propagation angle 89.5°
- nondim. amplitude 1.2 \Rightarrow statically unstable
- Very long period (~ 8 hours)
- Linearize system about IGW solution, seek normal modes:



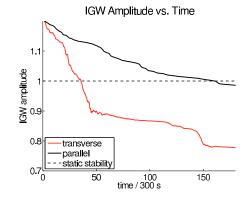
Growth rates of leading parallel and transverse normal modes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Linear instability modes used to initialize "2.5 dimensional" nonlinear simulations
- e.g. buoyancy perturbation from IGW pertubed by leading transverse mode (20 minute integration):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2.5D nonlinear simulations initialized with leading transverse and parallel normal modes, projected onto IGW mode:



Nonlinear DNS shows transverse normal mode leads to more dissipation of the wave.

The DNS take weeks days ... can an LES method get same result?

- 1. Smagorinsky scheme
 - Filtered Reynolds' average stress and heat flux modeled as an eddy viscosity and diffusion, with eddy viscosity proportional to local rate of strain

$$\overline{\nu_i'\nu_j'} \approx -\nu_{sgs} \left(\frac{\partial \overline{\nu}_i}{\partial x_j} + \frac{\partial \overline{\nu}_j}{\partial x_i}\right), \quad \nu_{sgs} = \left(C_s \Delta\right)^2 \sqrt{\frac{1}{2}\sum_{i,j=1}^3 \left(\frac{\partial \overline{\nu}_i}{\partial x_j} + \frac{\partial \overline{\nu}_j}{\partial x_i}\right)^2}$$

- 1. Smagorinsky scheme
 - Filtered Reynolds' average stress and heat flux modeled as an eddy viscosity and diffusion, with eddy viscosity proportional to local rate of strain

$$\overline{v_i'v_j'} \approx -\nu_{sgs} \left(\frac{\partial \overline{v}_i}{\partial x_j} + \frac{\partial \overline{v}_j}{\partial x_i} \right), \quad \nu_{sgs} = \left(C_s \Delta \right)^2 \sqrt{\frac{1}{2} \sum_{i,j=1}^3 \left(\frac{\partial \overline{v}_i}{\partial x_j} + \frac{\partial \overline{v}_j}{\partial x_i} \right)^2}$$

- 2. MUSCL
 - Monotone Upwind-centred Schemes for Conservation Laws
 - Finite-volume scheme using flux limiting: high-order central-difference discretization everywhere except near local extrema where low-order upwind scheme used.
 - Due to numerical dissipation of upwind scheme, behave somewhat like an implicit LES.

- 1. Smagorinsky scheme
 - Filtered Reynolds' average stress and heat flux modeled as an eddy viscosity and diffusion, with eddy viscosity proportional to local rate of strain

$$\overline{v_i'v_j'} \approx -\nu_{sgs} \left(\frac{\partial \overline{v}_i}{\partial x_j} + \frac{\partial \overline{v}_j}{\partial x_i} \right), \quad \nu_{sgs} = \left(C_s \Delta \right)^2 \sqrt{\frac{1}{2} \sum_{i,j=1}^3 \left(\frac{\partial \overline{v}_i}{\partial x_j} + \frac{\partial \overline{v}_j}{\partial x_i} \right)^2}$$

- 2. MUSCL
 - Monotone Upwind-centred Schemes for Conservation Laws
 - Finite-volume scheme using flux limiting: high-order central-difference discretization everywhere except near local extrema where low-order upwind scheme used.
 - Due to numerical dissipation of upwind scheme, behave somewhat like an implicit LES.
- 3. Implicit LES scheme ALDM

ALDM (Hickel et al. JCP 2006, Hickel & Adams Phys. Fluids 2007)

Generic 1-D conservation law:

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left[F(u) \right] = 0$$

Filtering: LES model:

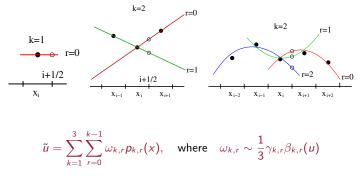
Discretization: Finite Volume Method:

$$\frac{\partial u_N}{\partial t} + \frac{\partial}{\partial x} F_N(u_N) = \mathcal{G}_{SGS} \qquad \qquad \frac{\partial u_N}{\partial t} + \frac{\partial}{\partial x} F_N(u_N) = \mathcal{G}_{num}$$

- In practice, *G_{num}* is comparable in size to *G_{SGS}*, which motivates ... Implicit LES:
 - ► Discretize F_N and u_N such that the truncation error G_{num} acts as an implicit sub-gridscale model G_{SGS}.
 - Principle behind Adaptive Local Deconvolution Method (ALDM)

ALDM (Hickel et al. JCP 2006, Hickel & Adams Phys. Fluids 2007)

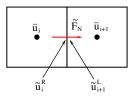
Reconstructed ũ at each cell face is a function of 6 interpolating polynomials p_{k,r}(x) (where k = 1,..., 3 and r = 0,..., k - 1):



▶ $\beta_{k,r}$ – smoothness of stencil (k, r), $\gamma_{k,r}$ – tunable parameters

ALDM (Hickel et al. JCP 2006, Hickel & Adams Phys. Fluids 2007)

Add nonlinear numerical viscosity:

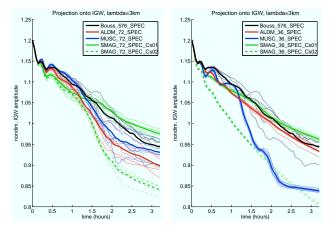


$$\tilde{F}_{N}(x_{i+1/2}) = F\left(\frac{\tilde{u}_{i+1/2}^{R} + \tilde{u}_{i+1/2}^{L}}{2}\right) - \sigma_{i+1/2}(\tilde{u}_{i+1/2}^{R} - \tilde{u}_{i+1/2}^{L})$$

where $\sigma_{i+1/2} = \sigma^{\rho u} |\overline{u}_{i+1} - \overline{u}_i|$ ($\sigma^{\rho u}$ is another tunable parameter)

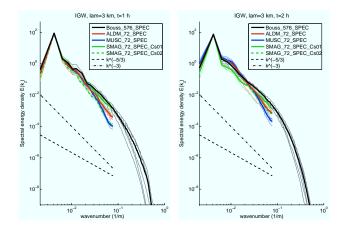
▶ 5 independent parameters σ , γ_{31}^0 , γ_{31}^+ , γ_{32}^+ , γ_{21}^+ tuned <u>once and for all</u> so that spectral energy flux matches DNS for 3D, homogeneous, isotropic turbulence.

 Projection of nonlinear solution onto free-mode corresponding to unstable 3 km IGW as a function of time.

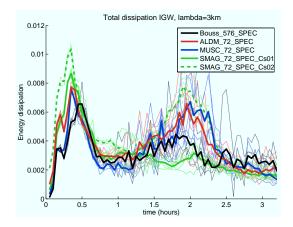


- Quantity of interest for gravity wave drag parameterization is final amplitude to which a wave decays after it breaks
- MUSCL and Smagorinsky w/ $C_s = 0.2$ too dissipative at low resolution.

• ξ -averaged energy spectra after one and two hours model time.



Total energy dissipation vs. time

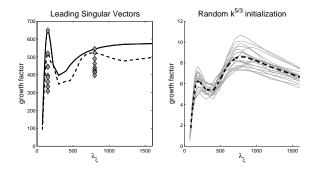


(日) (同) (日) (日)

э

Three-Dimensionalization (Fruman & Achatz, JAS 2012)

- Linearize Boussinesq equations about time dependent 2.5D nonlinear integration
- Seek singular vectors: initial perturbations whose energy grows by largest factor in given optimization time

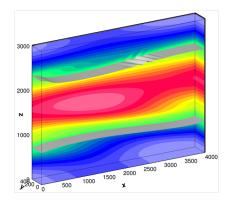


Identify length scale of fastest growing perturbations in third dimension

3D DNS of breaking IGW

Initial condition of buoyancy field for 3D DNS:

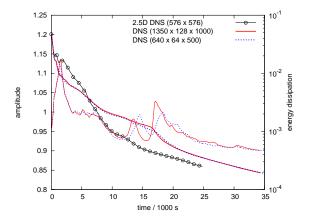
- Unstable IGW + transverse NM + secondary SV
- Domain 3 km \times 4 km \times 400 m.



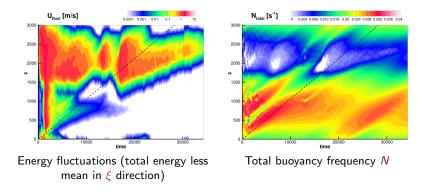
Movie of Q criterion

3D DNS of breaking IGW

- Projection of solution on IGW (thicker line)
- Total energy dissipation (thinner line)



3D DNS of breaking IGW



(dashed line represents point fixed in space)

(日)、

-

- Inertia-gravity wave breaking is important to the circulation in the atmosphere but, due to the wide range of scales involved, is difficult to study in detail.
- Linear stability analysis in a reference frame moving with the wave gives the dominant length scales of the breaking in the plane perpendicular to the wavevector.
- Gravity-wave breaking a physically relevant test case for LES of stratified turbulence.

- Inertia-gravity wave breaking is important to the circulation in the atmosphere but, due to the wide range of scales involved, is difficult to study in detail.
- Linear stability analysis in a reference frame moving with the wave gives the dominant length scales of the breaking in the plane perpendicular to the wavevector.
- Gravity-wave breaking a physically relevant test case for LES of stratified turbulence.
- Comparison of LES schemes in 2.5D:
 - Classic Smagorinsky scheme with coefficient $C_s = 0.1$ agrees best with DNS in terms of the amplitude decay of the wave and the spectral energy density, but results very sensitive to choice of C_s .
 - Implicit LES scheme ALDM somewhat too dissipative but shows consistent performance under change of resolution.
 - At sufficiently high resolution, numerical scheme MUSCL might be an effective LES.

- ▶ 3D DNS initialized with a leading secondary singular vector performed
 - ► IGW dissipation diagnostic agrees roughly with 2.5D result
 - Intermittent bursts of dissipation as wave moves through generated turbulence

(ロ)、(型)、(E)、(E)、 E) の(の)

- ▶ 3D DNS initialized with a leading secondary singular vector performed
 - ► IGW dissipation diagnostic agrees roughly with 2.5D result
 - Intermittent bursts of dissipation as wave moves through generated turbulence
- Next:
 - Comparison with other LES (MPDATA?)
 - 3D LES (underway)
 - Pseudoincompressible equations LES of wavepackets (underway)

- ▶ 3D DNS initialized with a leading secondary singular vector performed
 - ► IGW dissipation diagnostic agrees roughly with 2.5D result
 - Intermittent bursts of dissipation as wave moves through generated turbulence
- Next:
 - Comparison with other LES (MPDATA?)
 - 3D LES (underway)
 - Pseudoincompressible equations LES of wavepackets (underway)

THANK YOU FOR YOUR ATTENTION!