A low Mach number model for moist convection

Warren O'Neill, M.Sc. Professor Rupert Klein

Institut für Mathematik, Freie Universität, Berlin

3rd International EULAG Workshop June 27, 2012

Outline

Goal

The Pseudo-Incompressible approximation

Adding moisture

Calculating the time varying background state

New governing equations

Goal

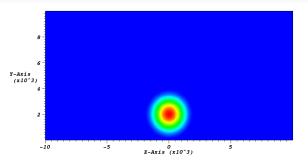


Figure 1: initial conditions of the potential temperature

Successfully model a hot rising bubble in a moist atmosphere with

- phase changes
- latent heat
- sound waves removed

Why pseudo-incompressible?

- filters sound waves allowing longer time steps
- advantages over the anaelastic approximation:
 - more easily extended to compressible equations
 - allows higher variation in ρ and θ
 - more accurate for small scales e.g. combustion
- P-I code currently being developed

The Pseudo-Incompressible approximation

The Compressible Euler Equations

$$\rho_t + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$(\rho \mathbf{u})_t + \nabla \cdot (\rho \mathbf{u} \circ \mathbf{u}) + \nabla p = -g\mathbf{k}$$

$$(\rho \theta)_t + \nabla \cdot (\rho \theta \mathbf{u}) = 0$$

Equations of state

$$heta = T\left(rac{p_{ref}}{p}
ight)^{R/c_p}, \quad p =
ho RT$$

or, combining these equations

$$\rho\theta = \frac{\rho_{ref}}{R} \left(\frac{\rho}{\rho_{ref}}\right)^{c_v/c_\rho} \tag{1}$$

The Pseudo-Incompressible approximation

Assume

$$p = p_0(z) + p'(\mathbf{x}, t)$$

$$\rho = \rho_0(z) + \rho'(\mathbf{x}, t)$$

where
$$\frac{\partial p_0}{\partial z} = -\rho_0 g$$
 and $p'/p_0 << 1$.
Now set $p = p_0$ in (1) and let $\gamma = c_p/c_v$
$$\rho^* \theta = \frac{p_{ref}}{R} \left(\frac{p_0}{p_{ref}}\right)^{1/\gamma}$$

where $\rho^*(p_0, \theta)$ is called the pseudo-density.

The Pseudo-Incompressible approximation

The conservation of potential temperature equation becomes a divergence constraint

$$(\rho^*\theta)_t + \nabla \cdot (\rho^*\theta \mathbf{u}) = \nabla \cdot (\rho^*\theta \mathbf{u}) = 0$$

and the governing equations become

$$egin{aligned} &
ho_t^* +
abla \cdot (
ho^* \mathbf{u}) = 0 \ &(
ho^* \mathbf{u})_t +
abla \cdot (
ho^* \mathbf{u} \circ \mathbf{u}) +
abla p = -
ho^* g \mathbf{k} \ &
abla \cdot (
ho^* heta \mathbf{u}) = 0 \end{aligned}$$

with equation of state

$$\rho^*\theta = \frac{p_{ref}}{R} \left(\frac{p_0}{p_{ref}}\right)^{1/\gamma}$$

Adding moisture

Assumptions

- each state has the same temperature and velocity field
- using a simplified EOS
- ignoring: precipitation, ice-phase microphysics, Coriolis force, subgrid-scale turbulence

Adding moisture

Moist compressible equations with bulk thermodynamics

$$\rho_{t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$(\rho \mathbf{u})_{t} + \nabla \cdot (\rho \mathbf{u} \circ \mathbf{u}) + \nabla p = -g \mathbf{k}$$

$$(\rho \theta)_{t} + \nabla \cdot (\rho \theta \mathbf{u}) = \rho \theta S$$

$$\frac{Dr_{v}}{Dt} = \dot{r}_{cond}, \quad \frac{Dr_{c}}{Dt} = -\dot{r}_{cond}$$

where $\rho = (\rho_a + \rho_v + \rho_c)$, $r_v = \rho_v / \rho_a$ and $r_c = \rho_c / \rho_a$.

Equation of state

$$\rho\theta = \frac{p_{ref}}{R} \left(\frac{p}{p_{ref}}\right)^{1/\gamma}$$

First (Naive) Attempt

If we proceed as in the case without moisture the potential temperature equation becomes

$$\nabla \cdot (\rho^* \theta \mathbf{u}) = \rho^* \theta S$$

This does NOT work with solid wall boundary conditions.

Second attempt

Using a time varying background pressure $p_0(z, t)$

$$(\rho^*\theta)_t = \frac{p_{ref}}{R} \frac{\partial}{\partial t} \left(\left(\frac{p_0}{p_{ref}} \right)^{1/\gamma} \right) = \frac{\rho^*\theta}{\gamma p_0} (p_0)_t$$
$$\Rightarrow \nabla \cdot (\rho^*\theta \mathbf{u}) = \rho^*\theta \left(S - \frac{1}{\gamma p_0} (p_0)_t \right)$$

The problem now is how do we calculate $(p_0)_t$?

From the work of Almgren et al on Supernovae:

 let w₀(z, t) be the vertical velocity field that adjusts the base state and let ũ govern the remaining local dynamics

$$\mathbf{u} = w_0 \mathbf{k} + \tilde{\mathbf{u}}$$

where
$$\int_{x_{min}}^{x_{max}} \tilde{w} \, \mathrm{d}x = 0.$$

 assume the background pressure of each parcel remains unchanged.

$$\frac{Dp_0}{Dt} = \frac{\partial p_0}{\partial t} + w_0 \frac{\partial p_0}{\partial z} = 0$$

 \Rightarrow can no longer use a solid top wall. We must compromise and use a buffer layer.

Writing the divergence constraint in terms of w_0 and \tilde{u}

$$abla \cdot (
ho^* heta w_0 \mathbf{k}) +
abla \cdot (
ho^* heta ilde{\mathbf{u}}) =
ho^* heta \left(S - rac{1}{\gamma p_0} (p_0)_t
ight)$$

Integrating over a horizontal slab $[x_{min}, x_{max}]x[z - h, z + h]$

$$\int_{z-h}^{z+h} \int_{x_{min}}^{x_{max}} \left[\nabla \cdot \left(\rho^* \theta w_0 \mathbf{k} \right) + \nabla \cdot \left(\rho^* \theta \tilde{\mathbf{u}} \right) \right] \, \mathrm{d}z \mathrm{d}x$$
$$= \int_{z-h}^{z+h} \int_{x_{min}}^{x_{max}} \left[\rho^* \theta \left(S - \frac{1}{\gamma p_0} (p_0)_t \right) \right] \, \mathrm{d}z \mathrm{d}x$$

Assuming solid horizontal walls

$$\int_{x_{min}}^{x_{max}} \left[\left(\rho^* \theta w_0 \right) + \left(\rho^* \theta \tilde{w} \right) \right] \Big|_{z-h}^{z+h} dx = \int_{z-h}^{z+h} \int_{x_{min}}^{x_{max}} \left[\rho^* \theta \left(S - \frac{1}{\gamma p_0} (p_0)_t \right) \right] dz dx$$
$$= L \int_{z-h}^{z+h} \left[\rho^* \theta \left(\overline{S} - \frac{1}{\gamma p_0} (p_0)_t \right) \right] dz$$
(2)

where $\overline{S}(z,t) = \frac{1}{L} \int_{x_{min}}^{x_{max}} S(x,z,t) \, \mathrm{d}x$ and we've used the fact that $\rho^* \theta$ does not depend x.

Using the definition of \tilde{w} and the fact that $(\rho^* \theta w_0)$ does not depend on x, (2) becomes

$$L(\rho^*\theta w_0)\Big|_{z-h}^{z+h} = L \int_{z-h}^{z+h} \left[\rho^*\theta\left(\overline{S} - \frac{1}{\gamma p_0}(p_0)_t\right)\right] \, \mathrm{d}z$$

Cancelling L, dividing by h and taking the limit $h \rightarrow 0$

$$\frac{\partial \rho^* \theta w_0}{\partial z} = \rho^* \theta \left[\overline{S} - \frac{1}{\gamma p_0} \frac{\partial p_0}{\partial t} \right]$$
(3)

Calculating the time varying background state Expanding (3)

$$w_{0}\frac{\partial\rho^{*}\theta}{\partial z} + \rho^{*}\theta\frac{\partial w_{0}}{\partial z} = w_{0}\frac{\rho^{*}\theta}{\gamma p_{0}}\frac{\partial p_{0}}{\partial z} + \rho^{*}\theta\frac{\partial w_{0}}{\partial z}$$
$$= \rho^{*}\theta\left[\overline{S} - \frac{1}{\gamma p_{0}}\left(-w_{0}\frac{\partial p_{0}}{\partial z}\right)\right]$$

Cancelling the $w_0 \frac{\rho^* \theta}{\gamma p_0} \frac{\partial p_0}{\partial z}$ terms

$$\Rightarrow \rho^* \theta \frac{\partial w_0}{\partial z} = \rho^* \theta \overline{S}$$
$$\Rightarrow \frac{\partial w_0}{\partial z} = \overline{S}$$

Assuming solid walls at the base

$$w_0(z,t) = \int_0^z \overline{S}(z',t) \, \mathrm{d}z'$$

New divergence constraint

The background divergence constraint

$$\frac{\partial \rho^* \theta w_0}{\partial z} = \rho^* \theta \left[\overline{S} - \frac{1}{\gamma p_0} \frac{\partial p_0}{\partial t} \right]$$

The original divergence constraint

$$abla \cdot (
ho^* heta \mathbf{u}) =
ho^* heta \left(S - rac{1}{\gamma
ho_0} (
ho_0)_t
ight)$$

subtracting we get

$$abla \cdot (
ho^* heta \mathbf{u}) =
ho^* heta (S - \overline{S}) + rac{\partial}{\partial z} (
ho^* heta w_0)$$

New governing equations

Mass $\rho_{t}^{*} + \nabla \cdot (\rho^{*}\mathbf{u}) = 0$ Momentum $(\rho^* \mathbf{u})_t + \nabla \cdot (\rho^* \mathbf{u} \circ \mathbf{u})) + \nabla \boldsymbol{p} = -\rho^* \boldsymbol{g} \mathbf{k}$ $\nabla \cdot (\rho^* \theta \mathbf{u}) = \rho^* \theta (S - \overline{S}) + \frac{\partial}{\partial z} (\rho^* \theta w_0)$ Divergence constraint $\frac{Dr_v}{Dt} = \dot{r}_{cond}, \quad \frac{Dr_c}{Dt} = -\dot{r}_{cond}$ **Microphysics** $\rho\theta = \frac{p_{ref}}{R} \left(\frac{p_0}{p_{ref}}\right)^{1/\gamma}$ Equation of state $\begin{cases} w_0(z,t) = \int_0^z \overline{S}(z',t) \, \mathrm{d}z' \\ \frac{\partial p_0}{\partial t} + w_0 \frac{\partial p_0}{\partial t} = 0 \end{cases}$ Base-state updates

- implementing model in "in-house" low mach number finite volume code
- using Grabowski & Smolarkiewicz 1990 for the source terms
- having problems with the projection steps which enforce the divergence constraint

- add precipitation
- more complicated thermodyanmics and microphysics
- parallelisation and mesh-refinement (already implemented in dry case)
- other test cases e.g. the more realistic test-case of Klassen & Clark 1985, squall-lines....

Thank you for your attention