
33rdrd International EULAG Workshop on  International EULAG Workshop on 
Eulerian/Lagrangian methods for fluidsEulerian/Lagrangian methods for fluids

Parallelization of MPDATA on Multicore Architectures Parallelization of MPDATA on Multicore Architectures 
with GPU Accelerators Using Load Balancing and with GPU Accelerators Using Load Balancing and 

Autotuning TechniquesAutotuning Techniques

Krzysztof Rojek
Łukasz Szustak

Roman Wyrzykowski
[krojek, lszustak, roman]@icis.pcz.pl

Czestochowa University of Technology



2

AgendaAgenda

● MPDATA overview

● GPU architecture overview

● GPU parallelization of MPDATA

● Optimization of MPDATA using autotuning technique

● CPU-GPU architecture overview 

● OpenMP and OpenCL hybrid programming model

● CPU parallelization of MPDATA

● MPDATA parallelization using CPU-GPU architecture

● Conclusions and future work



MPDATA overviewMPDATA overview

● Our research includes Multidimensional Positive Definite Advection 
Transport Algorithm (MPDATA)[1], which is one of the main part of 
the EULAG model

● EULAG can be used to simulate:
 weather prediction

 ocean currents

 areas of turbulence

 urban flows

 gravity wave dynamics

 micrometeorology

 cloud microphysics and dynamics

[1] J. Prusa, P. K. Smolarkiewicz, A. Wyszogrodzki: EULAG, a computational model for multiscale flows



Comparison of NVIDIA Tesla M2070-Q Comparison of NVIDIA Tesla M2070-Q 
and ATI Radeon HD 5870and ATI Radeon HD 5870

● 14 compute units

● 448 processing elements

● 1.147 GHz of clock 
frequency

● 6 GB of global memory

● 148.0 GB/s of global 
memory bandwidth

● It gives: 448 * 1.147 * 
2MADD = 1.03 TflopsTflops

● 20 compute units

● 1600 stream processors1600 stream processors

● 850 MHz of clock frequency

● 1 GB of global memory

● 153.6 GB/s of global 
memory bandwidth

● It gives: 1600 * 0.850 * 
2MADD = 2.72 TflopsTflops

NVIDIA   ATI Radeon



GPU parallelization of MPDATAGPU parallelization of MPDATA

● Idea of GPU parallelization:
 MPDATA is decomposed according to data blocks
 each data block is executed by one GPU task
 one task is computed by a sequence of 13 kernels
 kernels are executed by GPU cores

● We distinguish the following levels of GPU 
parallelization:

 overlapping of data transfer with computations
 computations on GPU
 vectorization of GPU threads



Three levels of GPU parallel hierarchyThree levels of GPU parallel hierarchy
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MPDATA task decompositionMPDATA task decomposition

● Each MPDATA task is decomposed into 13 kernels based 
on data dependencies and synchronization points

● Each kernel computes a different part of MPDATA

● Kernels operate on data blocks which are received from 
the host memory

● Each kernel is configured in an individual way considering:

 number of global work-items (GPU threads)
 number of local work-items
 number of dimensions of work-group
 size of vector



Dependency treeDependency tree

● Kernels are 
executed in a FIFO 
order 
corresponding to 
the dependency 
tree expressing 
data dependencies 
between kernels

mpdat2d01 mp2bc02

mpdat2d03 mpdat2d04

mpdat2d05

mpdat2d06 mpdat2d07

mpdat2d08 mpdat2d09 mpdat2d10

mpdat2d11

mpdat2d12 mpdat2d13



Overlapping of data transfer with Overlapping of data transfer with 
computations on GPU (1/2)computations on GPU (1/2)

● The algorithm is processed by streams

● One stream operates on a collection of data blocks

● Each stream consists of a sequence of following 
instructions:

 sending data blocks from host memory to GPU 
global memory

 computations performed by kernels
 receiving data blocks from GPU global memory 

to host memory
● Number of streams depends on GPU architecture and 

size of matrices 



Overlapping of data transfer with Overlapping of data transfer with 
computations on GPU (2/2)computations on GPU (2/2)

● An example of stream processing on GPU that 
supports overlapping of data transfer with 
computations

sending receivingcomputing

Time

1 stream

2 streams

4 streams



Computations on GPUComputations on GPU

● MPDATA is executed by work-items that are grouped in work-groups

● There are 1- or 2-dimensional work-groups

● No synchronization between work-groups, they are independent

● One work-group is executed by a single compute unit

M x N

m x Nm x n



Vectorization of GPU threads Vectorization of GPU threads 
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GPU task schedulerGPU task scheduler

● GPU task scheduler is responsible for:
 creating streams in a very elastic way
 dividing streams into tasks, where one task 

operates on a single block of every matrix of 
MPDATA

 running tasks in accordance to dependency tree
 creating work-groups for each kernel



Autotuning approachAutotuning approach

Input parameters

Autotuning mechanism

Empirical moduleMathematical module Machine learning module

Generating of search space

Output parameters

- online autotuning

- offline autotuning

● Software automatic tuning (autotuning) is an optimization 
technique, which provides performance portability across a 
variety of hardware platforms



Autotuning: Space of possible solutionsAutotuning: Space of possible solutions
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Performance analysis of autotuned Performance analysis of autotuned 
adaptationadaptation

● NVIDIA Tesla M2070-Q – MPDATA with autotuned configuration is 2.6 times faster 
than MPDATA with standard configuration

● ATI Radeon HD 5870 – MPDATA with autotuned configuration is 9.8 times faster 
than MPDATA with standard configuration
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Comparison of MPDATA execution time  Comparison of MPDATA execution time  
between ATI Radeon and NVIDIAbetween ATI Radeon and NVIDIA

● ATI Radeon HD 5870 vs. NVIDIA Tesla M2070Q

● Execution time for 1000 time steps
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CPU-GPU architecture overviewCPU-GPU architecture overview

● Our IBM BladeCenter HS22 includes:
 2 x Intel Xeon E5649: 0.24 Tflop/s

 12 x 4GB DDR3-1066

 NVIDIA Tesla M2070Q: 1.03 Tflop/s

● Intel Xeon E5649 (Westmere):
 6 cores 

 2.53 GHz

 SSE4.2

 memory bandwidth 25.6 GB/s (DDR3-1066)

 QPI 23.44 GB/s in two directions
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OpenMP and OpenCL hybrid programming modelOpenMP and OpenCL hybrid programming model

GPU 
management
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OpenCL cross-platform 
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CPU parallelization of MPDATA algorithmCPU parallelization of MPDATA algorithm

● In this approach, we distinguish the following aspects of the 
CPU parallelization:

 multicore processing

 cache reusing

 SIMD vectorization

● The main SIMD processing challenges:

 matching MPDATA algorithm to SIMD processing

 replacing scalar operations by SSE intrinsics whenever is 
possible 

 suitable alignment of data: each row of matrices is aligned to at 
least 16 bytes
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Data dependencies for MPDATAData dependencies for MPDATA

● Data dependency tree ● Examples of data dependencies 
between stages: 
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Block decomposition of MPDATA Block decomposition of MPDATA 
for CPU (1/4)for CPU (1/4)

● The decomposition of MPDATA is based on the loop tiling technique:
    

 for                 tiles  // i – dimension
            

   for                  tiles // j – dimension
    
       MPDATA_block(...) {
            loading data from main memory to cache;
            stage1: parallel computations;
            saving partial results in cache;
            stage2:  parallel computations
            saving partial results in cache;
            (…)
            saving final results in main memory for each block;
        }

● Each MPDATA_block should be stored in cache, that allows for 
efficient cache reusing

● This approach reduces memory traffic

n
nBlcokSize

l
lBlcokSize
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● Each MPDATA_block requires additional calculations for every stage because of data 
dependencies between each stage

● Additional computations of each stage correspond to hallo areas of four sides of 
block: ihT, ihB, ihL, and ihR (top, bottom, left, and right)

● Each stage has its own values of ihT, ihB, ihL and ihR, e.g.
   

stage1:   ihT=2;  ihB=3;   ihL=2;  ihR=2;
   

stage3:   ihT=2;  ihB=2;   ihL=2;  ihR=2;

● Values of ihL and ihR are matched (increased) to vector size in order to utilize the 
SIMD processing: ihL and ihR are 2 or 4 for SSE extensions

● The smaller blocks size (larger number of blocks) the larger hallo areas 
(more additional calculations)

● Performance
analysis for
mesh of size
1024 x 1024:

Block decomposition of MPDATA Block decomposition of MPDATA 
for CPU (2/4)for CPU (2/4)

block size # of additional elements cache consumption

16 x 16 55.7 %       74 KB

64 x 512   3.6 %   5484 KB

512 x 512   0.8 % 41402 KB
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● We would like to develop a method that allows us to reduce or even 
avoid additional computations

● There are two groups of additional calculations: in vertical areas (ihL 
and ihR) and in horizontal areas (ihT and ihB)

● Additional calculations in vertical areas can be avoided if lBlock=l, but 
the size of nBlock must be small enough to save all blocks in cache

● If the size of cache is not large enough to save all blocks, the size of 
lBlock should be lBlock=l/2, which allows us to reduce additional 
operations

Block decomposition of MPDATA Block decomposition of MPDATA 
for CPU (3/4)for CPU (3/4)
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● Because of dependencies, each block requires additional calculations 
which are repeated by other blocks

● Independent of nBlock size, additional calculations in horizontal areas can 
by avoided by leaving partial results in cache: 

 the order of blocks execution is important 

 it requires additional offline and online management of computations for 
all stages, as well as smart mapping of partial results onto cache 
space for computations within neighbour blocks

Block decomposition of MPDATA Block decomposition of MPDATA 
for CPU (4/4)for CPU (4/4)
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● Blocks are executed sequentially in the following order:
B0, B1, B2, … - only this order of execution allows us to reduce or even 
avoid additional computations

● For each block, a sequence of stages S1, S2, S3,…  is executed, 
satisfying the dependency tree 

● The calculations within a stage are divided between the available threads 
separately (each stage has its own operational intensity), according to 
the hallo areas and dependencies between stages

● SIMD processing is applied inside each thread

CPU parallelizationCPU parallelization
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● Performance results of double precision MPDATA with mesh of size 
1024x1024 for 500 time steps, using Intel Xeon E5649 CPU

 

● Improved block version achieves speedup of 1.59 over parallel 
version

● Improved block version achieves speedup of 1.22 over original 
block version (3.6% of additional calculated elements)

CPU parallelization: performance resultsCPU parallelization: performance results

Version Parallel mode Time [s] Speedup

Serial 1 core 55.34 1

Parallel 6 cores 18.35 3.02

Parallel 6 cores and SSE 17.48 3.17
Block (64×512) 6 cores and SSE 13.37 4.13

Improved block 
(16×1024)

6 cores and SSE 10.95 5.05
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CPU-GPU parallelizationCPU-GPU parallelization

● MPDATA is divided into two parts: GPU part and CPU part

● Each part is responsible for computing all 16 stages

● CPU and GPU parts require additional calculations according to data 
dependencies

● CPU and GPU communication is required between time steps

● Currently, hybrid CPU-GPU version is based on static load balancing: 
50% of the algorithm is executed on CPU and 50% on GPU
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Management of CPU-GPU resourcesManagement of CPU-GPU resources
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● Performance results of double precision MPDATA with mesh of size 
1024×1024 for 500 time steps

  

 

● GPU version achieves speedup of 1.34 against two-CPUs block version

● Hybrid version (2CPU+GPU) achieves speedup of 1.2 over GPU version

● The reason for a relatively small performance advantage of hybrid 
version over GPU version is overhead associated with creating nested 
OMP threads, which takes about 0.6 seconds for 500 time steps

CPU-GPU:CPU-GPU:
preliminary performance results (1/2)preliminary performance results (1/2)

Version Device Time [s] Speedup

Serial 1 core of Intel Xeon E5649 55.34    1     

Block 1 x Intel Xeon E5649 with SSE 10.95   5.05

Block 2 x Intel Xeon E5649 with SSE   6.56   8.44

GPU NVIDIA Tesla M2070Q   4.88  11.34

Hybrid 2 x Intel Xeon E5649 with SSE
NVIDIA Tesla M2070Q

  3.99  13.87
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● Speedup for double precision parallel MPDATA against sequential version

  

● Hybrid version (2CPU+GPU) gives the best results for all mesh sizes. 
For example, for mesh of size 4096×4096:

 execution time for serial version is 840.34 seconds, while for hybrid version is only 
46.43 seconds, which gives speedup of 18.09

 hybrid version achieves speedup of 1.66 over GPU, and 1.92 over two CPUs

 GPU version achieves speedup of 1.41 against one CPU, and 1.16 over two CPUs

 due to a load unbalance in hybrid version, there is about 5-7% loss of performance

CPU-GPU:CPU-GPU:
preliminary performance results (2/2)preliminary performance results (2/2)



Conclusions and future work (1/2)Conclusions and future work (1/2)
● GPGPU computing is a promising approach for increasing performance 

of numerical simulations of geophysical flows using the EULAG model

● Adaptation of this model (in particular MPDATA algorithm) to GPU 
architecture is based on the hierarchical approach

 MPDATA task decomposition allows for avoiding 
dependencies between work-groups

 Stream processing allows for overlapping data transfer with 
computations

● Automatic adaptation of MPDATA to GPU architecture is a very 
complex problem, which requires to apply a miscellaneous optimization 
techniques for different parameters of configuration

● Autotuning mechanism allows for achieving speedup of about 10 for 
ATI Radeon HD 5870 over standard configuration, and 2.6 in case of 
NVIDIA
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● Using both OpenMP and OpenCL for hybrid model of parallel programing 
allows us to take advantage of CPU-GPU architecture

● Two separate adaptations of MPDATA algorithm to CPU-GPU hybrid 
architecture are required, in order to better utilize features of hybrid 
architecture

● New strategies for memory and computing resources management allow us 
to ease memory bounds, and better exploit the theoretical floating point 
efficiency of hybrid architecture

● The hybrid version gives the best results for all mesh sizes

● The future work will be focus on:

 parallelization of MPDATA in 3D based on 3D grid decomposition

 adaptation to other architectures – clusters with CPU-GPU nodes, Intel 
MIC accelerator architecture, …

 taking into consideration not only performance but also power 
consumption

Conclusions and future work (2/2)Conclusions and future work (2/2)
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3rd International EULAG Workshop on 3rd International EULAG Workshop on 
Eulerian/Lagrangian methods for fluidsEulerian/Lagrangian methods for fluids

Thank YOU for your attention!Thank YOU for your attention!
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