

Modelling atmospheric flows with adaptive moving meshes

Christian Kühnlein¹, Piotr K. Smolarkiewicz², Andreas Dörnbrack³

 $^1 {\rm Ludwig-Maximilans-Universit\"at}$ München, Chair of Theoretical Meteorology, Munich, Germany

²National Center of Atmospheric Research, Boulder, CO, USA

³Deutsches Zentrum für Luft- und Raumfahrt, Insitut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

June 26, 2012

Multiscale atmospheric flows

- \rightarrow Processes of highly different local scales
- \rightarrow Standard approach in atmospheric solvers of uniform mesh not optimal
- $\rightarrow~$ Variable mesh applying locally finer/coarser resolution more efficient
- $\rightarrow~$ Solution-adaptive mesh is able to conform to flow evolution

 \rightarrow Build on previous works (Prusa and Smolarkiewicz, JCP 2003; ...), and extend EULAG's dynamical core with a solution-adaptive mesh capability (Kühnlein et al., JCP 2012):

- Implement moving mesh partial differential equations (MMPDEs) for solution-adaptive mesh generation (i.e. r-adaptivity)
- Effectively couple MMPDEs with non-oscillatory forward-in-time (NFT) solver underlying EULAG and its time-dependent generalised coordinate framework
- Verify adaptive solver for simple problem (scalar advection in 2D) and more complex atmospheric flow (baroclinic wave life cycles experiments in 3D). Testing of possible mesh refinement criteria

EULAG model formulation

 \rightarrow Foundation of mesh adaptivity is time-dependent curvilinear coordinate framework:

$$(\overline{t},\overline{x}) \equiv (t,\mathcal{F}(t,\mathbf{x})): \mathcal{D}_{p} \to \mathcal{D}_{t}$$

- · \mathcal{D}_{p} is subdomain of physical space S_{p} with coordinates $(t, x) \equiv (t, x, y, z)$
- · \mathcal{D}_t is subdomain of transformed computational space S_t with coordinates $(\overline{t}, \overline{x}) \equiv (\overline{t}, \overline{x}, \overline{y}, \overline{z})$
- Specific mapping in current implementation of EULAG:

 $\mathcal{F}(t,\mathbf{x}) = (E(t,x,y), D(t,x,y), C(t,x,y,z))$

 \rightarrow Time-dependent vertical Gal-Chen coordinate (Prusa et al., JAS 1996; Wedi and Smolarkiewicz, JCP 2004)

ightarrow Horizontal mapping considered for moving mesh adaptivity

 \rightarrow Foundation of mesh adaptivity is time-dependent curvilinear coordinate framework:

$$(\overline{t},\overline{x}) \equiv (t,\mathcal{F}(t,\mathbf{x})): \mathcal{D}_{p} \to \mathcal{D}_{t}$$

- · \mathcal{D}_{p} is subdomain of physical space \mathbf{S}_{p} with coordinates $(t, \mathbf{x}) \equiv (t, x, y, z)$
- · \mathcal{D}_t is subdomain of transformed computational space \mathbf{S}_t with coordinates $(\overline{t}, \overline{\mathbf{x}}) \equiv (\overline{t}, \overline{x}, \overline{y}, \overline{z})$
- Specific mapping in current implementation of EULAG:

$$\mathcal{F}(t,\mathbf{x}) = (E(t,x,y), D(t,x,y), C(t,x,y,z))$$

 \rightarrow Time-dependent vertical Gal-Chen coordinate (Prusa et al., JAS 1996; Wedi and Smolarkiewicz, JCP 2004)

 \rightarrow Horizontal mapping considered for moving mesh adaptivity

 \rightarrow Strong conservation form of anelastic equations (Lipps and Hemler, JAS 1982) in time-dependent generalised coordinates (Prusa and Smolarkiewicz, JCP 2003; Wedi and Smolarkiewicz, JCP 2004; Kühnlein etal., JCP 2012;...):

$$\begin{aligned} \frac{\partial(\rho^* v^j)}{\partial \overline{t}} &+ \frac{\partial(\rho^* \overline{v}^{*^k} v^j)}{\partial \overline{x}^k} = -\rho^* \widetilde{G}_j^k \frac{\partial \pi'}{\partial \overline{x}^k} + \rho^* g \frac{\theta'}{\theta_b} \delta_3^j - \rho^* \varepsilon_{jik} f_i v'^k - \rho^* \alpha_M v'^j \\ \frac{\partial(\rho^* \theta')}{\partial \overline{t}} &+ \frac{\partial(\rho^* \overline{v}^{*^k} \theta')}{\partial \overline{x}^k} = -\rho^* \overline{v}^{s^k} \frac{\partial \theta_e}{\partial \overline{x}^k} - \rho^* \alpha_H \theta' \\ \frac{\partial(\rho^* \overline{v}^{s^k})}{\partial \overline{x}^k} &= 0 \end{aligned}$$

- $\cdot \quad \text{Three different velocities: } v^{j} \text{ (physical), } \overline{v}^{*^{k}} = d\overline{x}^{k} / d\overline{t} \text{ (contravariant), } \overline{v}^{s^{k}} = \overline{v}^{*^{k}} \overline{v}^{g^{k}} \text{ (solenoidal)}$
- · Generalised density $\rho^*\equiv \rho_b\overline{G}$ product of background density ρ_b and Jacobian \overline{G}
- · \widetilde{G}_{i}^{k} represents elements of Jacobian matrix

EULAG model formulation

· generic Eulerian conservation law for prognostic equations

$$\frac{\partial(\rho^*\,\psi)}{\partial\overline{t}} + \overline{\nabla}\cdot\left(\rho^*\,\overline{\mathbf{v}}^*\,\psi\right) = \rho^* R^\psi \qquad \text{where} \qquad \overline{\nabla} \ \equiv \ \partial/\partial\overline{\mathbf{x}} \ , \ \overline{\mathbf{v}}^* = d\overline{\mathbf{x}}/d\overline{t}$$

· numerical solution algorithm on regular computational grid $(\overline{t}^n, \overline{x}_i)$:

$$\psi_{\mathbf{i}}^{n+1} = \mathcal{A}_{\mathbf{i}}(\widetilde{\psi}) + 0.5 \, \delta \overline{t} \, R^{\psi} |_{\mathbf{i}}^{n+1} \qquad \text{with} \qquad \widetilde{\psi} \, \equiv \, \psi^{n} + 0.5 \, \delta \overline{t} \, R^{\psi} |_{\mathbf{i}}^{n}$$

 \rightarrow solution algorithm fully implicit with respect to dependent variables

- $ightarrow \mathcal{A}$ symbolises non-oscillatory forward-in-time advection transport scheme
- \rightarrow implicit system solved iteratively using preconditioned GCR(k) solver

(Smolarkiewicz and Margolin, JCP 1998; Prusa and Smolarkiewicz, JCP 2003; ...)

 $\Rightarrow \mathcal{A}$ is flux-form second-order-accurate multidimensional advection transport algorithm MPDATA in this work

 \Rightarrow MPDATA requires $\mathcal{O}(\delta t^2)$ estimate of contravariant momentum flux $(\rho^* \overline{\mathbf{v}}^*)^{n+1/2}$

MMPDEs (see Huang, JCP 2001) govern time-dependent mapping of horizontal coordinates from transformed to physical space $\mathbf{x}_h = \mathbf{x}_h(\mathbf{\bar{x}}_h, \mathbf{\bar{t}})$:

$$P(\mathbf{x}_h, M) \frac{\partial \mathbf{x}_h}{\partial \overline{t}} = \sum_{i,j=1,2} D_{ij}(\mathbf{x}_h, M) \frac{\partial^2 \mathbf{x}_h}{\partial \overline{\mathbf{x}}^i \partial \overline{\mathbf{x}}^j} + \sum_{i=1,2} C_i(\mathbf{x}_h, M) \frac{\partial \mathbf{x}_h}{\partial \overline{\mathbf{x}}^i}$$

with coefficients

$$\begin{split} D_{ij}(\mathbf{x}_h, M) &= \nabla_h \, \overline{\mathbf{x}}^i \cdot M^{-1} \, \nabla_h \, \overline{\mathbf{x}}^j \,, \qquad C_i(\mathbf{x}_h, M) = -\nabla_h \, \overline{\mathbf{x}}^i \cdot \left(\sum_{k=1,2} \frac{\partial M^{-1}}{\partial \overline{\mathbf{x}}^k} \nabla_h \, \overline{\mathbf{x}}^k\right) \,, \\ P(\mathbf{x}_h, M) &= \mathcal{T} \, \sqrt{(D_{11})^2 + (D_{22})^2 + (C_1)^2 + (C_2)^2} \end{split}$$

 \Rightarrow MMPDEs are derived from variational principles as a minimiser of mapping functional

$$\mathcal{I}[\overline{\mathbf{x}}] = \frac{1}{2} \int_{\mathcal{D}_{\mathcal{P}}} \sum_{k=1}^{2} (\nabla \overline{\mathbf{x}}^{k})^{T} M^{-1} \nabla \overline{\mathbf{x}}^{k} d\mathbf{x}$$

$$\left(\text{In 1D:} \quad \mathcal{I}[\overline{x}] = \frac{1}{2} \, \int_{\mathcal{D}_p} \, \frac{1}{q} \left(\frac{\partial \overline{x}}{\partial x} \right)^2 \, dx \, , \text{ with the Euler-Lagrange equation:} \, \frac{\partial \overline{x}}{\partial x} = q \, \text{C} \right)$$

MMPDEs (see Huang, JCP 2001) govern time-dependent mapping of horizontal coordinates from transformed to physical space $\mathbf{x}_h = \mathbf{x}_h(\mathbf{\bar{x}}_h, \mathbf{\bar{t}})$:

$$P(\mathbf{x}_h, M) \frac{\partial \mathbf{x}_h}{\partial \overline{t}} = \sum_{i,j=1,2} D_{ij}(\mathbf{x}_h, M) \frac{\partial^2 \mathbf{x}_h}{\partial \overline{x}^i \partial \overline{x}^j} + \sum_{i=1,2} C_i(\mathbf{x}_h, M) \frac{\partial \mathbf{x}_h}{\partial \overline{x}^i}$$

with coefficients

$$\begin{split} D_{ij}(\mathbf{x}_h, M) &= \nabla_h \, \overline{\mathbf{x}}^i \cdot M^{-1} \, \nabla_h \, \overline{\mathbf{x}}^j \ , \qquad C_i(\mathbf{x}_h, M) = -\nabla_h \, \overline{\mathbf{x}}^i \cdot \left(\sum_{k=1,2} \frac{\partial M^{-1}}{\partial \overline{\mathbf{x}}^k} \, \nabla_h \, \overline{\mathbf{x}}^k\right) \ , \\ P(\mathbf{x}_h, M) &= \mathcal{T} \ \sqrt{(D_{11})^2 + (D_{22})^2 + (C_1)^2 + (C_2)^2} \end{split}$$

 \Rightarrow MMPDEs are derived from variational principles as a minimiser of mapping functional

$$\mathcal{I}[\bar{\mathbf{x}}] = \frac{1}{2} \int_{\mathcal{D}_{p}} \sum_{k=1}^{2} (\nabla \bar{\mathbf{x}}^{k})^{T} M^{-1} \nabla \bar{\mathbf{x}}^{k} d\mathbf{x}$$

$$\left(\text{In 1D:} \quad \mathcal{I}[\overline{x}] = \frac{1}{2} \, \int_{\mathcal{D}_p} \, \frac{1}{q} \left(\frac{\partial \overline{x}}{\partial x} \right)^2 \, dx \, , \text{ with the Euler-Lagrange equation:} \, \frac{\partial \overline{x}}{\partial x} = q \, \text{C} \right)$$

MMPDEs (see Huang, JCP 2001) govern time-dependent mapping of horizontal coordinates from transformed to physical space $\mathbf{x}_h = \mathbf{x}_h(\mathbf{\bar{x}}_h, \mathbf{\bar{t}})$:

$$P(\mathbf{x}_h, M) \frac{\partial \mathbf{x}_h}{\partial \overline{t}} = \sum_{i,j=1,2} D_{ij}(\mathbf{x}_h, M) \frac{\partial^2 \mathbf{x}_h}{\partial \overline{\mathbf{x}}^i \partial \overline{\mathbf{x}}^j} + \sum_{i=1,2} C_i(\mathbf{x}_h, M) \frac{\partial \mathbf{x}_h}{\partial \overline{\mathbf{x}}^i}$$

with coefficients

$$\begin{split} D_{ij}(\mathbf{x}_h, M) &= \nabla_h \, \overline{\mathbf{x}}^i \cdot M^{-1} \, \nabla_h \, \overline{\mathbf{x}}^j \ , \qquad C_i(\mathbf{x}_h, M) = -\nabla_h \, \overline{\mathbf{x}}^i \cdot \left(\sum_{k=1,2} \frac{\partial M^{-1}}{\partial \overline{\mathbf{x}}^k} \, \nabla_h \, \overline{\mathbf{x}}^k\right) \ , \\ P(\mathbf{x}_h, M) &= \mathcal{T} \ \sqrt{(D_{11})^2 + (D_{22})^2 + (C_1)^2 + (C_2)^2} \end{split}$$

 \Rightarrow MMPDEs are derived from variational principles as a minimiser of mapping functional

$$\mathcal{I}[\bar{\mathbf{x}}] = \frac{1}{2} \int_{\mathcal{D}_{\boldsymbol{\rho}}} \sum_{k=1}^{2} (\nabla \bar{\mathbf{x}}^{k})^{T} M^{-1} \nabla \bar{\mathbf{x}}^{k} d\mathbf{x}$$

$$\left(\text{In 1D:} \quad \mathcal{I}[\overline{x}] = \frac{1}{2} \int_{\mathcal{D}_p} \frac{1}{q} \left(\frac{\partial \overline{x}}{\partial x} \right)^2 \, dx \,, \text{ with the Euler-Lagrange equation:} \, \frac{\partial \overline{x}}{\partial x} = q \, C \right)$$

 \rightarrow monitor function *M* (2×2 matrix in 2D):

M = Iq

with scalar weighting function

$$q(t, \mathbf{x}_h) = 1 + rac{eta}{1-eta} \; rac{\Phi}{\langle \Phi
angle_h} \; , \qquad \qquad I ext{ is identity matrix}$$

- $\rightarrow \Phi$ is mesh refinement indicator; $\langle \Phi \rangle_h$ denotes its horizontal average
- \rightarrow 0 \leq β < 1 controls strength of adaptation
- ightarrow q is filtered to obtain good quality mesh

→ boundary conditions of 2D MMPDEs are either of Dirichlet-type for x_h found by means of one-dimensional MMPDEs

$$p(s,\mu) \frac{\partial s}{\partial \overline{t}} = \mu \frac{\partial^2 s}{\partial \overline{s}^2} + \frac{\partial \mu}{\partial \overline{s}} \frac{\partial s}{\partial \overline{s}}$$

along boundary segments or are assumed periodic, depending on BCs in EULAG

 \rightarrow monitor function M (2×2 matrix in 2D):

M = Iq

with scalar weighting function

$$q(t, \mathbf{x}_h) = 1 + rac{eta}{1-eta} rac{\Phi}{\langle \Phi
angle_h} \;, \qquad \qquad I ext{ is identity matrix}$$

 $\rightarrow \Phi$ is mesh refinement indicator; $\langle \Phi \rangle_h$ denotes its horizontal average

ightarrow 0 \leq eta < 1 controls strength of adaptation

ightarrow q is filtered to obtain good quality mesh

 $\rightarrow\,$ boundary conditions of 2D MMPDEs are either of Dirichlet-type for ${\bf x}_h$ found by means of one-dimensional MMPDEs

$$p(s,\mu)\frac{\partial s}{\partial \overline{t}} = \mu \frac{\partial^2 s}{\partial \overline{s}^2} + \frac{\partial \mu}{\partial \overline{s}} \frac{\partial s}{\partial \overline{s}}$$

along boundary segments or are assumed periodic, depending on BCs in EULAG

Flux-form NFT integration under moving meshes

Advective scalar transport equation in conservation form:

$$\frac{\partial(\rho^*\psi)}{\partial \overline{t}} + \overline{\nabla} \cdot \left(\rho^* \overline{\mathbf{v}}^*\psi\right) = \mathbf{0}$$

 $\psi \equiv 1$ gives associated mass conservation law:

$$\frac{\partial \rho^*}{\partial \overline{t}} + \overline{\nabla} \cdot \left(\rho^* \overline{\mathbf{v}}^* \right) = \mathbf{0}$$

 \rightarrow We denote it as generalised anelastic mass conservation law (GMCL)

Equivalence with evolution equation

$$rac{d\psi}{dar{t}}=0$$
 where $d/dar{t}=\partial/\partialar{t}+ar{f v}^*\cdotar{
abla}$

Without validity of GMCL:

$$\frac{d\psi}{d\overline{t}} = -\frac{\psi}{\rho^*} \left(\frac{\partial \rho^*}{\partial \overline{t}} + \overline{\nabla} \cdot \left(\rho^* \overline{\mathbf{v}}^* \right) \right)$$

Required properties of flux-form NFT MPDATA integration

- \rightarrow Satisfy GMCL in integration
- \rightarrow MPDATA compatibility with GMCL (\Rightarrow preserve uniform field $\hat{\psi} \equiv 1$)

Flux-form NFT integration under moving meshes

Advective scalar transport equation in conservation form:

$$\frac{\partial(\rho^*\psi)}{\partial \overline{t}} + \overline{\nabla} \cdot \left(\rho^* \overline{\mathbf{v}}^*\psi\right) = \mathbf{0}$$

 $\psi \equiv 1$ gives associated mass conservation law:

$$\frac{\partial \rho^*}{\partial \overline{t}} + \overline{\nabla} \cdot \left(\rho^* \overline{\mathbf{v}}^* \right) = \mathbf{0}$$

 \rightarrow We denote it as generalised anelastic mass conservation law (GMCL)

Equivalence with evolution equation

$$rac{d\psi}{dar{t}}=0$$
 where $d/dar{t}=\partial/\partialar{t}+ar{f v}^*\cdot\overline{
abla}$

Without validity of GMCL:

$$\frac{d\psi}{d\overline{t}} = -\frac{\psi}{\rho^*} \left(\frac{\partial \rho^*}{\partial \overline{t}} + \overline{\nabla} \cdot \left(\rho^* \overline{\mathbf{v}}^* \right) \right)$$

Required properties of flux-form NFT MPDATA integration

- $\rightarrow~$ Satisfy GMCL in integration
- \rightarrow MPDATA compatibility with GMCL (\Rightarrow preserve uniform field $\tilde{\psi} \equiv 1$)

GMCL can be decomposed using $\bar{\mathbf{v}}^* = \bar{\mathbf{v}}^s + \bar{\mathbf{v}}^g$ into generalised form of geometric conservation law (GCL) and anelastic mass continuity equation:

$$\frac{\partial \rho^*}{\partial \overline{t}} + \overline{\nabla} \cdot \left(\rho^* \overline{\mathbf{v}}^* \right) = \frac{\partial \rho^*}{\partial \overline{t}} + \overline{\nabla} \cdot \left(\rho^* \overline{\mathbf{v}}^g \right) + \overline{\nabla} \cdot \left(\rho^* \overline{\mathbf{v}}^s \right) = 0$$

Formulation of EULAG anelastic solver accounts for:

$$\overline{
abla} \cdot \left(
ho^* \overline{oldsymbol{v}}^s
ight) = 0 \ \ (< \ \epsilon)$$

However geometric conservation law

$$\frac{\partial \rho^*}{\partial \overline{t}} + \overline{\nabla} \cdot \left(\rho^* \overline{\mathbf{v}}^g \right) = \mathbf{0}$$

is not rigourously accounted for in the standard solver.

 \rightarrow Three extensions have been developed to NFT MPDATA integration for its use with adaptive moving meshes (Kühnlein et al., JCP 2012):

- 1. $\mathcal{O}(\delta t^2)$ estimate of contravariant momentum flux $(\rho^* \overline{\mathbf{v}}^*)^{n+1/2}$ in MPDATA
 - compute as $(\rho^* \overline{\mathbf{v}}^*)^{n+1/2} = (\rho^* \overline{\mathbf{v}}^s)^{n+1/2} + (\rho^* \overline{\mathbf{v}}^g)^{n+1/2}$
 - use predictor for solenoidal part, e.g. linear: $(\rho^* \overline{\mathbf{v}}^s)^{n+1/2} = (1+\beta) (\rho^* \overline{\mathbf{v}}^s)^n \beta (\rho^* \overline{\mathbf{v}}^s)^{n-1}$
 - mesh velocity $(\overline{\mathbf{v}}^g)^{n+1/2}$ and $\rho^{*n+1/2}$ obtained from $(\mathbf{v}^g)^{n+1/2} = (\mathbf{x}^{n+1} \mathbf{x}^n)/\delta \overline{t}$,
 - $\mathbf{x}^{n+1/2} = 0.5 \, (\mathbf{x}^{n+1} + \mathbf{x}^n)$ and Kronecker delta relations for transformation
 - procedure minimises errors with respect to numerical representation of GCL in FT solver
- 2. density-correction factor in MPDATA pseudo-velocities
 - default MPDATA not exactly compatible with GMCL for general moving meshes
 - exact compatibility achieved for arbitrary moving meshes by introducing density-correction factor $(\rho_i^{*\pi}/\rho_i^{*\pi+1})$ in error-compensative pseudo-velocities
 - pseudo-velocities retain form of original expressions but redefine entering field $\psi_i^{(k-1)}$ as $\widehat{\psi}_i^{(k-1)} := \psi_i^{(k-1)} \left(\rho_i^{*n} / \rho_i^{*n+1}\right)$
 - maintains second-order asymptotic accuracy of MPDATA as with original pseudo-velocities

 \rightarrow Three extensions have been developed to NFT MPDATA integration for its use with adaptive moving meshes (Kühnlein et al., JCP 2012):

- 1. $\mathcal{O}(\delta t^2)$ estimate of contravariant momentum flux $(\rho^* \bar{\mathbf{v}}^*)^{n+1/2}$ in MPDATA
 - compute as $(\rho^*\overline{\mathbf{v}}^*)^{n+1/2}=(\rho^*\overline{\mathbf{v}}^s)^{n+1/2}+(\rho^*\overline{\mathbf{v}}^g)^{n+1/2}$
 - use predictor for solenoidal part, e.g. linear: $(\rho^* \overline{\mathbf{v}}^s)^{n+1/2} = (1+\beta) (\rho^* \overline{\mathbf{v}}^s)^n \beta (\rho^* \overline{\mathbf{v}}^s)^{n-1}$
 - mesh velocity $(\overline{\mathbf{v}}^g)^{n+1/2}$ and $\rho^{*n+1/2}$ obtained from $(\mathbf{v}^g)^{n+1/2} = (\mathbf{x}^{n+1} \mathbf{x}^n)/\delta\overline{t}$,
 - $\mathbf{x}^{n+1/2} = 0.5 \, (\mathbf{x}^{n+1} + \mathbf{x}^n)$ and Kronecker delta relations for transformation
 - procedure minimises errors with respect to numerical representation of GCL in FT solver
- 2. density-correction factor in MPDATA pseudo-velocities
 - default MPDATA not exactly compatible with GMCL for general moving meshes
 - exact compatibility achieved for arbitrary moving meshes by introducing density-correction factor $(\rho_i^{*n}/\rho_i^{*n+1})$ in error-compensative pseudo-velocities
 - pseudo-velocities retain form of original expressions but redefine entering field $\psi_i^{(k-1)}$ as $\widehat{\psi}_i^{(k-1)} := \psi_i^{(k-1)} \left(\rho_i^{*n} / \rho_i^{*n+1}\right)$
 - maintains second-order asymptotic accuracy of MPDATA as with original pseudo-velocities

3. Elliptic solution approach for the generalised geometric conservation law (GCL)

- semi-discretised vectorial representation:
$$\frac{(\rho^{*n+1} - \rho^{*n})}{\delta \overline{t}} + \overline{\nabla} \cdot (\rho^* \overline{\mathbf{v}}^g)^{n+1/2} = 0$$

- with prescribed ρ^{*n} and ρ^{*n+1} , a preliminary guess $\overline{\mathbf{v}}_*^{\mathbf{g}}$ for the mesh velocity $\overline{\mathbf{v}}^{\mathbf{g}}$ is corrected to satisfy this equation

- this is achieved by introducing a potential ϕ as

$$\left\{ \overline{\mathbf{v}}^{g} = \overline{\mathbf{v}}^{g}_{*} - \widetilde{\mathbf{G}}^{T}\widetilde{\mathbf{G}}\,\overline{\nabla}\phi \right\}_{i}^{n+1/2}$$

which leads to elliptic boundary value problem

$$\left\{-\frac{\delta\overline{t}}{\rho^{*n+1/2}} \left(\frac{\left(\rho^{*n+1}-\rho^{*n}\right)}{\delta\overline{t}}+\overline{\nabla}\cdot\left(\rho^{*}\left[\overline{\mathbf{v}}_{*}^{g}-\widetilde{\mathbf{G}}^{T}\widetilde{\mathbf{G}}\,\overline{\nabla}\phi\right]\right)^{n+1/2}\right)\right\}_{\mathbf{i}}=\mathbf{0}$$

- solve with iterative GCR solver until residual $<\epsilon$

Time-dependent deformational shear flow (Blossey and Durran, JCP 2008):

$$\rightarrow$$
 mesh refinement indicator: $\Phi = ||\nabla_h \psi||$

 $\rightarrow T_{rw}$ is relative wall clock computing time to uniform mesh run with 50^2 mesh cells (leftmost panel)

Scalar advection numerical experiments

 \rightarrow Solution-adaptive moving mesh simulations with different implementations of the NFT scheme MPDATA:

Implementation	Density-correction	GCL formulation	
OS	No	standard	
RS	Yes	standard	
RD	Yes	diagnostic	

- $\rightarrow\,$ zonally-periodic channel 10000 km $\times\,$ 8000 km $\times\,$ 18 km
- → baroclinically unstable jet flow in dry and inviscid atmosphere (Bush and Peltier, JAS 1994)
- \rightarrow *f*-plane
- \rightarrow perturb initial state by local θ -anomaly at tropopause
- $\rightarrow~$ integrate for 12 days
- \rightarrow mesh refinement indicator:

 $\Phi = 1/H \int_{z=0}^{H} \|\nabla_h \theta\| dz$

 $\rightarrow\,$ see Kühnlein et al., JCP 2012 for details

Baroclinic wave life cycle experiments

C. Kühnlein, P. K. Smolarkiewicz, A. Dörnbrack,

Domain-averaged kinetic energetics with integration time

Sensitivity to mesh-refinement indicator

Simulation	Refinement indicator $\Phi(t, x, y)$	$\mathcal{E}_{\langle \mathrm{KE} \rangle}$	$\mathcal{E}_{\langle ZKE \rangle}$	$\mathcal{E}_{(\text{EKE})}$
S7050	-	6.43	4.99	4.84
S15429	-	2.58	1.66	1.90
A6254a	$\frac{1}{H} \int_0^H \ \nabla_h \theta\ dz$	2.82	1.67	1.80
A6254b	$\ \nabla_h \theta(z=600 \text{ m})\ $	3.75	2.64	2.28
A6254c	$\ \nabla_h \theta(z=3000 \text{ m})\ $	2.91	1.57	1.92
A6254d	$\left\ \nabla_{h} \theta(z = 5100 \text{ m}) \right\ $	2.98	2.43	1.98
A6254e	$\frac{1}{H}\int_0^H \ \nabla \times \mathbf{v}\ dz$	2.90	2.10	1.83
A6254f	$\frac{1}{H} \int_0^H PV dz$	3.81	2.31	2.45
A6254g	<i>PV</i> (z = 5100 m)	4.65	2.48	2.97
A6254h	<i>PV</i> (<i>z</i> = 9000 m)	4.22	2.62	2.64
A6254i	$\frac{1}{H} \int_0^H \ \nabla_h PV\ dz$	3.82	2.36	2.65
A6254j	$rac{1}{H}\int_{0}^{H} PV dz,\;rac{1}{H}\int_{0}^{H}\left\ abla_{h}PV ight\ dz$	3.84	2.27	2.52
A6254k	$\frac{1}{H}\int_0^H EPV dz$	10.77	5.43	8.57
A6254I	EPV(z = 5100 m)	9.50	4.60	7.56

$$\mathcal{E}_{\vartheta} = \left(\frac{1}{N_o}\sum_{i=1}^{N_o} \left(\vartheta_i - \vartheta_i^R\right)^2\right)^{1/2} \qquad \forall \quad \vartheta = \langle \mathrm{KE} \rangle \ , \langle \mathrm{ZKE} \rangle \ , \langle \mathrm{EKE} \rangle$$

 $\rightarrow \vartheta^R$ is high-resolution reference simulation S62217 with static uniform mesh $\rightarrow N_o = 48$ is number of 6-hourly model outputs over integration period of 12 days \rightarrow Representation of internal gravity waves occurring in response to imbalances in the evolving baroclinic wave flow:

vertical velocity field at z = 12 km and t = 246 h

Outlook

- \rightarrow application to 3D atmospheric flows including moist processes (moist baroclinic wave life cycle, single moist bubble, mesoscale convective storm)
- $\rightarrow\,$ extension of solution-adaptive moving meshes to the sphere for simulating global atmospheric flows

 $\Rightarrow\,$ Special thanks to: George Craig, Joseph Prusa, Ulrich Schumann, and Andii Wyszogrodzki

Outlook

- $\rightarrow\,$ application to 3D atmospheric flows including moist processes (moist baroclinic wave life cycle, single moist bubble, mesoscale convective storm)
- $\rightarrow\,$ extension of solution-adaptive moving meshes to the sphere for simulating global atmospheric flows

 $\Rightarrow\,$ Special thanks to: George Craig, Joseph Prusa, Ulrich Schumann, and Andii Wyszogrodzki