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Figure 1: initial conditions of the potential temperature

Successfully model a hot rising bubble in a moist atmosphere with
e phase changes
e latent heat

e sound waves removed



Why pseudo-incompressible?

e filters sound waves allowing longer time steps

e advantages over the anaelastic approximation:
e more easily extended to compressible equations
e allows higher variation in p and 6

e more accurate for small scales e.g. combustion

e P-I code currently being developed



The Pseudo-Incompressible approximation

The Compressible Euler Equations

pe+ V- (pu) =0
(pu)e + V- (puou) +Vp = —gk
(p0)t + V - (pbu) =0

Equations of state

Pref Rico
9:T<p> , p=pRT

or, combining these equations

o /cp
Pref p
0 =
P R (pref>




The Pseudo-Incompressible approximation

Assume

p=po(z) + p'(x, t)
p = po(z) + p'(x, t)

where 8”" = —pog and p'/py << 1.

Now set p = pg in (1) and let v = ¢, /cy

p*(g — Pref < Po >1/'y
R Pref

where p*(po, 6) is called the pseudo-density.




The Pseudo-Incompressible approximation

The conservation of potential temperature equation becomes a
divergence constraint

(p*0)t +V - (p*6u) =V - (p*0u) =0
and the governing equations become

pi+ V- (p'u) =0
(pP*u)e + V- (p'uou)+Vp=—pgk
V-(p*fu) =0

with equation of state

p*9 — pref

< Po >1/’Y
R Pref




Adding moisture

Assumptions
e each state has the same temperature and velocity field
e using a simplified EOS

e ignoring: precipitation, ice-phase microphysics, Coriolis force,
subgrid-scale turbulence



Adding moisture

Moist compressible equations with bulk thermodynamics

pt+ V- (pu) =0
(pu)e + V- (puou) +Vp = —gk
(p0)t + V - (pbu) = pdS

Dr, . Dr. .
Ft:rconda E:_rcond

where p = (pa + py + pc), rv = pv/pa and re = pe/pa.

p@: pref< P >1/’y
R Pref

Equation of state




First (Naive) Attempt

If we proceed as in the case without moisture the potential
temperature equation becomes

V- (p*Ou) = p*6S

This does NOT work with solid wall boundary conditions.



Second attempt

Using a time varying background pressure py(z, t)

1/v *
. Prer O Po p*o
9 = — =
(p )t R 0Ot <<pref> ) 'YPO(pO)t

= V- (p*0u) = p*0 (5 — %}(Po)t)

The problem now is how do we calculate (pg):?



Calculating the time varying background state

From the work of Almgren et al on Supernovae:

e let wy(z, t) be the vertical velocity field that adjusts the base
state and let &1 govern the remaining local dynamics

u=wok+u

Xmax
where [ wdx =0.
Xmin
e assume the background pressure of each parcel remains
unchanged.

Dpo _ dpo ,  9P0 _
Dt~ ot oz
= can no longer use a solid top wall. We must compromise

and use a buffer layer.



Calculating the time varying background state

Writing the divergence constraint in terms of wy and i
* . N 1
V(7 0) 4 7 (08) = 0 (S - (o)

Integrating over a horizontal slab [Xmin, Xmax] X[z — h, z + h]
Z+h Xmax
/ [V - (p*Owok) + V - (p*0i1)] dzdx

z—h Xmin

Z+h Xmax

S

z—h Xmin



Calculating the time varying background state

Assuming solid horizontal walls

Xmax z+h z+h Xmax 1
/[(p*0W0)+(p*9|7v)] dx:/ / [p*e <S—(po)t>] dzdx
z—h YPo
Xmin z—h Xmin
z+h
[ Lo (5= tee) )4
= _ zZ
h P ~Po Po)t

()

. Xmax
where S(z,t) =1 | S(x,z,t)dx and we've used the fact that
Xmin

p*6 does not depend x.



Calculating the time varying background state

Using the definition of W and the fact that (p*f0wp) does not
depend on x, (2) becomes

z+h

e ]

z—h

L(p*Owo)

Cancelling L, dividing by h and taking the limit h — 0

O omo _ uglg_ L 9P
9z ° ypo Ot




Calculating the time varying background state
Expanding (3)

0p*0 Owp p*0 Opo Owp
0z tp 82 - vpo Oz tp 0z

_ gle_ L (_ 9m
_pe[s wo( WO@Z)]

i 20 9po
Cancelling the WoZos B, terms

*ao *NC

98 =p*0S
owy —
=%, =9

Assuming solid walls at the base

wo(z, t) = / S(Z,t)d7
0



New divergence constraint

The background divergence constraint

ot _ s 1 0m
oz ° vypo Ot

The original divergence constraint
* * 1
V- (p*u) =p 0 { S — —(po):
subtracting we get

- 0
V- (p*Ou) = p*0(S — S) + E(p*&wo)



New governing equations

Mass  p;i +V - (p*u) =0
Momentum (p*u)t + V- (p*uou)) +Vp=—p*gk

Divergence constraint V- (p*0u) = p*0(S — S) + %(p*@wo)

i s 2 Dre
Microphysics o = Feond = = b
1/v
Equation of state Pl = Pref ( Po >
R Pref

wo(z,t) = / S(Z,t)dZ
0

dpo Opo
ot W, T

Base-state updates

0



Currently

e implementing model in “in-house” low mach number finite
volume code

e using Grabowski & Smolarkiewicz 1990 for the source terms

e having problems with the projection steps which enforce the
divergence constraint



Eventually

add precipitation
more complicated thermodyanmics and microphysics

parallelisation and mesh-refinement (already implemented in
dry case)

other test cases e.g. the more realistic test-case of Klassen &
Clark 1985, squall-lines....



Thank you for your attention
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