New version of EULAG with 3d domain
decomposition

Zbigniew Piotrowski, Institute of Meteorology and Water Management, Warsaw, Poland

Codename Eulag 3p

2D 3D

Description of new features and optimizations

Loops and boundaries

Modified array declarations: 1-ih:mp+ih, |) skyedge

| A topedge
dimension u(1-ih:np+ih, 1-ih:mp+ih, 1-ih:lp+ih)
leftedge * > rightedge
Loops throughout the code are now:
do k=1,lp (instead of do k=1,I)
do j=1,mp botedge v
gndedge

doi=1,np
______ New boundaries: gndedge and skyedge
If(ibcz.eq.1) then
if (gndedge.eq.1) then
do j=jllim,julim
do i=illim,np
v1(i,j,1)=vdyf(x(i-1,j,1),x(i,j,1),f1(i,j,1),
* .5*(h(i-1,j,1)+h(i,j,1)))
enddo
enddo
endif ! gndedge =1

Processor grid and configuration

Processor grid is now defined by nprocz as well, e.g.:
parameter (nprocx=4, nprocy=2, nprocz=4)

Processor position on the grid is now defined by Ipos as well.
E.g., retrieval of the actual position (ia,ja,ka) from (i,j,k)
on a given processor is defined by:
do 4 k=1,lp
ka = (Ipos-1)*Ip + k
do 4 j=1,mp
ja=(mpos-1)*mp + |
do4i=1,np
ia = (npos-1)*np + i

Updates and global operations

Update calls have now additional arguments, e.g.:

call update(ue,np,mp,lp,np,mp,lp,iup)

also there is a new type of update in the vertical direction only:
call updategs(pe,np+rightedge, mp+topedge,|p+skyedge,

np+1,mp+1,|p+1,iup§)\

Global operations (max,min,sum) also need additional arguments, e.g.:

akin to iupx,iupy

dftav=globsum(temp,1-ih,np+ih,1-ih,mp+ih,1-ih,lp+ih,
1,np,1,mp,1,Ip)

Optimizations

Petascale simulations with very large number of cores demand more
focus on optimizing communication layer.

Processor geometry setup - new default Cartesian MPI topology option
parameter(icart=1)
* Using icart=1 informs MPI system about the geometry of the task
* Results in several % smaller wall time, allows for more effective profiling
in SCALASCA which is now able to understand mesh structure

* Invisible to the rest of the Eulag code ...

e but, processors are usually numbered differently than for traditional

icart=0 option, if you need to know how neighboring cores are distributed,

use pPeGNW,peGSW,peGSE,peGNE,
peGW,peGE,peGN,peGS
peZNW,pelS E,peZNE,
pel E,peZN,pels,
pel,peG,peW,peE,peN,peS,

: peNW,peSW,peSE,peNE
(replaces traditional peleft,peright,peabove,pebelow, etc.)

Z stands for “Zenith”

G stands for “Ground”

Brand new update subroutine

* Traditional set of update subroutine (update, updatelr, updatebt,
updatew, update2) replaced with one subroutine update3dsplitn

* Invisible to the users, traditional calls to update, updatelr, updatebt, etc.
are now WRAPPERS only (translating simple old way of calling to the fully
universal update3dsplitn)

* New update3dsplitn limits number of MPI messages to three, but two of
them communicating the domain WITH HALO

—~ Corners are
now already
updated
i —_— I il —— I il — no need for extra
MPI messages

First MPI Second
message MPI _
message l Third MPI
message

Similar for the

update in vertical
direction

Further halo update optimizations

* New update3dsplitn allows for overlapping computations

and communications

* New set of OPTIONAL subroutines are defined and can be used
as in the following example:

call updatelrbeg(fl,np+rightedge,mp,lp,np+1,mp,lp,1,1
do 403 j=1,lp+skyedge

do 403 i=1,np
403 £2(i,1,j)=donor(c2,c2,v2(i,1,j)) Last parameter for
call updatelrend(fl,np+rightedge,mp,lp,np+1,mp,lp,1,1) update..beg
- Full update can be done in a sequence: and update...end
call updatelrbegf(f1,np+rightedge,mp,lp,np+1,mp,lp,1,1) is a number of
..... buffer (because one may
call updatelrendf(f1,np+rightedge,mp,lp,np+1,mp,lp,1,1) wish to update more than
call updatebtbegf(f1,np+rightedge,mp,lp,np+1,mp,lp,1,1) one variable)

call updatebtendf(fl,np+rightedge,mp,lp,np+1,mp,lp,1,1)
call updategsbegf(f1,np+rightedge, mp,lp,np+1,mp,lp,1,1)

call updategsendf(fl,np+rightedge,mp,lp,np+1,mp,lp,1,1)

Further halo update optimizations #2

* For nonperiodic boundary conditions, you don’t need to update
outer boundaries of the computational domain, which are usually
far from each other inside the machine.
The only exception is vbcad subroutine.

*Therefore, there is an important change in DEFAULT behavior —
For nonperiodic b.c. there is no update on outer domain borders

* On the other hand, for periodic boundary conditions it is often
unnecessary to update variables inside the domain. For these two

purposes, new set of BORDER ONLY updates are defined:
if(ibcz.eq.1) then
call updategsbor(p,np,mp,lp,np,mp,lp,1) ! updategsborbeg and updategsborend possible
if(skyedge.eq.1) then
do 10 j=1,mp
do 10i=1,np
10 p(i,j,Ip)=p(i,j,Ip+1)
endif

Global communication optimizations

* Global summation, max and min operations are necessary for
elliptic solver but EXTREMELY expensive (and relative cost growing)
*Therefore, there is a need to minimize number of AlltoAll operations
*It is done by global operations (sum, max, min or combined) on vectors
Example:
globsumvbor - sums u,v,w outflow, inflow and weights in vbcad

within 1 global communication instead of 9

(especially useful when you call vbcad every timestep)

globsumy, globmaxv, globsumaxv — sums, finds max, or both at the same
global communication for vector of data

Example (from gcrk): call MPI_OP_CREATE
eetabs(1)=qrlsum .(sumax,commute,MPI_SUMAX,err)
function sumax(wrkin,wrkinout,ihalf,itype)

eetabs(2)=qrimax
call globsumaxv(eetabs,eetabd,?2) wrkinout(i}=wrkin(i)+wrkinout(i

eer=eetabd(1) wrkinout(ihalf+i)=amax1(wrkinout(ihalf+i)
eem=amax1(eem,sqrt(eetabd(2))) . wrkin(ihalf+i))

do i=1,ihalf

Other optimizations

* In principle, it is not necessary to compute all the norms for exit
conditions from GCRK iterations at each timestep since they need
expensive global communication. Threshold for these computations:

parameter(itertrem=0.5) ! Could be any number between (0,1)

defines at which fraction of the last number of GCRK iterations,

the norms for GCRK exit conditions will be computed.

* Computations of precon_bcz coefficients now takes place once per
gcrk call in precon_bcz_ini

* Parallel tridiagonal solver, necessary if nprocz > 1 is implemented in
tdmapar subroutine. Variables isequp, iseqdn initialized in

blockdata blanelas choose details of algorithms (default: 7, failsafe: 1)
* Parallel NETCDF long and short tape write is now called by
iowrite/ioread and iowrsh/iorsh subroutines as the standard Fortran
tape

Compiler setup

* Cray supercomputers and Linux clusters, very popular these days,
offer various compilers (PGI, Intel, Cray, Pathscale, GNU), which makes
maintenance of library, compiling and submission scripts difficult

* Set of new environmental variables has been introduced to facilitate
switching between the compilers, optimization levels and submission
methods:

HHHHHHE
HH

Choose compiler if more then one available

Hi

O - Default compiler

1- PGI compiler

2 - Intel compiler

3 - Pathscale compiler

4 - Cray compiler

5- GNU compiler

HH

HHHHHH
setenv COMPILER 4

HHHHHHH
HUHHHHHHEHH

Define level of compiler optimization

O - no optimization at all (for very fast compilation)

1 -full set of diagnostic and debugging options

2 - default optimization (different for different machines)

3 -strong optimization (recommended by compiler vendors)

4 - maximum optimization (usually -O4 or -O5 with IPA)

HHHHHHH
HUHHHHHHEHH

setenv COMPOPTI O

HUHHHHHHEH R R R H R AR
HUHHHHHHEHH

HH

Define special option for code instrumentation for profiling

Default: setenv CODEINST O

0 - No instrumentation (default)

1 - Scalasca instrumentation with skin

2 - Tau compiler instrumentation

3 -Tau PDT instrumentation

HH

HHHHHHH
HUHHHHHHEHH

setenv CODEINST O

Architectures

Recently, Eulag has been successfully run on the following modern
architectures (setups available):

* Intel Linux cluster (JANUS @ CU, Boulder)
* IBM Power 7 (ICM, Poland)

* Bluegene/P (ICM, Poland)

* Cray XE 6 (CSCS, Switzerland)

* Cray XT5m (NCAR, Boulder)

Optimizations discussed are not fully tested, IFASTSUBS 0 and IOVER O
available to switch to generic “failsafe” mode without optimizations

Known problems:

* Each new machine is likely to cause some problems
 Standard optimizations of some newer versions of PGl
may not work, always try COMPOPTI O to see if it helps.

Parallelization status

» Tested and work: 2D/3D Eulerian/SL solver, GCRK,
bulk moist models, ILES/SGS 1/SGS 2, ANALIZ 1
mode, velocity predictor

* Untested: WORD 4 time integration, grid
adaptivity, , SGS 2 for ibcz=1 seems incomplete,
although parallelized

* Not parallelized/implemented yet: single core
mode, zonal absorbers, parallel diagnostic packages,
efficient precon_bcz for ibcz=1, MHD, unstructured

*Serial NETCDF and slices subroutines are not fully
parallelized and/or not up to date

