Numerical analyses of explicit time-stepping methods for use in atmospheric forecasting models

Sarah-Jane Lock

With thanks to: Alan Gadian (Leeds); Nigel Wood, Andrew Staniforth (UK Met Office); Hilary Weller (Reading)

Talk outline

- Some background
- Motivation for analyses
- Description of analysis framework
- Outline schemes for analysis
- Present some results of numerical and empirical analyses
- Conclusions and future work

GUNG-HO! (aka UM^{*} dynamical core project)

G	lobally	UK Met Office; Science & Technology Facilities Centre;
U	niform	Universities: Bath, Exeter, Imperial, Leeds, Manchester, Reading
Ν	ext	
G	eneration	Objective: To research, design and develop a new dynamical core suitable for
Η	ighly	operational, global and regional, weather and climate simulation on massively parallel computers of the size envisaged over the coming 20
0	ptizimed	years.

Outline:

Phase 1 (2011-2013): exploration of alternative methods to address identified barriers to good performance on massively parallel computers in current UM:

- quasi-uniform horizontal grids
- conservative transport schemes
- time-stepping methods
- 2D testing

Phase 2 (2013 -2016): selected methods from Phase 1 will be combined with exploration of the vertical aspects and extended into a 3D model for extensive testing

Motivation for re-examining time-stepping

Problem:

Atmospheric (dry) dynamical equations: compressible, nonhydrostatic

- => include very wide range of wave frequencies: acoustic, gravity, advection, Coriolis
- => inherently *stiff* system

And ... stiffness is compounded in the numerical model: Aim for future (2020) global model forecasts is for horizontal grid-spacing of $\Delta x \sim 1$ km while nature of dynamics *already* requires variable vertical grid-spacing of $\Delta z \sim 10$ m (near surface) to $\Delta z \sim 1$ km (near top)

Currently ...

Current UM uses 3D semi-implicit time-stepping:

- handles fastest waves with implicit method
 - \Rightarrow no stability constraints associated with fastest waves
 - ⇒ achieve (very time-constrained) forecasts with long time-step

BUT requires solution of a 3D Helmholtz problem
 ⇒ requires (multiple) global communications each time-step
 -> Q: looking to future (2020+) massively parallel architectures, can solvers be relied on to provide good scalability?

工合 GUNG-HO: Rob Scheichl, Bath University

Alternatively: consider explicit-based methods (no global communications)

Problem:

Atmospheric (dry) dynamical equations: compressible, nonhydrostatic

=> include very wide range of wave frequencies: acoustic, gravity, advection, Coriolis

=> inherently *stiff* system

And ... stiffness is compounded in the numerical model: Aim for future (2020) global model forecasts is for horizontal grid-spacing of $\Delta x \sim 1$ km while nature of dynamics *already* requires variable vertical grid-spacing of $\Delta z \sim 10$ m (near surface) to $\Delta z \sim 1$ km (near top)

Problem:

Atmospheric (dry) dynamical equations: compressible, nonhydrostatic

=> include very wide range of wave frequencies: acoustic, gravity, advection, Coriolis

=> inherently *stiff* system

And ... stiffness is compounded in the numerical model: Aim for future (2020) global model forecasts is for

horizontal grid-spacing of $\Delta x \approx 1 \text{ km}$

while nature of dynamics already requires

Problem:

Atmospheric (dry) dynamical equations: compressible, nonhydrostatic

Problem:

Atmospheric (dry) dynamical equations: compressible, nonhydrostatic

Talk outline

- Some background
- Motivation for analyses
- Description of analysis framework
- Outline schemes for analysis
- Present some results of numerical and empirical analyses
- Conclusions and future work

Analysis framework – exact system:

• Consider the 3D linear equation set (incl. important processes – advection, Earth's rotation, pressure-gradient force, gravity and acoustic waves):

$$egin{aligned} & u_t + Uu_x + Vu_y + Wu_z - fv + \Phi_x = 0, \ & v_t + Uv_x + Vv_y + Wv_z + fu + \Phi_y = 0, \ & w_t + Uw_x + Vw_y + Ww_z + \Phi_z = 0, \ & \Phi_t + U\Phi_x + V\Phi_y + W\Phi_z + c_g^2 \left(u_x + v_y
ight) + c_a^2 w_z = 0 \end{aligned}$$

• Can consider coupled equations to be represented by the single equation:

$$F_t + i\tilde{\omega}F = 0$$

- Enhance the problem to reflect the high (K_V) and low (K_H) frequency contributions: $\frac{\partial F}{\partial t} + iK_HF + iK_VF = 0$
- Exact system has solution $F(t) = F_0 e^{-i(K_H + K_V)t}$ which yields amplification factor, $A_0 = F(t + \Delta t)/F(t)$: $A_0 = e^{-i(K_H + K_V)\Delta t}$

with amplitude $|A_0|=1$ and phase $\theta_0=-(K_H+K_V)\Delta t$,

and group velocity $d\omega/dk = -d(K_H + K_V)/dk$

EULAG Workshop, 25 June 2012

Analysis framework – discrete system:

• For the discrete system, construct amplification factors from

$$F^{n+1} = AF^n$$
 where $A = |A|e^{i\theta} = |A|(\cos\theta + i\sin\theta)$

Hence, can extract numerical amplitude and phase by

$$|A| = \left\{ \Re \left(A \right)^2 + \Im \left(A \right)^2 \right\}^{1/2}$$

$$\theta = \arctan \left(\frac{\Im \left(A \right)}{\Re \left(A \right)} \right).$$

- Stability: $|A| > 1 \iff$ amplifying = unstable $|A| < 1 \iff$ damping = stable
- Phase: $\theta_{num} > \theta_{exact} \Leftrightarrow$ accelerating $\theta_{num} < \theta_{exact} \Leftrightarrow$ decelerating

Group velocity: re-write as $A = e^{\tilde{K}_{\Im}\Delta t}e^{-i\tilde{K}_{\Re}\Delta t}$, then $\tilde{\omega} = -\tilde{K}_{\Re}$ and

$$\frac{\mathrm{d}\tilde{\omega}/\mathrm{d}k}{\mathrm{d}\omega/\mathrm{d}k} = \frac{\mathrm{d}\theta/\mathrm{d}K}{\mathrm{d}\theta_0/\mathrm{d}K}$$

For "good" behaviour, require that *direction* (sign) is always correct /ERSITY OF LEEDS for Climate & Atmospheric Science EULAG Workshop, 25 June 2012

Analysis framework - comparison:

- Compare exact and discrete systems
 - 1. Examine performance over small Courant numbers

i.e. $|K_{H}\Delta t|, |K_{V}\Delta t| < 2$

Looking for stability and accuracy (not too damping, good phase)

2. Examine performance over large (vertical) Courant numbers i.e. $0 < |K_V \Delta t| < O(100)$

reflecting range of Δz , e.g. $\frac{\Delta x}{100} \leq \Delta z \leq \Delta x$ ($\Delta x \sim 1$ km)

Looking for stability and "good" behaviour (group velocity)

3. Consider errors accumulated over multiple steps:

 $\Delta t_{\text{implicit}}/\Delta t_{\text{explicit}} = O(10)$ Hence, over M=O(10) steps, fair comparison with SI is

 $\begin{array}{ll} |A_{\rm implicit}| & {\rm versus} & |A_{\rm explicit}|^M \\ \theta_{\rm implicit} & {\rm versus} & M\theta_{\rm explicit}. \end{array}$

EULAG Workshop, 25 June 2012

"Control" scheme: $CN(\varepsilon)$

Current UM semi-implicit scheme:

In simplest sense, equivalent to off-centered Crank-Nicholson, " $CN(\varepsilon)$ ",

$$F^{n+1} = F^n - iK\Delta t \left\{ \frac{(1-\epsilon)}{2} F^n + \frac{(1+\epsilon)}{2} F^{n+1} \right\}$$

with off-centering parameter: $\epsilon = 0.1$

Analysis reveals the amplification factor
$$A = \frac{1 - \frac{1 - \epsilon}{2}iK\Delta t}{1 + \frac{1 + \epsilon}{2}iK\Delta t}$$

which has amplitude $|A|^2 = 1 - \frac{\epsilon (K\Delta t)^2}{1 + \left(\frac{1 + \epsilon}{2}\right)^2 (K\Delta t)^2}$

which is always stable for ε >0;

and phase
$$\theta \approx -K\Delta t \left(1 - \frac{1 + 3\epsilon^2}{12} (K\Delta t)^2\right)$$

which is always decelerating for $|\varepsilon|$ >0.

Alternative (graphical) approach for considering scheme characteristics

Generate the amplification factors empirically (e.g. Matlab), computing for range of $K\Delta t$ and plot:

Alternative (graphical) approach for considering scheme characteristics

Generate the amplification factors empirically (e.g. Matlab), computing for range of $K\Delta t$ and plot:

Alternative (graphical) approach for considering scheme characteristics

Generate the amplification factors empirically (e.g. Matlab), computing for

Alternative (graphical) approach for considering scheme characteristics

Generate the amplification factors empirically (e.g. Matlab), computing for

Potential new schemes:

- Initially, considered multi-step (e.g. leapfrog) schemes, but suffer computational (parasitic) modes
- Currently, focusing on single-step, multi-stage (Runge-Kutta) schemes
- Runge-Kutta (RK) IMEX schemes can be efficiently & usefully described by double Butcher tableau, e.g.

 3^{rd} -order RK (RK3) combined with CN(ε) presented

in full:

and as double Butcher tableau:

$F^{(1)} = F^n$ -(2)(1)	Explicit tableau	Implicit tableau
$F^{(2)} = F^n - \frac{1}{3}iK_H \Delta t F^{(1)}$	0 0	0 0
$F^{(3)}=F^n-rac{1}{2}iK_H\Delta tF^{(2)}$		0 0 0
2	1/2 0 1/2 0	0 0 0 0
$F^* = F^n - iK_H \Delta t F^{(3)}$ $F^{n+1} = F^* - iK_V \Delta t \left\{ \frac{(1-\epsilon)}{2} F^* + \frac{(1+\epsilon)}{2} F^{n+1} \right\}$	1 0 0 1 0	0 0 0 0 0
$F^{n+1} = F^* - iK_V \Delta t \left\{ \frac{(1-t)}{2} F^* + \frac{(1+t)}{2} F^{n+1} \right\}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1 \ 0 \ 0 \ 0 \ (1-\epsilon) \ /2 \ (1+\epsilon) \ /2}{0 \ (1-\epsilon) \ /2 \ (1+\epsilon) \ /2}$
	0 0 1 0 0	$0 \ 0 \ 0 \ (1-\epsilon) / 2 \ (1+\epsilon) / 2$

Potential new schemes:

RK IMEX combinations based on:

- 2nd-order RK (RK2)
- 3rd-order RK (RK3)
- from literature: SSP (strong stability preserving),
 DIRK (diagonally implicit RK)

Identify them as

- fully "split"
- unsplit

RK3-based schemes (fully split)

RK3-CN(0)*

0	0				0	0				
1/3					0	0	0			
1/2	0	1/2	0		0	0	0	0		
1	0	0	$1 \ 0$		0	0	0	0	0	
1	0	0	$1 \ 0$	0	1	0	0	0	1/2	1/2
	0	0	1 0	0		0	0	0	1/2	1/2

Two schemes:

stable region

*Equivalent to "Strang Carryover" scheme of Ullrich & Jablonowski (MWR, 2012)

CN(0)-RK3-CN(0)+

0	0						0	0					
0	0	0					1/2	1/4	1/4				
1/3	0	1/3	0				1/2	1/4	1/4	0			
1/2	0	0	1/2	0			1/2	1/4	1/4	0	0		
1	0	0	0	1	0		1/2	1/4	1/4	0	0	0	
1	0	0	0	1	0	0	1	1/4	1/4	0	0	1/4	1/4
	0	0	0	1	0	0		1/4	1/4	0	0	1/4	1/4

⁺Strang-splitting

1.15 1.1 1.05 0.95 0.9 0.85 0.8 1.2 1.15 1.1 1.05 0.95 0.9 0.85

RK3-based schemes (fully split)

RK3-CN(0)

0	0				0	0
1/3	1/3	0			0	0 0
1/2	0	1/2	0		0	0 0 0
1	0	0	1	0	0	0 0 0 0
1	0	0	1	0 0	1	0 0 0 1/2 1/2
	0	0	1	0 0		0 0 0 1/2 1/2

CN(0)-RK3-CN(0) yields better phase representation for small Courant numbers

CN(0)-RK3-CN(0)

0	0						0	0					
0	0	0					1/2	1/4	1/4				
1/3	0	1/3	0				1/2	1/4	1/4	0			
1/2	0	0	1/2	0			1/2	1/4	1/4	0	0		
1	0	0	0	1	0		1/2	1/4	1/4	0	0	0	
1	0	0	0	1	0	0	1	1/4	1/4	0	0	1/4	1/4
	0	0	0	1	0	0		1/4	1/4	0	0	1/4	1/4

0

-2

2

0

-2

Phase (small Courant numbers)

EULAG Workshop, 25 June 2012

RK3-based schemes (fully split)

RK3-CN(0)

0	0				0	0			
1/3	1/3	0			0	0	0		
1/2	0	1/2	0		0	0	0	0	
1	0	0	1	0	0	0	0	0	0
1	0	0	1	$0 \hspace{0.1in} 0$	1	0	0	0	$1/2 \ 1/2$
	0	0	1	0 0		0	0	0	$1/2 \ 1/2$

Better phase representation from CN(0)-RK3-CN(0) persists to larger $K_V \Delta t$ but both schemes indicate strong decelerating nature. No sign of poor group velocity behaviour.

CN(0)-RK3-CN(0)

0	0						0	0					
0	0	0					1/2	1/4	1/4				
1/3	0	1/3	0				1/2	1/4	1/4	0			
1/2	0	0	1/2	0			1/2	1/4	1/4	0	0		
1	0	0	0	1	0		1/2	1/4	1/4	0	0	0	
1	0	0	0	1	0	0	1	1/4	1/4	0	0	1/4	1/4
	0	0	0	1	0	0		1/4	1/4	0	0	1/4	1/4

Phase (large vertical Courant numbers)

EULAG Workshop, 25 June 2012

RK2-based schemes (unsplit)

ENDG-2

2-iteration Heun-CN + initial stage

Initial stage: α = off-centering parameter $\delta_{H}, \delta_{V} = 0,1$

For pure explicit initial stage:

- stability conditional (only) on $K_{\mu}\Delta t$ For implicit initial stage:

- regions of instability extending to $K_{H}\Delta t = 0$

Not shown here: for large $K_V \Delta t$, all have

Amplitudes (small Courant numbers)

RK2-based schemes (unsplit)

ENDG-2

2-iteration Heun-CN + initial stage

Initial stage: α = off-centering parameter

 $\delta_{\!H}, \, \delta_{\!V}$ = 0,1

For pure explicit initial stage:

- regions of acceleration and deceleration

- considering sign of the gradients (indicating direction of group velocity), there is evidence of "poor" behaviour within stable limits

- not shown here: for large $K_V \Delta t$, no evidence of further poor behaviour

0

-2

2

0

EULAĠ Workshop, 25 June 2012

RK2-based schemes (unsplit)

ENDG-4

0 0 0 0 0 0 $\delta_V rac{1+lpha}{2}$ δ_H δ_V $\frac{1-\alpha}{2}$ 0 δ_H 0 0 0 0 0 0 0 0 $\frac{1+\epsilon}{2}$ $1+\epsilon$ 0 0 0 0 1 0 0 0 2 2 $1+\epsilon$ $\frac{1+\epsilon}{2}$ 0 $1-\epsilon$ 0 0 0 1 0 0 2 2 $\frac{1+\epsilon}{2}$ $\frac{1+\epsilon}{2}$ $1-\epsilon$ 0 0 0 0 0 0 $\mathbf{2}$ $\frac{1-\epsilon}{2}$ $\frac{1-\epsilon}{2}$ Ō $\frac{1+\epsilon}{2}$ $1+\epsilon$ 0 0 0 0 1 0 0 0 $\frac{2}{1+\epsilon}$ $\frac{1+\epsilon}{2}$ $1-\epsilon$ 0 0 0 0 n 0 0 0

Yields some weird and whacky stability constraints!

- "best"-looking combination from pure explicit initial stage and small off-centering in later stages

1.15

1.1

1.05

0.95

0.9

0.85

0.8

1.2

1.15

1.1

1.05

0.95

0.9

0.85

Conclusions & Future work

Simple 1D analyses have

- identified good candidate schemes, e.g. CN-RK3-CN
- highlighted potential concerns (instabilities/poor behaviour) of some established schemes, e.g. (not shown here) leapfrog-CN(ε>0) instability (demonstrated in Durran & Blossey, 2012)

BUT experience suggests:

- fully split schemes (e.g. CN-RK3-CN) introduce errors due to the splitting
- from recent testing, some RK IMEX schemes are more stable in practice than indicated by 1D analyses
- ➔ Next steps:
- Extend analyses to 1D coupled (atmospheric) system
 - 2D coupled system
- Perform numerical testing of some RK IMEX schemes (H. Weller, Reading)

Numerical analyses of explicit time-stepping methods for use in atmospheric forecasting models

Sarah-Jane Lock

Thanks for your attention!

