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WE Introduction (1)

The staggered grid schemes employed in most hydrocodes have
been remarkably successful.

However, they clearly have some theoretical and practical
deficiencies.

Mesh imprinting and symmetry breaking are important
examples.

The need to use artificial viscosities, hourglass filters and
subzonal pressure schemes 1s undesirable.

A staggered mesh 1s also inelegant in that all variables are not
conserved over the same space.

High resolution cell centred Lagrangian Godunov schemes could
overcome some of these problems.




:‘&?E Introduction (2)

= However, while Eulerian Godunov methods have been well
established for a long time [Godunov (MS, 1959)] progress has
been slow in extending these ideas to Lagrangian and ALE
schemes.

= This has largely been due to the difficulty in defining consistent
Lagrangian nodal velocities with which to move the
computational mesh.
= CAVEAT scheme [Dukowicz et al. (LANL report, 1986)]

= However, significant progress has been made recently in solving
this problem:
= 31 DG scheme [Loubere et al. (IJNF, 2004)]
"= GLACE scheme [Despres and Manzeran (ARMA, 2005)]
= EUCCLYHD scheme [Maire et al. (SISC, 2007)]
= Burton and Shashkov [Multimat presentations]




A:‘&?E Introduction (3)

" Most Lagrangian Godunov schemes either define nodal
velocities as an average of adjacent cell centred or edge
velocities (from the Riemann solver), or introduce a special
nodal Riemann solver.

= An alternative dual grid approach has also been developed by
the author. This talk will discuss the extension of the 15 order
scheme described in [1] to 2™ order in space and time, the
extension of the scheme to cylindrical geometry and preliminary
results from extension of the scheme to include an elastoplastic
flow capability.

[1] Barlow AJ, Roe PL, ‘A cell centred Lagrangian Godunov scheme for shock
hydrodynamics’. Comput. Fluids., 46, issuel, (2011), 133-136.




Transient dual grid idea

= All variables conserved at element centres.

= Nodal velocities are either reconstructed at start of
time step or carried as an additional variable.

= Acceleration of nodes during the time step 1s calculated
by solving an additional momentum equation on
transient dual grid.

= The finite volume update of the conserved element
centred variables 1s performed using fluxing volumes
that are consistent with the motion of the nodes.
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AVE Construction of nodal velocities

t &
= An acoustic approximate Riemann solver

is used to define the normal velocity v*
on each cell edge

_. o+l

=t

V* — placlaula + p2ac2au2a + pla T p2a
a
placla + p2ac2a

= A system of equations is then solved to
determine a corner velocity u, which
match v* on the two adjacent edges a and
b

* A — * N —
Va:na.uc vb:nb.uc

" The nodal velocity is then obtained by
averaging all the corner velocities

associated with the node
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W Nodal acceleration calculation

= P* 1s required on each of the
internal dual grid boundaries in
order to solve the nodal momentum
equation

1

) L

= The P* for each median mesh line
1s obtained by solving a collision
Riemann problem using the zonal
state variables and the nodal
velocities reconstructed at the start
of the time step.
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A:‘&?E Approximate Riemann Solver (1)

Artificial viscosity methods are often designed to only act
normal to the shock front or in the direction of the velocity
jump.

The same 1dea has been applied here to the acoustic approximate
Riemann solver to make it into a simple multi-dimensional
solver

p* — Zlap2a + ZZapla q* — ZlaZZa (V2a _Vla)

Zla +Z2a Zla +Z2a

where
— pla(cla +F | V2a _Vla |)

= This effectively introduces linear and quadratic artificial

viscosity like terms as suggested by Dukowicz.




A:‘&?E Approximate Riemann Solver (2)

= The zonal and nodal momentum equations can now be

written as 1
du. 2 R _*
MZ’D[ Lcll'Zl:D ] T LD,Z (p ) 2dn - £D,Z q ds

= The right hand side of these equations can now be viewed as
the gathering of forces that are acting on a zone or node.

* From this analogy it is clear how to modify the total energy
update to allow for the new approximate Riemann solver.
|

dt

where u, 1s the average velocity of the two nodes defining
edge e.
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9 Time Discretization (1)

Optional — Nodal velocity reconstruction — requires solution of Riemann problem for v*
at cell boundaries
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Define edge velocity u, as average

Solve Riemann problem for P** velocity of two nodes defining edge

1
dEZnJFE _ nw*—n —n , —n* —n
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A% Time Discretization (2)

Solve Riemann problem for P**12* at cell boundaries

Acceleration calculation -
centred pressure for 2nd
order accuracy in time

1,
n+—*

ch_t i n+ L n+ L 2 Z.onal accelerations
_[ (p, ° )dA

Z

Solve Riemann problem for P*1/2* at dual mesh boundaries

- 1
dI/_ln+1 1* _n+%* . VVhere U= _(un _|_ ul’H‘l)
M, .[ (p, nd +g, " )d4 Nodal accelerations ’
- M*
1
x™ = x" +uAtVnodes Pt =

vyl =p(x nH)VcellS

- 1 L 1 Corrector total energy update

dEn+1

1 *
M, [ W g dd
Define edge velocity u, as average
velocity of two nodes defining edge
Pn+1 — P(8n+1 pn+1) . n+l n+l 1 n+l (|2
) Equation of State call ¢/ =FE"" ——||u]" |
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:@EE 21 order extension (1)

= Slope extrapolation 1s used to determine the velocities and
pressures at the cell edges, when the a solution to the Riemann
problem is required across cell edges.

= Three slopes are calculated in volume coordinates in each
1soparametric direction.

a¢a — (¢a+1 _¢a )Axazé + (¢a _¢a—1 )Axozﬁl
ax AxanaH (Axa + AX’.OHI)

¢a+1 B ¢a A¢ _ ¢a B ¢a—1
Ax ¢ Ax

o+1 o

A¢0:+1 =




A:;EE 21 order extension (2)

= A van Leer slope limiter is then use to define the slope use for
the extrapolation

| :

b, = oan(s, ) sen(o |

= A second order approach 1s not used for the nodal quantities on
the dual grid when solving the nodal momentum equation to
move the nodes as little sensitivity has been observed as to
whether a first or second order method 1s used for the nodal
momentum solve.

o0,
Ox

A ¢0{ A ¢a+l

b b




A:‘&?E Sod’s Shock tube

= 100 zones. Ideal gas (y=1.4). State variables (p, p, €) = (1.0,
0.125, 2.5), and (0.1, 0.1, 2.0)y.
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Saltzman’s Piston Problem (1)
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Piston moves with unit velocity from left to right generating a shock that

passes across a grid that 1s skewed with respect to the vertical with a half
sin wave perturbation. The right end 1s treated as a reflecting boundary.

Ideal gas (y=1.66) with unity initial density and zero internal energy.

Compare mesh quality and density behind before and after reflection.

A density of 4 g/cc should be observed behind first shock and 10 g/cc

behind reflected shock.
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AWE Saltzman’s Piston Plane Geometry (2)

2nd grder
Godunov with
reconstruction

t=0.7 s

2nd order
Godunov without
reconstruction

Initial angle of mesh lines not preserved by reconstruction!
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W Saltzman’s Piston Plane Geometry (3)
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Initial angle of mesh lines not preserved by reconstruction!
Reconstruction method appears to introduce additional dissipation.




“Y7% Saltzman’s Piston Plane Geometry (4)

Diensity in gfce
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Density more uniform behind first shock without reconstruction,
but more of an overshoot for reflected shock and more smearing of shock front.
Local error in shock position at boundary apparent in both solutions.
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A% Noh Problem

Plane geometry with R 6 and X Y mesh variants considered.
Ideal gas (y=1.66) with unity initial density and zero internal energy.

Initial uniform radial velocity imposed acting towards the origin.

Initial meshes
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Noh in Plane Geometry (1)
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2nd grder 2nd grder
Godunov with Godunov without
: T=0.6 pus ~
reconstruction reconstruction
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%% Noh in Plane Geometry (2)

2nd grder
Godunov with
reconstruction

2nd order
Godunov without
reconstruction
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“2F Noh in Plane Geometry - Density (3)

Density in g/cc
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Density 1s more uniform behind outgoing shock, mesh quality and symmetry are
improved and shock smearing is reduced without reconstruction, but a larger
overshoot is observed at the shock front.
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:‘&?E Cylindrical Geometry

= An area weighted approach has been taken to extend the method
to cylindrical geometry.

= This effectively solves the two momentum equations as for
plane geometry case.

= The total energy update 1s modified to account for the true swept
volume associated with each edge in cylindrical geometry by
simply using the expression for the average face centred velocity
weighted by radius suggested by Pierre-Henri Maire [2]:

R 1[2RP+RP+_ R, +2R,, _ ]

3 Up+ 3 Up+

= r )

[2] Maire, P-H, ‘A high-order cell centred Lagrangian Godunov scheme for compressible
fluid flows in two-dimensional cylindrical geometry’, Journal of Computational
Physics, 228, (2009), 6882-6915.
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AVFE Saltzman’s Piston in Cylindrical Geometry (2)

Compatible
FEM hydro in
cylindrical geometry

t=0.7 s

2nd order
Godunov without
reconstruction in
cylindrical geometry

24



—

Wi

AWE  Saltzman’s Piston in Cylindrical Geometry (3)

Compatible
FEM hydro in
cylindrical geometry

t=0.8 us

2nd order
Godunov without
reconstruction in
cylindrical geometry
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Saltzman’s Piston in Cylindrical Geometry (4)

Density in gfce
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9 Noh in Cylindrical Geometry on R Theta grid

—— Campatible FEM hydro
—— 2nd order Lag Godunov
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2nd order Godunov
without reconstruction
in cylindrical geometry

T=0.6 ps Density profile comparison
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2nd order Godunov without
reconstruction in
cylindrical geometry

T=0.6 pus

Compatible FEM hydro in
cylindrical geometry
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AWE Noh in cylindrical geometry on initially cartesian grid (2)
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Awie Sedov in cylindrical geometry (1)

i |y

27 order Godunov Compatible FEM hydro in
without reconstruction T=1.0 ps cylindrical geometry

in cylindrical geometry
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A:\&?E Sedov in cylindrical geometry (2)

Density in gfoc
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A:‘&?E Elastoplatic flow capability (1)

= Force terms 1n momentum and total energy equations
extended to include stress deviators.

= Nodal velocities used to calculate strain rates at
element centres.

= Stress deviators at element centres obtained following
standard staggered grid method (Wilkins).

= Slope extrapolation used to obtain stress deviators
either side of cell edges.




A:‘&?E Elastoplatic flow capability (2)

= Riemann problem 1s solved for total stress.

= This corresponds to taking acoustic impedance
weighted average for stress deviators.

o 2,8, +2,5

Y

i

Z -|-Z2

= A full second order approach was found important in
solving the nodal momentum equation for elastoplastic
flow problems.




:@E Taylor Ta Rod impact problem (1)
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:‘%""\E Taylor Ta Rod impact problem (2)
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L_@J”"\E Taylor Ta Rod impact problem (3)
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AWE  Conclusion

" A dual grid cell centred Lagrangian Godunov scheme has been
extended to 2nd order accuracy in space and time, a cylindrical
geometry capability added and preliminary elastoplastic flow
capability demonstrated.

= Results have been presented for well known test problems and
compared against those obtained with a staggered grid
compatible finite element scheme.

= The second order scheme has been shown to retain the benetits
observed with the first order scheme in terms of reduced mesh
imprinting, symmetry preservation and improved robustness
compared to the staggered grid scheme.

* The 2nd order scheme also provides comparable accuracy and
shock capturing to staggered grid methods.

= Further improvements in symmetry preservation are observed
for cylindrical geometry.

= The elastoplastic flow capability looks promising but needs
further work.




