

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

Irina Heese¹, Andreas Dörnbrack², Sabine Mayer¹, Heini Wernli³

Dispersion of Passive Scalars in the Aare Valley

¹ Paul Scherrer Institute (PSI), Switzerland

- ² DLR Oberpfaffenhofen, Germany
- ³ ETH Zurich, Switzerland

PSI, 26 June 2012

- Introduction
 - Motivation
 - Objectives
- Inflow Conditions for LES
 - Empty Domain
 - Obstacle within Domain
- Summary
- Future Works

Aare Valley

 $\Delta x = 8.7 \text{ km}$

 $\Delta y = 6 \text{ km}$

Area around the Paul Scherrer Institute (PSI)

- Aare Valley: Region in Switzerland formed by the river Aare
- Aare: Longest river in Switzerland

Aare Valley

 $\Delta x = 8.7 \text{ km}$

 $\Delta y = 6 \text{ km}$

Area around the Paul Scherrer Institute (PSI)

- Aare Valley: Region in Switzerland formed by the river Aare
- Aare: Longest river in Switzerland

Paul Scherrer Institute (PSI)

- Radionuclides emitted from two main sources
- PSI predicts dispersion of radionuclides

→ Estimate dose rate at PSI area and surroundings

- ESS41: Gaussian model
- Not appropriate for taking into account
 - Varying atmospheric background states
 - Dispersion of plume in complex
 - topography
- Good results under near-neutral stratification

- Shall replace Gaussian model ESS41 in future
- Requirements:

High resolution

Topography as input data

Direct simulation of turbulent flow

• Boundary conditions from COSMO-2

Objectives

- Take idealised PSI geometry with idealised Aare, some buildings and idealised hills
- Sensitivity studies for different atmospheric stratifications (emphasis)
- Simulations with real topography as input

- Find appropriate inflow conditions
- Common approaches: Cyclic boundaries and laminar inflow
 - Cyclic boundaries: not suitable for complex orography
 - Laminar inflow: difficulties ensuring correct surface conditions / computationally expensive if no roughness elements used
- 5 different inflow profiles tested for empty domain
- 2 different inflow profiles tested for domain with single building

Constant inflow

Specified shear

- 1) Initialisation with developed profile from spin-up simulation u(nx/2,ny/2,z,t₃₀), v(nx/2,ny/2,z,t₃₀)
- Same as above, but with

whole plane $u(nx/2,y,z,t_{30})$, $v(nx/2,y,z,t_{30})$

Inflow Profiles

Constant inflow

Specified shear

 $U_0(z) = 2.5 \text{ m/s}$

- 2) Initialisation with developed • profile overlayed by random numbers [-0.2, 0.2]
- Same as above, but with •

whole plane u(nx/2,y,z,t₃₀), v(nx/2,y,z,t₃₀)

- Open boundary conditions in x,y,z coordinates
- $\Delta x = \Delta y = 5 \text{ m}, \Delta z = 0.5 \text{ m}, \text{ nx} = 512, \text{ ny} = 16, \text{ nz} = 101$
- Aerodynamic roughness length $z_0 = 0.25$ m at lower surface (isflx=1)
- Initial conditions:

$$U(x,y,z,t_0) = U_0, v(x,y,z,t_0) = w(x,y,z,t_0) = 0.$$

• 5 different inflow profiles U₀

- Profiles taken at z = 2 m and y = 40 m (middle of domain)
- Blue: 995 m, Green 1275 m, Red: 1495 m

Stationarity

Irina Heese

26 June 2012

Mean Horizontal and Vertical Velocity

- Profiles taken at y = 40 m (middle of domain) after 40 minutes
- Blue: 995 m, Green 1275 m, Red: 1495 m

Mean Horizontal Velocity

Irina Heese

26 June 2012

Mean Vertical Velocity

Irina Heese

EULAG Workshop

26 June 2012

Conclusions

- Steady state reached between 20 and 40 minutes in all simulations
- Stationarity sooner/later reached at inflow/outflow region
- Differences between form of velocity profiles
- Further simulations with two profiles

- Place block in the middle of domain
 - → Investigate canopy turbulence

Canopy Turbulence

- Urban canopy: Assemblage of buildings, trees etc. forming towns and cities
- Concept analogous to that of vegetation canopy except that Built part open to the sky No stem or trunk zone
- Study from Raupach et al. for vegetation canopy as reference

Raupach et al. (1996)

Canopy Turbulence

- Vertical inhomogeneity U,
 <uw>, σ_u and σ_w decay rapidly with decreasing height
- Clear inflection point for all turbulent moments near canopy top where shear is maximal

Raupach et al. (1996)

- Open boundary conditions in x,y,z coordinates
- $\Delta x = \Delta y = 5 \text{ m}, \Delta z = 0.5 \text{ m}$
- Aerodynamic roughness length z₀ = 0.25 m at lower surface (isflx=1)
- Initial conditions:

 $u(x,y,z,t_0) = U_0, v(x,y,z,t_0) = w(x,y,z,t_0) = 0$

- Block (10 m x 10 m x 5 m) in middle of domain using immersed boundaries
- Horizontal averaging at t = 30 min normalised with canopy height h = 5 m

Mean Velocity

Standard Deviation σ_u

Standard Deviation σ_w

Reynolds Shear Stress

Reynolds Shear Stress

- Turbulent moments decrease within canopy
- Strong inflection point close to canopy height except for σ_{u} inflection point below canopy height
- Possible reason: one building not sufficient to model an urban canopy
- Further tests: horizontal averaging only behind building or time averaging
- No significant differences between the two inflow profiles

- Currently used Gaussian dispersion model not appropriate to consider
 - Varying atmospheric background states
 - Dispersion of plume in complex topography

 \rightarrow shall be replaced

Summary

- Several inflow conditions were tested
 - Atmospheric flow depends on inflow profiles
 - Turbulent moments except for σ_u agree with literature references

PAUL SCHERRER INSTITUT

Outlook

- Further investigations of inflow profiles
- Perform simulations with:
 - a higher building

PAUL SCHERRER INSTITUT

- several buildings of different heights
- idealised mountain
- Inverse FT as inflow profile?
- Simulations for convective and stable stratification
- Vertical grid stretching
- Dispersion of passive scalars

Thank you for your attention!