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Goal

Figure 1: initial conditions of the potential temperature

Successfully model a hot rising bubble in a moist atmosphere with

• phase changes

• latent heat

• sound waves removed



Why pseudo-incompressible?

• filters sound waves allowing longer time steps

• advantages over the anaelastic approximation:

• more easily extended to compressible equations

• allows higher variation in ρ and θ

• more accurate for small scales e.g. combustion

• P-I code currently being developed



The Pseudo-Incompressible approximation

The Compressible Euler Equations

ρt +∇ · (ρu) = 0

(ρu)t +∇ · (ρu ◦ u) +∇p = −gk
(ρθ)t +∇ · (ρθu) = 0

Equations of state

θ = T

(
pref
p

)R/cp

, p = ρRT

or, combining these equations

ρθ =
pref
R

(
p

pref

)cv/cp

(1)



The Pseudo-Incompressible approximation

Assume

p = p0(z) + p′(x, t)

ρ = ρ0(z) + ρ′(x, t)

where ∂p0
∂z = −ρ0g and p′/p0 << 1.

Now set p = p0 in (1) and let γ = cp/cv

ρ∗θ =
pref
R

(
p0
pref

)1/γ

where ρ∗(p0, θ) is called the pseudo-density.



The Pseudo-Incompressible approximation

The conservation of potential temperature equation becomes a
divergence constraint

(ρ∗θ)t +∇ · (ρ∗θu) = ∇ · (ρ∗θu) = 0

and the governing equations become

ρ∗t +∇ · (ρ∗u) = 0

(ρ∗u)t +∇ · (ρ∗u ◦ u) +∇p = −ρ∗gk
∇ · (ρ∗θu) = 0

with equation of state

ρ∗θ =
pref
R

(
p0
pref

)1/γ



Adding moisture

Assumptions

• each state has the same temperature and velocity field

• using a simplified EOS

• ignoring: precipitation, ice-phase microphysics, Coriolis force,
subgrid-scale turbulence



Adding moisture

Moist compressible equations with bulk thermodynamics

ρt +∇ · (ρu) = 0

(ρu)t +∇ · (ρu ◦ u) +∇p = −gk
(ρθ)t +∇ · (ρθu) = ρθS

Drv
Dt

= ṙcond ,
Drc
Dt

= −ṙcond

where ρ = (ρa + ρv + ρc), rv = ρv/ρa and rc = ρc/ρa.

Equation of state

ρθ =
pref
R

(
p

pref

)1/γ



First (Naive) Attempt

If we proceed as in the case without moisture the potential
temperature equation becomes

∇ · (ρ∗θu) = ρ∗θS

This does NOT work with solid wall boundary conditions.



Second attempt

Using a time varying background pressure p0(z , t)

(ρ∗θ)t =
pref
R

∂

∂t

((
p0
pref

)1/γ
)

=
ρ∗θ

γp0
(p0)t

⇒ ∇ · (ρ∗θu) = ρ∗θ

(
S − 1

γp0
(p0)t

)
The problem now is how do we calculate (p0)t?



Calculating the time varying background state

From the work of Almgren et al on Supernovae:

• let w0(z , t) be the vertical velocity field that adjusts the base
state and let ũ govern the remaining local dynamics

u = w0k + ũ

where
xmax∫
xmin

w̃ dx = 0.

• assume the background pressure of each parcel remains
unchanged.

Dp0
Dt

=
∂p0
∂t

+ w0
∂p0
∂z

= 0

⇒ can no longer use a solid top wall. We must compromise
and use a buffer layer.



Calculating the time varying background state

Writing the divergence constraint in terms of w0 and ũ

∇ · (ρ∗θw0k) +∇ · (ρ∗θũ) = ρ∗θ

(
S − 1

γp0
(p0)t

)
Integrating over a horizontal slab [xmin, xmax ]x [z − h, z + h]

z+h∫
z−h

xmax∫
xmin

[∇ · (ρ∗θw0k) +∇ · (ρ∗θũ)] dzdx

=

z+h∫
z−h

xmax∫
xmin

[
ρ∗θ

(
S − 1

γp0
(p0)t

)]
dzdx



Calculating the time varying background state

Assuming solid horizontal walls

xmax∫
xmin

[(ρ∗θw0) + (ρ∗θw̃)]

∣∣∣∣z+h

z−h
dx =

z+h∫
z−h

xmax∫
xmin

[
ρ∗θ

(
S − 1

γp0
(p0)t

)]
dzdx

= L

z+h∫
z−h

[
ρ∗θ

(
S − 1

γp0
(p0)t

)]
dz

(2)

where S(z , t) = 1
L

xmax∫
xmin

S(x , z , t) dx and we’ve used the fact that

ρ∗θ does not depend x .



Calculating the time varying background state

Using the definition of w̃ and the fact that (ρ∗θw0) does not
depend on x , (2) becomes

L(ρ∗θw0)

∣∣∣∣z+h

z−h
= L

z+h∫
z−h

[
ρ∗θ

(
S − 1

γp0
(p0)t

)]
dz

Cancelling L, dividing by h and taking the limit h→ 0

∂ρ∗θw0

∂z
= ρ∗θ

[
S − 1

γp0

∂p0
∂t

]
(3)



Calculating the time varying background state
Expanding (3)

w0
∂ρ∗θ

∂z
+ ρ∗θ

∂w0

∂z
= w0

ρ∗θ

γp0

∂p0
∂z

+ ρ∗θ
∂w0

∂z

= ρ∗θ

[
S − 1

γp0

(
−w0

∂p0
∂z

)]
Cancelling the w0

ρ∗θ
γp0

∂p0
∂z terms

⇒ρ∗θ∂w0

∂z
= ρ∗θS

⇒∂w0

∂z
= S

Assuming solid walls at the base

w0(z , t) =

∫ z

0
S(z ′, t) dz ′



New divergence constraint

The background divergence constraint

∂ρ∗θw0

∂z
= ρ∗θ

[
S − 1

γp0

∂p0
∂t

]
The original divergence constraint

∇ · (ρ∗θu) = ρ∗θ

(
S − 1

γp0
(p0)t

)
subtracting we get

∇ · (ρ∗θu) = ρ∗θ(S − S) +
∂

∂z
(ρ∗θw0)



New governing equations

Mass ρ∗t +∇ · (ρ∗u) = 0

Momentum (ρ∗u)t +∇ · (ρ∗u ◦ u)) +∇p = −ρ∗gk

Divergence constraint ∇ · (ρ∗θu) = ρ∗θ(S − S) +
∂

∂z
(ρ∗θw0)

Microphysics
Drv
Dt

= ṙcond ,
Drc
Dt

= −ṙcond

Equation of state ρθ =
pref
R

(
p0
pref

)1/γ

Base-state updates


w0(z , t) =

∫ z

0
S(z ′, t)dz ′

∂p0
∂t

+ w0
∂p0
∂z

= 0



Currently

• implementing model in “in-house” low mach number finite
volume code

• using Grabowski & Smolarkiewicz 1990 for the source terms

• having problems with the projection steps which enforce the
divergence constraint



Eventually

• add precipitation

• more complicated thermodyanmics and microphysics

• parallelisation and mesh-refinement (already implemented in
dry case)

• other test cases e.g. the more realistic test-case of Klassen &
Clark 1985, squall-lines....



Thank you for your attention
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