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Challenges

Challenges

Inefficient representation of complicated orography

Singularities at poles

Formulation of governing equations

Conservation of mass, and energy

Efficient use of computanional resources

Scalability at Teraflops and Petaflops HPC facilities
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Initiatives

Initiatives by leading Research Centres

UK Met Office and ECMWF (ENDGame)

NCAR (High-Order Methods Modeling Environment)

NOAA (AM3, NIM)

DWD & Max Planck (ICON)
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Selected Approach

Outline
Proposed framework is for first time applicable to arbitrary unstructured meshes
and very high-order methods.

Tsoutsanis et al., JCP & Comm. Comp. Phys.,2011

High-order WENO up to 9th order accurate

WENO HLLC Riemann solver

Computer code UCNS3D; an extension of the in-house CNS3D (used for shock
physics, turbulent mixing) to unstructured grids.
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Element Shapes

Element Shapes

Generated by mesh
generation software
packages

Hexahedrals,
tetrahedrals, pyramidal,
prismatic elements

Only conforming
meshes considered

Computational
efficiency proportional
to node count

(a)
Hexahedral

(b)
Tetrahedral

(c)
Pyramidal

(d)
Prismatic

Figure: Element Shapes
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Central Stencil Selection

Procedure

For each element of the mesh

Recursively add its direct side
neighbours

Exclude elements already in
the stencil

Stencils of various elements
shapes are constructed

(a) Tetrahedral (b) Prismatic

(c) Mixed

Figure: Central StencilsP. Tsoutsanis, D. Drikakis, J. Lelieveld 3rd EULAG Workshop
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Directional Stencils

(a) Hybrid mesh (b) Hexahedral mesh

Figure: Directional Stencils
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Linear

Framework

For each cell V0 we would like to build a high-order polynomial p(x , y , z)
that has the same cell average as u(scalar) on the target cell as well as
averages ūm from the reconstruction stencil formed by neighbouring cells
Vm

u0 = 1
V0

∫
V0

u(x , y , z) dV

Reconstruction carried out not in physical coordinates (x , y , z) but in a
reference coordinate system (ξ, η, ζ)

Decompose each element into tetrahedrals and choose one of the
decomposed tetrahedral elements
Transform the chosen element from physical to reference coordinates
Based on the Jacobian of the transformation, map the coordinates
of the entire element into reference coordinates
Based on the same Jacobian recompute coordinates, barycentres,
volumes of all the elements in the stencil in reference space
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Framework

The r th order reconstruction polynomial at the transformed cell V ′0 is
sought as an expansion over local polynomial basis functions φk(ξ, η, ζ)

p(ξ, η, ζ) =
K∑

k=0

akφk(ξ, η, ζ) = ū0 +
K∑

k=1

akφk(ξ, η, ζ)

ak are degrees of freedom and K is related to the order of the polynomial
r , K=1/6(r+1)r+2)(r+3)

The conservation condition must be satisfied

For Hybrid meshes the basis function φk must be constructed in such a
way that they satisfy the conservation condition

φk(ξ, η, ζ) ≡ ψk(ξ, η, ζ)− 1
|V ′0 |

∫
V ′0

ψk dξdηdζ, k = 1, 2, . . . where

{ψk} = ξ, η, ζ, ξ2, η2, ζ2, ξ · η, ξ · ζ, ζ · η, ξ · η · ζ . . .
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Linear

Framework

To find the unknown degrees of freedom ak the conservation condition
must be satisfied∫
E ′m

p(ξ, η, ζ) dξdηdζ = |V ′m|ū0 +
K∑

k=1

∫
V ′m

akφk dξdηdζ = |V ′m|um, m =

1, . . .M

Amk =
∫
V ′m

φk dξdηdζ, bm = |V ′m|(ūm − ū0)

K∑
k=1

Amkak = bm, m = 1, 2, . . .M

least-square reconstruction of F =
∑M

m=1 ωm ·
(∑K

k=1 Amkak − bm
)2

with

ωm being squared reciprocals of the distance

QR decomposition employed for the least square solution

P. Tsoutsanis, D. Drikakis, J. Lelieveld 3rd EULAG Workshop



Introduction
General Framework of Developed schemes

Applications
Conclusions

Geometric Operations
Reconstruction
Euler Extension

WENO

Framework

High-order accurate and non-oscillatory behaviour

Successfully applied and widely adopted in FV framework for structured
and unstructured meshes (tetrahedrals in 3D by Tsoutsanis, Dumbser,
Shu etc)

The actual reconstructed value is a convex combination of reconstructed
values from stencils, with nonlinear (solution-adaptive) WENO weights

Nonlinear weights are constructed from the linear (constant) weights by
taking into account smoothness of the solution in each of the
reconstruction stencils

Reconstruct entire polynomials

First FV implementation of WENO for hybrid unstructured meshes in 3D
retaining the characteristics of the scheme

P. Tsoutsanis, D. Drikakis, J. Lelieveld 3rd EULAG Workshop
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WENO

Procedure
The WENO reconstruction stencils is a union of several reconstruction stencils
Sm, m = 0, 1, . . . ,ms

WENO reconstruction polynomial pweno =
ms∑
m=0

ωmpm(ξ, η, ζ)

For each individual polynomial corresponding to the stencil

Sm,pm(ξ, η, ζ) =
K∑

k=0
a

(m)
k φk(ξ, η, ζ)

pweno = ū0 +
K∑

k=1

(
ms∑
m=0

ωma
(m)
k

)
φk (ξ, η, ζ) ≡ ū0 +

K∑
k=1

ãkφk (ξ, η, ζ)

the nonlinear weights are defined as ωm = γm
ms∑
m=0

γm

, γm = dm
(ε+ISm)p

dm are the so-called linear weights, ISm are smoothness indicators, ε is a small
number used to avoid division by zero and finally p is an integer parameter

The oscillation indicators ISm of each stencil
ISm =

∑
1<|β|<r

∫
V ′0

(
Dβpm(ξ, η, ζ)

)2
dξdηdζ

The smoothness indicators are quadratic functions of degrees of freedom a
(m)
kP. Tsoutsanis, D. Drikakis, J. Lelieveld 3rd EULAG Workshop
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Equations

Three-dimensional Euler equations in the following formulation
∂
∂t

U + ∂
∂x

F(U) + ∂
∂y

G(U) + ∂
∂z

H(U) = 0

Integrating in space over a mesh element Vi , and be exploiting the rotational
invariance property of the Euler equations we obtain d

dt
Ui + 1

|Vi |
∮
∂Vi

FndA =

0, Fn (U) = F (U) nx + G (U) ny + H (U) nz = T−1F (TU)

Numerical fluxes and initial solution approximated by a Gaussian quadrature of
appropriate order

The integral over the element boundary ∂Vi splits into the sum of integrals

d
dt
Ui = Ri , Ri = − 1

|Vi |

L∑
j=1

∫
Aj

Fn,jdA = − 1
|Vi |

L∑
j=1

Kij

The numerical flux given by Kij =
∫
Aj

Fn,jdA =
∑
β

Fn,j

(
U(xβ , t)

)
ωβ |Aj |
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Reconstruction

WENO reconstruction is carried out in characteristic variables

Polynomials given by Pim(ξ, η, ζ) =
K∑

k=0
A

(m)
ik
φik (ξ, η, ζ) = Ūi +

K∑
k=1

A
(m)
ik
φik (ξ, η, ζ),

Define as the arithmetic average of the conserved vector Ui,U
′
n = 1

2
(Ui + Ui′ )

Compute the matrices containing the right and left eigenvectors of the Jacobian matrix

Compute the characteristic projections of vector degrees of freedom of each stencil Sm , including the cell

averaged value UI as B
(m)
ikj

= LjA
(m)
ik
, m = 0, . . . ,ms , k = 0, . . .K .

The resulting modified degrees of freedom B̃
(m)
ikj

are projected back to by multiplying them by Rj

The resulting WENO reconstruction polynomial for the face Aj is given by

Pij (ξ, η, ζ) = Ūi +
K∑

k=1
Ãikjφik (ξ, η, ζ), Ãikj = RjBikj

P. Tsoutsanis, D. Drikakis, J. Lelieveld 3rd EULAG Workshop
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Numerical Flux

Framework

Two approximate values for the conserved vector U at each Gaussian
quadrature point exist

The first value U−β corresponds to the spatial limit to the cell boundary

from inside the cell Vi and the second value U+
β corresponds to the spatial

limit from outside the element

HLLC Riemann solver employed

Using the concept of the rotational invariance we rotate the data states
U−β ,U+

β in the direction of the normal flux vector , then employ the HLLC
Riemann solver, and rotate back the numerical flux obtained from HLLC
Riemann solver
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Time Advancement

Time Advancement

Scheme used is the explicit 3rd -order TVD Runge-Kutta

time step ∆t is selected according to the formula
∆t = K min

i

hi
Si ·Vi

K ≤ 1/3 is the CFL number

the characteristic length hi of each element is taken to be the
radius of the inscribed sphere of each element

For higher than 3rd-order schemes 3rd -order TVD
Runge-Kutta employed for convergence studies with time step
size given by ∆t = K · (∆x)

n
3
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Meshes Used

(a) Mesh1 (b) Mesh2

Figure: Meshes used
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Problem Description

Description

We solve ∂
∂t
U + ∂

∂x
F(U) + ∂

∂y
G(U) + ∂

∂z
H(U) = S

Warm bubble centered at (500, 260, 500)m

θ′ =

{
0 for r > rc

1.25
(

1 + cos
(
πr
rc

))
for r ≥ rc

The computational domain is [0, 1000] x [0, 1500] x [0, 1000]m.

NFBC used at the boundaries

Simulation time t ∈ [0, 300] s

P. Tsoutsanis, D. Drikakis, J. Lelieveld 3rd EULAG Workshop
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Results

(a) t = 50sec (b) t = 200sec (c) t = 300sec

Figure: Potential temperature perturbation θ′at various instants and at
z = 500m for mesh2 using WENO-5th order scheme.
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Results

(a) TVD-2nd (b) WENO-3rd (c) WENO-5th

Figure: Potential temperature perturbation θ′at t = 300sec and at
z = 500m for mesh1.
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Results

Figure: Potential temperature perturbation θ′(K) at t = 300sec profile,
at z = 500m and y = 964.5m.
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Conservation properties

(a) Mass (b) Energy

Figure: Conservation properties of different schemes
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Meshes Used

(a) Mesh1 (b) Mesh3

Figure: Meshes used
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Non linear, non-hydrostatic mountain flow
Parallel scalability & efficiency

Problem Description

Description

We solve ∂
∂t
U + ∂

∂x
F(U) + ∂

∂y
G(U) + ∂

∂z
H(U) = S

Defined on [110, 130]× [0, 12]× [110, 130]km with NFBC on the ground
and NRBC elsewere

The initial condition corresponds to a constant mean flow of ū = 20m/s
in a uniform stratified atmosphere and a ground temperature of
T0 = 280K

Mountain profile given by h (x , y , z) = hc(
1+
(

x−xc
ac

)2
+
(

y
ac

)2
+
(

z−zc
ac

)2
)

withhc = 1000m

We compute the numerical solution at the output time t = 1800sec

P. Tsoutsanis, D. Drikakis, J. Lelieveld 3rd EULAG Workshop
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Results

(a) Hybrid (Prisms, Tetrahedrals) (b) Unstructured Tetrahedral

Figure: Vorticity magnitude at t = 1800sec and z = 120km .
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Parallel scalability

(a) TVD-2nd (b) WENO-3rd (c) WENO-5th

Figure: Scalability of various methods
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Parallel efficiency

Number of Processors

E
ffi

ci
en
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 %
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WENO-3rd Order
WENO-5th Order

(a) Efficiency

Figure: Parallel efficiency of various methods
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Conclusions

The subcell resolution through decomposition and Gaussian quadrature
integration rules is the mechanism that provides higher-accuracy on
under-resolved meshes

The crucial process for achieving high-order of accuracy is a reconstruction
process that can combine elements of different shapes

The subject schemes have been applied to a series of idealized test cases in
order to assess their robustness, accuracy, and efficiency

The numerical result obtained from the test cases demonstrated the
aforementioned properties of the schemes

The WENO reconstruction can be utilised as a building-block in a dynamical
core that is not limited by the type of meshes, or the formulation of the
governing equations.

The higher-order schemes exhibit excellent scalability since the ratio of
computational time over communication time is greater than lower order
schemes

In the future the extension of the current numerical methods to global idealized
simutations will be implemented.

P. Tsoutsanis, D. Drikakis, J. Lelieveld 3rd EULAG Workshop
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Questions?

Thank you very much for your time and attention !
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