
33rdrd International EULAG Workshop on International EULAG Workshop on
Eulerian/Lagrangian methods for fluidsEulerian/Lagrangian methods for fluids

Parallelization of MPDATA on Multicore Architectures Parallelization of MPDATA on Multicore Architectures
with GPU Accelerators Using Load Balancing and with GPU Accelerators Using Load Balancing and

Autotuning TechniquesAutotuning Techniques

Krzysztof Rojek
Łukasz Szustak

Roman Wyrzykowski
[krojek, lszustak, roman]@icis.pcz.pl

Czestochowa University of Technology

2

AgendaAgenda

● MPDATA overview

● GPU architecture overview

● GPU parallelization of MPDATA

● Optimization of MPDATA using autotuning technique

● CPU-GPU architecture overview

● OpenMP and OpenCL hybrid programming model

● CPU parallelization of MPDATA

● MPDATA parallelization using CPU-GPU architecture

● Conclusions and future work

MPDATA overviewMPDATA overview

● Our research includes Multidimensional Positive Definite Advection
Transport Algorithm (MPDATA)[1], which is one of the main part of
the EULAG model

● EULAG can be used to simulate:
 weather prediction

 ocean currents

 areas of turbulence

 urban flows

 gravity wave dynamics

 micrometeorology

 cloud microphysics and dynamics

[1] J. Prusa, P. K. Smolarkiewicz, A. Wyszogrodzki: EULAG, a computational model for multiscale flows

Comparison of NVIDIA Tesla M2070-Q Comparison of NVIDIA Tesla M2070-Q
and ATI Radeon HD 5870and ATI Radeon HD 5870

● 14 compute units

● 448 processing elements

● 1.147 GHz of clock
frequency

● 6 GB of global memory

● 148.0 GB/s of global
memory bandwidth

● It gives: 448 * 1.147 *
2MADD = 1.03 TflopsTflops

● 20 compute units

● 1600 stream processors1600 stream processors

● 850 MHz of clock frequency

● 1 GB of global memory

● 153.6 GB/s of global
memory bandwidth

● It gives: 1600 * 0.850 *
2MADD = 2.72 TflopsTflops

NVIDIA ATI Radeon

GPU parallelization of MPDATAGPU parallelization of MPDATA

● Idea of GPU parallelization:
 MPDATA is decomposed according to data blocks
 each data block is executed by one GPU task
 one task is computed by a sequence of 13 kernels
 kernels are executed by GPU cores

● We distinguish the following levels of GPU
parallelization:

 overlapping of data transfer with computations
 computations on GPU
 vectorization of GPU threads

Three levels of GPU parallel hierarchyThree levels of GPU parallel hierarchy

s1
o1

r1s2
o2

r2s3
o3

r3

Time

Data transfer
Computations

w n-1

s – data sending
r – data receiving
o – block of computations

1st level of parallelization

2nd level of parallelization

w 2
w 1
w 0

w n+3
w n+2
w n+1

w n

w 2n+3
w 2n+2
w 2n+1

w 2n Time

w – thread (work-item)

GPU core 0
GPU core 1
GPU core 2
GPU core n

3rd level of parallelization

av+bv
a2+b2
a1+b1
a0+b0Vector element 0

Block of
computations

Thread
(work-item)

Time

av*bv
a2*b2
a1*b1
a0*b0

av-bv
a2-b2
a1-b1
a0-b0

Vector element 1
Vector element 2
Vector element v

MPDATA task decompositionMPDATA task decomposition

● Each MPDATA task is decomposed into 13 kernels based
on data dependencies and synchronization points

● Each kernel computes a different part of MPDATA

● Kernels operate on data blocks which are received from
the host memory

● Each kernel is configured in an individual way considering:

 number of global work-items (GPU threads)
 number of local work-items
 number of dimensions of work-group
 size of vector

Dependency treeDependency tree

● Kernels are
executed in a FIFO
order
corresponding to
the dependency
tree expressing
data dependencies
between kernels

mpdat2d01 mp2bc02

mpdat2d03 mpdat2d04

mpdat2d05

mpdat2d06 mpdat2d07

mpdat2d08 mpdat2d09 mpdat2d10

mpdat2d11

mpdat2d12 mpdat2d13

Overlapping of data transfer with Overlapping of data transfer with
computations on GPU (1/2)computations on GPU (1/2)

● The algorithm is processed by streams

● One stream operates on a collection of data blocks

● Each stream consists of a sequence of following
instructions:

 sending data blocks from host memory to GPU
global memory

 computations performed by kernels
 receiving data blocks from GPU global memory

to host memory
● Number of streams depends on GPU architecture and

size of matrices

Overlapping of data transfer with Overlapping of data transfer with
computations on GPU (2/2)computations on GPU (2/2)

● An example of stream processing on GPU that
supports overlapping of data transfer with
computations

sending receivingcomputing

Time

1 stream

2 streams

4 streams

Computations on GPUComputations on GPU

● MPDATA is executed by work-items that are grouped in work-groups

● There are 1- or 2-dimensional work-groups

● No synchronization between work-groups, they are independent

● One work-group is executed by a single compute unit

M x N

m x Nm x n

Vectorization of GPU threads Vectorization of GPU threads

A1 A2 A3 A4

B1 B2 B3 B4V1 V2 V3 V4

B0 B1 B2 B3

V5 V6 V7 V8

B2 B3 B4 B5

 shuffle shuffle

+
+

C1 C2 C3 C4

+

 +

V 1,2,3,4=shuffle(B−3,−2,−1,0 ,B1,2,3,4 , ...)

V 5,6,7,8=shuffle (B1,2,3, 4 , B5,6,7,8 , ...)

e1,2,3,4=A1,2,3,4+V 1,2,3,4+B1,2,3,4+V 5,6,7,8+C1,2,3,4

A1

B1

C1

B0 B2

 +
+

+
+

e1=A1+B0+B1+B2+C1

Sequential version

Vectorized version

Size of vector # of seq.
instructions

of SIMD
instructions

1 4*n 6*n

2 4*n 3*n

4 4*n 1.5*n

8 4*n 0.75*n

4 ”+” → 1
4n → n

4 ”+” i 2 ”shuffle” → vs
6n/vs → n

vs – size of vector

GPU task schedulerGPU task scheduler

● GPU task scheduler is responsible for:
 creating streams in a very elastic way
 dividing streams into tasks, where one task

operates on a single block of every matrix of
MPDATA

 running tasks in accordance to dependency tree
 creating work-groups for each kernel

Autotuning approachAutotuning approach

Input parameters

Autotuning mechanism

Empirical moduleMathematical module Machine learning module

Generating of search space

Output parameters

- online autotuning

- offline autotuning

● Software automatic tuning (autotuning) is an optimization
technique, which provides performance portability across a
variety of hardware platforms

Autotuning: Space of possible solutionsAutotuning: Space of possible solutions

Streams count

Blocks per stream

Size of matrices

K
e

rn
e

l 1

K
e

rn
e

l 2

K
e

rn
e

l 3

K
e

rn
e

l 1
3

. . .

Size of vector

Size of work-group

Global input
parameters

x100

x20

x1

x13

x5

x3280

426 400 000

Local input
parameters

Performance analysis of autotuned Performance analysis of autotuned
adaptationadaptation

● NVIDIA Tesla M2070-Q – MPDATA with autotuned configuration is 2.6 times faster
than MPDATA with standard configuration

● ATI Radeon HD 5870 – MPDATA with autotuned configuration is 9.8 times faster
than MPDATA with standard configuration

16x16 32x32 64x64 128x128 256x256 512x512 1024x1024 2048x2048
0
5

10
15
20
25
30
35
40
45

Standard conf
NVIDIA conf
ATI conf

Matrix size nxl

T
im

e
 [

s]

16x16 32x32 64x64 128x128 256x256 512x512 1024x1024 2048x2048
0

50

100

150

200

250

Standard conf
ATI conf

Matrix size nxl

T
im

e
 [

s]

Comparison of MPDATA execution time Comparison of MPDATA execution time
between ATI Radeon and NVIDIAbetween ATI Radeon and NVIDIA

● ATI Radeon HD 5870 vs. NVIDIA Tesla M2070Q

● Execution time for 1000 time steps

16x16
32x32

64x64
128x128

256x256
512x512

1024x1024
2048x2048

0

10

20

30

40

50

60

ATI (double)
NVIDIA (double)

Matrix size nxl

T
im

e
 [

s]

18

CPU-GPU architecture overviewCPU-GPU architecture overview

● Our IBM BladeCenter HS22 includes:
 2 x Intel Xeon E5649: 0.24 Tflop/s

 12 x 4GB DDR3-1066

 NVIDIA Tesla M2070Q: 1.03 Tflop/s

● Intel Xeon E5649 (Westmere):
 6 cores

 2.53 GHz

 SSE4.2

 memory bandwidth 25.6 GB/s (DDR3-1066)

 QPI 23.44 GB/s in two directions

19

OpenMP and OpenCL hybrid programming modelOpenMP and OpenCL hybrid programming model

GPU
management

CPU CPU

OpenMP
API

OpenMP
API

thread 0
thread 0

OpenMP API
OpenMP API

thread 1
thread 1

GPU GPU

OpenCL cross-platform
programming language

OpenCL cross-platform
programming language

GPU parallel computation

CPU parallel
computation

OMP nested
parallelism

join

fork join

OpenCL HOST API
OpenCL HOST API

fork

20

CPU parallelization of MPDATA algorithmCPU parallelization of MPDATA algorithm

● In this approach, we distinguish the following aspects of the
CPU parallelization:

 multicore processing

 cache reusing

 SIMD vectorization

● The main SIMD processing challenges:

 matching MPDATA algorithm to SIMD processing

 replacing scalar operations by SSE intrinsics whenever is
possible

 suitable alignment of data: each row of matrices is aligned to at
least 16 bytes

21

Data dependencies for MPDATAData dependencies for MPDATA

● Data dependency tree ● Examples of data dependencies
between stages:

22

Block decomposition of MPDATA Block decomposition of MPDATA
for CPU (1/4)for CPU (1/4)

● The decomposition of MPDATA is based on the loop tiling technique:

 for tiles // i – dimension

 for tiles // j – dimension

 MPDATA_block(...) {
 loading data from main memory to cache;
 stage1: parallel computations;
 saving partial results in cache;
 stage2: parallel computations
 saving partial results in cache;
 (…)
 saving final results in main memory for each block;
 }

● Each MPDATA_block should be stored in cache, that allows for
efficient cache reusing

● This approach reduces memory traffic

n
nBlcokSize

l
lBlcokSize

23

● Each MPDATA_block requires additional calculations for every stage because of data
dependencies between each stage

● Additional computations of each stage correspond to hallo areas of four sides of
block: ihT, ihB, ihL, and ihR (top, bottom, left, and right)

● Each stage has its own values of ihT, ihB, ihL and ihR, e.g.

stage1: ihT=2; ihB=3; ihL=2; ihR=2;

stage3: ihT=2; ihB=2; ihL=2; ihR=2;

● Values of ihL and ihR are matched (increased) to vector size in order to utilize the
SIMD processing: ihL and ihR are 2 or 4 for SSE extensions

● The smaller blocks size (larger number of blocks) the larger hallo areas
(more additional calculations)

● Performance
analysis for
mesh of size
1024 x 1024:

Block decomposition of MPDATA Block decomposition of MPDATA
for CPU (2/4)for CPU (2/4)

block size # of additional elements cache consumption

16 x 16 55.7 % 74 KB

64 x 512 3.6 % 5484 KB

512 x 512 0.8 % 41402 KB

24

● We would like to develop a method that allows us to reduce or even
avoid additional computations

● There are two groups of additional calculations: in vertical areas (ihL
and ihR) and in horizontal areas (ihT and ihB)

● Additional calculations in vertical areas can be avoided if lBlock=l, but
the size of nBlock must be small enough to save all blocks in cache

● If the size of cache is not large enough to save all blocks, the size of
lBlock should be lBlock=l/2, which allows us to reduce additional
operations

Block decomposition of MPDATA Block decomposition of MPDATA
for CPU (3/4)for CPU (3/4)

25

● Because of dependencies, each block requires additional calculations
which are repeated by other blocks

● Independent of nBlock size, additional calculations in horizontal areas can
by avoided by leaving partial results in cache:

 the order of blocks execution is important

 it requires additional offline and online management of computations for
all stages, as well as smart mapping of partial results onto cache
space for computations within neighbour blocks

Block decomposition of MPDATA Block decomposition of MPDATA
for CPU (4/4)for CPU (4/4)

26

● Blocks are executed sequentially in the following order:
B0, B1, B2, … - only this order of execution allows us to reduce or even
avoid additional computations

● For each block, a sequence of stages S1, S2, S3,… is executed,
satisfying the dependency tree

● The calculations within a stage are divided between the available threads
separately (each stage has its own operational intensity), according to
the hallo areas and dependencies between stages

● SIMD processing is applied inside each thread

CPU parallelizationCPU parallelization

S1 S2 S3

B0

SIMD

SIMD

SIMD

SIMD

m
u

lt
ic

o
re

SIMD

SIMD

SIMD

SIMD

m
u

lt
ic

o
re

SIMD

SIMD

SIMD

SIMD
m

u
lt

ic
o

re

…..
 …

27

● Performance results of double precision MPDATA with mesh of size
1024x1024 for 500 time steps, using Intel Xeon E5649 CPU

● Improved block version achieves speedup of 1.59 over parallel
version

● Improved block version achieves speedup of 1.22 over original
block version (3.6% of additional calculated elements)

CPU parallelization: performance resultsCPU parallelization: performance results

Version Parallel mode Time [s] Speedup

Serial 1 core 55.34 1

Parallel 6 cores 18.35 3.02

Parallel 6 cores and SSE 17.48 3.17
Block (64×512) 6 cores and SSE 13.37 4.13

Improved block
(16×1024)

6 cores and SSE 10.95 5.05

28

CPU-GPU parallelizationCPU-GPU parallelization

● MPDATA is divided into two parts: GPU part and CPU part

● Each part is responsible for computing all 16 stages

● CPU and GPU parts require additional calculations according to data
dependencies

● CPU and GPU communication is required between time steps

● Currently, hybrid CPU-GPU version is based on static load balancing:
50% of the algorithm is executed on CPU and 50% on GPU

29

Management of CPU-GPU resourcesManagement of CPU-GPU resources

30

● Performance results of double precision MPDATA with mesh of size
1024×1024 for 500 time steps

● GPU version achieves speedup of 1.34 against two-CPUs block version

● Hybrid version (2CPU+GPU) achieves speedup of 1.2 over GPU version

● The reason for a relatively small performance advantage of hybrid
version over GPU version is overhead associated with creating nested
OMP threads, which takes about 0.6 seconds for 500 time steps

CPU-GPU:CPU-GPU:
preliminary performance results (1/2)preliminary performance results (1/2)

Version Device Time [s] Speedup

Serial 1 core of Intel Xeon E5649 55.34 1

Block 1 x Intel Xeon E5649 with SSE 10.95 5.05

Block 2 x Intel Xeon E5649 with SSE 6.56 8.44

GPU NVIDIA Tesla M2070Q 4.88 11.34

Hybrid 2 x Intel Xeon E5649 with SSE
NVIDIA Tesla M2070Q

 3.99 13.87

31

● Speedup for double precision parallel MPDATA against sequential version

● Hybrid version (2CPU+GPU) gives the best results for all mesh sizes.
For example, for mesh of size 4096×4096:

 execution time for serial version is 840.34 seconds, while for hybrid version is only
46.43 seconds, which gives speedup of 18.09

 hybrid version achieves speedup of 1.66 over GPU, and 1.92 over two CPUs

 GPU version achieves speedup of 1.41 against one CPU, and 1.16 over two CPUs

 due to a load unbalance in hybrid version, there is about 5-7% loss of performance

CPU-GPU:CPU-GPU:
preliminary performance results (2/2)preliminary performance results (2/2)

Conclusions and future work (1/2)Conclusions and future work (1/2)
● GPGPU computing is a promising approach for increasing performance

of numerical simulations of geophysical flows using the EULAG model

● Adaptation of this model (in particular MPDATA algorithm) to GPU
architecture is based on the hierarchical approach

 MPDATA task decomposition allows for avoiding
dependencies between work-groups

 Stream processing allows for overlapping data transfer with
computations

● Automatic adaptation of MPDATA to GPU architecture is a very
complex problem, which requires to apply a miscellaneous optimization
techniques for different parameters of configuration

● Autotuning mechanism allows for achieving speedup of about 10 for
ATI Radeon HD 5870 over standard configuration, and 2.6 in case of
NVIDIA

33

● Using both OpenMP and OpenCL for hybrid model of parallel programing
allows us to take advantage of CPU-GPU architecture

● Two separate adaptations of MPDATA algorithm to CPU-GPU hybrid
architecture are required, in order to better utilize features of hybrid
architecture

● New strategies for memory and computing resources management allow us
to ease memory bounds, and better exploit the theoretical floating point
efficiency of hybrid architecture

● The hybrid version gives the best results for all mesh sizes

● The future work will be focus on:

 parallelization of MPDATA in 3D based on 3D grid decomposition

 adaptation to other architectures – clusters with CPU-GPU nodes, Intel
MIC accelerator architecture, …

 taking into consideration not only performance but also power
consumption

Conclusions and future work (2/2)Conclusions and future work (2/2)

34

3rd International EULAG Workshop on 3rd International EULAG Workshop on
Eulerian/Lagrangian methods for fluidsEulerian/Lagrangian methods for fluids

Thank YOU for your attention!Thank YOU for your attention!

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34

