# Modelling atmospheric flows on 3D hybrid unstructured meshes using high-order methods 3rd EULAG Workshop

Panagiotis Tsoutsanis<sup>\*,1</sup>, Dimitris Drikakis<sup>1</sup> and Jos Lelieveld<sup>2</sup>

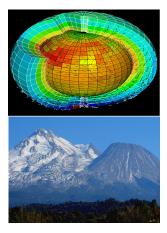
<sup>1</sup>Cranfield University <sup>2</sup>Max-Planck Institute

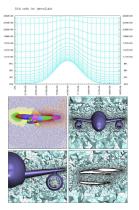
P. Tsoutsanis, D. Drikakis, J. Lelieveld 3rd EULAG Workshop

#### Unstructured Grids

Challenges Initiatives Selected Approach

## Unstructured Grids





・ロト ・日 ・ ・ ヨ ・ ・

э

P. Tsoutsanis, D. Drikakis, J. Lelieveld 3rd EULAG Workshop

Unstructured Grids Challenges Initiatives Selected Approach

戶 ▶ ◀

# Challenges

### Challenges

- Inefficient representation of complicated orography
- Singularities at poles
- Formulation of governing equations
- Conservation of mass, and energy
- Efficient use of computanional resources
- Scalability at Teraflops and Petaflops HPC facilities

Unstructured Grids Challenges Initiatives Selected Approach

< 🗇 🕨 < 🚍 🕨

# Initiatives

### Initiatives by leading Research Centres

- UK Met Office and ECMWF (ENDGame)
- NCAR (High-Order Methods Modeling Environment)
- NOAA (AM3, NIM)
- DWD & Max Planck (ICON)

General Framework of Developed schemes Applications Conclusions Selec

Unstructured Grids Challenges Initiatives Selected Approach

## Selected Approach

### Outline

- Proposed framework is for first time applicable to arbitrary unstructured meshes and very high-order methods.
- Tsoutsanis et al., JCP & Comm. Comp. Phys.,2011
- High-order WENO up to 9th order accurate
- WENO HLLC Riemann solver
- Computer code UCNS3D; an extension of the in-house CNS3D (used for shock physics, turbulent mixing) to unstructured grids.

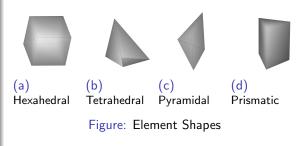
< /i>
< /i>
< /i>
< /i>
< /i>
< /i>

**Element Shapes** 

### **Element Shapes**

- Generated by mesh generation software packages
- Hexahedrals, tetrahedrals, pyramidal, prismatic elements
- Only conforming meshes considered
- Computational efficiency proportional to node count



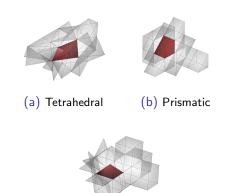


Geometric Operations Reconstruction Euler Extension

# Central Stencil Selection

### Procedure

- For each element of the mesh
- Recursively add its direct side neighbours
- Exclude elements already in the stencil
- Stencils of various elements shapes are constructed

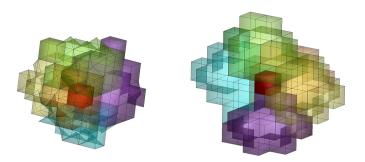


(c) Mixed

P. Tsoutsanis, D. Drikakis, J. Lelieveld 3rd EULAG Workshop

Geometric Operations Reconstruction Euler Extension

## **Directional Stencils**



(a) Hybrid mesh (b) Hexahedral mesh

Figure: Directional Stencils

< □ > < 同 > < 回 >

Geometric Operations Reconstruction Euler Extension

## Linear

### Framework

• For each cell  $V_0$  we would like to build a high-order polynomial p(x, y, z) that has the same cell average as u(scalar) on the target cell as well as averages  $\bar{u}_m$  from the reconstruction stencil formed by neighbouring cells  $V_m$ 

• 
$$\overline{u}_0 = \frac{1}{V_0} \int\limits_{V_0} u(x, y, z) dV$$

- Reconstruction carried out not in physical coordinates (x, y, z) but in a reference coordinate system (ξ, η, ζ)
  - Decompose each element into tetrahedrals and choose one of the decomposed tetrahedral elements
  - Transform the chosen element from physical to reference coordinates
  - Based on the Jacobian of the transformation, map the coordinates of the entire element into reference coordinates
  - Based on the same Jacobian recompute coordinates, barycentres, volumes of all the elements in the stencil in reference space

Geometric Operations Reconstruction Euler Extension

## Linear

### Framework

 The r<sup>th</sup> order reconstruction polynomial at the transformed cell V<sub>0</sub>' is sought as an expansion over local polynomial basis functions φ<sub>k</sub>(ξ, η, ζ)

• 
$$p(\xi,\eta,\zeta) = \sum_{k=0}^{K} a_k \phi_k(\xi,\eta,\zeta) = \overline{u}_0 + \sum_{k=1}^{K} a_k \phi_k(\xi,\eta,\zeta)$$

- $a_k$  are degrees of freedom and K is related to the order of the polynomial r, K=1/6(r+1)r+2)(r+3)
- The conservation condition must be satisfied
- For Hybrid meshes the basis function φ<sub>k</sub> must be constructed in such a way that they satisfy the conservation condition

• 
$$\phi_k(\xi,\eta,\zeta) \equiv \psi_k(\xi,\eta,\zeta) - \frac{1}{|V'_0|} \int_{V'_0} \psi_k \ d\xi d\eta d\zeta, \quad k = 1, 2, \dots$$
 where  
 $\{\psi_k\} = \xi, \ \eta, \ \zeta, \ \xi^2, \ \eta^2, \ \zeta^2, \ \xi \cdot \eta, \ \xi \cdot \zeta, \ \zeta \cdot \eta, \ \xi \cdot \eta \cdot \zeta \dots$ 

Geometric Operations Reconstruction Euler Extension

## Linear

### Framework

• To find the unknown degrees of freedom *a<sub>k</sub>* the conservation condition must be satisfied

• 
$$\int_{E'_m} p(\xi,\eta,\zeta) d\xi d\eta d\zeta = |V'_m| \bar{u}_0 + \sum_{k=1}^{K} \int_{V'_m} a_k \phi_k d\xi d\eta d\zeta = |V'_m| u_m, \quad m = 1, \dots M$$

• 
$$A_{mk} = \int\limits_{V'_m} \phi_k \, d\xi d\eta d\zeta, \quad b_m = |V'_m|(\bar{u}_m - \bar{u}_0)$$

• 
$$\sum_{k=1}^{n} A_{mk} a_k = b_m, \quad m = 1, 2, \dots M$$

• least-square reconstruction of  $\mathcal{F} = \sum_{m=1}^{M} \omega_m \cdot \left(\sum_{k=1}^{K} A_{mk} a_k - b_m\right)^2$  with  $\omega_m$  being squared reciprocals of the distance

(日)

• QR decomposition employed for the least square solution

Geometric Operations Reconstruction Euler Extension

## WENO

### Framework

- High-order accurate and non-oscillatory behaviour
- Successfully applied and widely adopted in FV framework for structured and unstructured meshes (tetrahedrals in 3D by Tsoutsanis, Dumbser, Shu etc)
- The actual reconstructed value is a convex combination of reconstructed values from stencils, with nonlinear (solution-adaptive) WENO weights
- Nonlinear weights are constructed from the linear (constant) weights by taking into account smoothness of the solution in each of the reconstruction stencils
- Reconstruct entire polynomials
- First FV implementation of WENO for hybrid unstructured meshes in 3D retaining the characteristics of the scheme

(日)

Geometric Operations Reconstruction Euler Extension

## WENO

### Procedure

- The WENO reconstruction stencils is a union of several reconstruction stencils  $\mathcal{S}_m,\ m=0,1,\ldots,m_s$
- WENO reconstruction polynomial  $p_{\text{weno}} = \sum_{m=0}^{m_s} \omega_m p_m(\xi, \eta, \zeta)$
- For each individual polynomial corresponding to the stencil  $S_{m}, p_{m}(\xi, \eta, \zeta) = \sum_{k=0}^{K} a_{k}^{(m)} \phi_{k}(\xi, \eta, \zeta)$

• 
$$\boldsymbol{p}_{\text{weno}} = \bar{u}_0 + \sum_{k=1}^{K} \left( \sum_{m=0}^{m_s} \omega_m a_k^{(m)} \right) \phi_k(\xi, \eta, \zeta) \equiv \bar{u}_0 + \sum_{k=1}^{K} \tilde{a}_k \phi_k(\xi, \eta, \zeta)$$

• the nonlinear weights are defined as  $\omega_m = \frac{\gamma_m}{\sum\limits_{m=0}^{m_s} \gamma_m}$ ,  $\gamma_m = \frac{d_m}{(\varepsilon + lS_m)^p}$ 

- $d_m$  are the so-called linear weights,  $IS_m$  are smoothness indicators,  $\varepsilon$  is a small number used to avoid division by zero and finally p is an integer parameter
- The oscillation indicators  $IS_m$  of each stencil  $IS_m = \sum_{1 < |\beta| < r} \int_{V'_0} (D^{\beta} p_m(\xi, \eta, \zeta))^2 d\xi d\eta d\zeta$

(m)

Geometric Operations Reconstruction Euler Extension

▲ 同 ▶ ▲ 三 ▶ ▲

# Equations

- Three-dimensional Euler equations in the following formulation  $\frac{\partial}{\partial t} \mathbf{U} + \frac{\partial}{\partial x} \mathbf{F}(\mathbf{U}) + \frac{\partial}{\partial y} \mathbf{G}(\mathbf{U}) + \frac{\partial}{\partial z} \mathbf{H}(\mathbf{U}) = \mathbf{0}$
- Integrating in space over a mesh element  $V_i$ , and be exploiting the rotational invariance property of the Euler equations we obtain  $\frac{d}{dt}\mathbf{U}_i + \frac{1}{|V_i|} \oint_{\Delta V} \mathbf{F}_n dA =$

$$\mathbf{0}, \quad \mathbf{F}_{n}\left(\mathbf{U}\right) = \mathbf{F}\left(\mathbf{U}\right)n_{x} + \mathbf{G}\left(\mathbf{U}\right)n_{y} + \mathbf{H}\left(\mathbf{U}\right)n_{z} = \mathbf{T}^{-1}\mathbf{F}\left(\mathbf{T}\mathbf{U}\right)$$

- Numerical fluxes and initial solution approximated by a Gaussian quadrature of appropriate order
- The integral over the element boundary  $\partial V_i$  splits into the sum of integrals

$$\frac{d}{dt}\mathbf{U}_i = \mathbf{R}_i, \quad \mathbf{R}_i = -\frac{1}{|V_i|} \sum_{j=1}^L \int_A \mathbf{F}_{n,j} dA = -\frac{1}{|V_i|} \sum_{j=1}^L \mathbf{K}_{ij}$$

• The numerical flux given by 
$$\mathbf{K}_{ij} = \int_{A_j} \mathbf{F}_{n,j} dA = \sum_{\beta} \mathbf{F}_{n,j} \left( \mathbf{U}(\mathbf{x}_{\beta}, t) \right) \omega_{\beta} |A_j|$$

Geometric Operations Reconstruction Euler Extension

#### Reconstruction

- WENO reconstruction is carried out in characteristic variables
- Polynomials given by  $\mathbf{P}_{im}(\xi,\eta,\zeta) = \sum_{k=0}^{K} \mathbf{A}_{ik}^{(m)} \phi_{ik}(\xi,\eta,\zeta) = \bar{\mathbf{U}}_{i} + \sum_{k=1}^{K} \mathbf{A}_{ik}^{(m)} \phi_{ik}(\xi,\eta,\zeta),$
- Define as the arithmetic average of the conserved vector U<sub>i</sub>, U'<sub>n</sub> = <sup>1</sup>/<sub>2</sub>(U<sub>i</sub> + U<sub>i</sub>)
- Compute the matrices containing the right and left eigenvectors of the Jacobian matrix
- Compute the characteristic projections of vector degrees of freedom of each stencil S<sub>m</sub>, including the cell averaged value U<sub>1</sub> as B<sup>(m)</sup><sub>iki</sub> = L<sub>j</sub>A<sup>(m)</sup><sub>ik</sub>, m = 0, ..., m<sub>s</sub>, k = 0, ... K.
- The resulting modified degrees of freedom  $\tilde{B}_{ikj}^{(m)}$  are projected back to by multiplying them by  $R_j$
- The resulting WENO reconstruction polynomial for the face A<sub>j</sub> is given by

$$\mathbf{P}_{ij}(\xi,\eta,\zeta) = \bar{\mathbf{U}}_i + \sum_{k=1}^{K} \tilde{\mathbf{A}}_{ikj} \phi_{ik}(\xi,\eta,\zeta), \quad \tilde{\mathbf{A}}_{ikj} = \mathbf{R}_j \mathbf{B}_{ikj}$$

Geometric Operations Reconstruction Euler Extension

## Numerical Flux

### Framework

- Two approximate values for the conserved vector **U** at each Gaussian quadrature point exist
- The first value U<sup>-</sup><sub>β</sub> corresponds to the spatial limit to the cell boundary from inside the cell V<sub>i</sub> and the second value U<sup>+</sup><sub>β</sub> corresponds to the spatial limit from outside the element
- HLLC Riemann solver employed
- Using the concept of the rotational invariance we rotate the data states  $\mathbf{U}_{\beta}^{-}, \mathbf{U}_{\beta}^{+}$  in the direction of the normal flux vector , then employ the HLLC Riemann solver, and rotate back the numerical flux obtained from HLLC Riemann solver

▲ 同 ▶ → 三 ▶

Geometric Operations Reconstruction Euler Extension

## Time Advancement

### Time Advancement

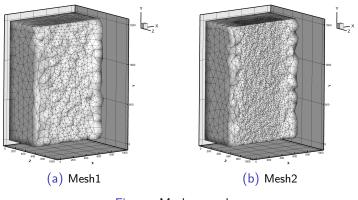
- Scheme used is the explicit 3<sup>rd</sup>-order TVD Runge-Kutta
- time step  $\Delta t$  is selected according to the formula  $\Delta t = K \min_{i} \frac{h_{i}}{S_{i} \cdot V_{i}}$
- $K \leq 1/3$  is the CFL number
- the characteristic length  $h_i$  of each element is taken to be the radius of the inscribed sphere of each element
- For higher than 3rd-order schemes  $3^{rd}$ -order TVD Runge-Kutta employed for convergence studies with time step size given by  $\Delta t = K \cdot (\Delta x)^{\frac{n}{3}}$

Robert Smooth Bubble Non linear, non-hydrostatic mountain flow Parallel scalability & efficiency

< ロ > < 回 > < 回 > < 回 > < 回 >

э

## Meshes Used





Robert Smooth Bubble Non linear, non-hydrostatic mountain flow Parallel scalability & efficiency

▲ 同 ▶ → 三 ▶

## **Problem Description**

### Description

- We solve  $\frac{\partial}{\partial t} \mathbf{U} + \frac{\partial}{\partial x} \mathbf{F}(\mathbf{U}) + \frac{\partial}{\partial y} \mathbf{G}(\mathbf{U}) + \frac{\partial}{\partial z} \mathbf{H}(\mathbf{U}) = \mathbf{S}$
- Warm bubble centered at (500, 260, 500) m

• 
$$\theta' = \begin{cases} 0 & \text{for } r > r_c \\ 1.25 \left(1 + \cos\left(\frac{\pi r}{r_c}\right)\right) & \text{for } r \ge r_c \end{cases}$$

- The computational domain is  $[0, 1000] \times [0, 1500] \times [0, 1000] m$ .
- NFBC used at the boundaries
- Simulation time  $t \in [0, 300] s$

Robert Smooth Bubble Non linear, non-hydrostatic mountain flow Parallel scalability & efficiency

< □ > < 同 > < 回 >

## Results

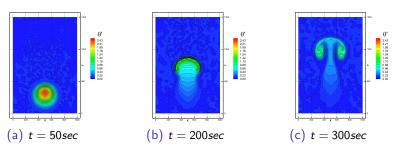


Figure: Potential temperature perturbation  $\theta'$  at various instants and at z = 500m for mesh2 using WENO-5th order scheme.

Robert Smooth Bubble Non linear, non-hydrostatic mountain flow Parallel scalability & efficiency

< □ > < □ > < □ > < □ >

## Results

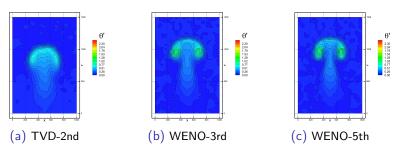


Figure: Potential temperature perturbation  $\theta'$  at t = 300sec and at z = 500m for mesh1.

Robert Smooth Bubble Non linear, non-hydrostatic mountain flow Parallel scalability & efficiency

Image: A mathematical states and a mathem

### Results

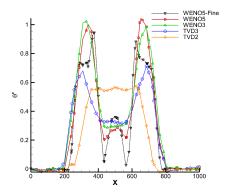


Figure: Potential temperature perturbation  $\theta'(K)$  at t = 300sec profile, at z = 500m and y = 964.5m.

Robert Smooth Bubble Non linear, non-hydrostatic mountain flow Parallel scalability & efficiency

< A > <

### Conservation properties

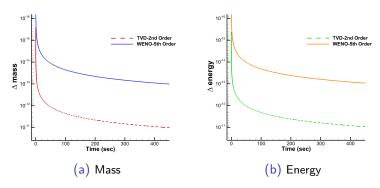
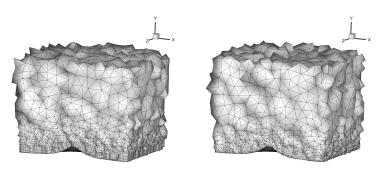


Figure: Conservation properties of different schemes

Robert Smooth Bubble Non linear, non-hydrostatic mountain flow Parallel scalability & efficiency

## Meshes Used



(a) Mesh1

(b) Mesh3

< ロ > < 回 > < 回 > < 回 > < 回 >

Figure: Meshes used

Robert Smooth Bubble Non linear, non-hydrostatic mountain flow Parallel scalability & efficiency

- 4 同 ト 4 ヨ ト 4 ヨ ト

## **Problem Description**

### Description

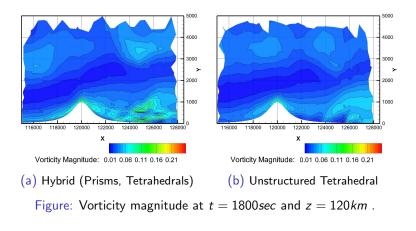
- We solve  $\frac{\partial}{\partial t} \mathbf{U} + \frac{\partial}{\partial x} \mathbf{F}(\mathbf{U}) + \frac{\partial}{\partial y} \mathbf{G}(\mathbf{U}) + \frac{\partial}{\partial z} \mathbf{H}(\mathbf{U}) = \mathbf{S}$
- Defined on  $[110, 130] \times [0, 12] \times [110, 130] km$  with NFBC on the ground and NRBC elsewere
- The initial condition corresponds to a constant mean flow of  $\bar{u} = 20m/s$ in a uniform stratified atmosphere and a ground temperature of  $T_0 = 280K$

• Mountain profile given by  $h(x, y, z) = \frac{h_c}{\left(1 + \left(\frac{x - x_c}{a_c}\right)^2 + \left(\frac{y}{a_c}\right)^2 + \left(\frac{z - z_c}{a_c}\right)^2\right)}$ with  $h_c = 1000m$ 

• We compute the numerical solution at the output time t = 1800sec

Robert Smooth Bubble Non linear, non-hydrostatic mountain flow Parallel scalability & efficiency

## Results



▲口 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 → のへの

Robert Smooth Bubble Non linear, non-hydrostatic mountain flow Parallel scalability & efficiency

(日)

### Parallel scalability

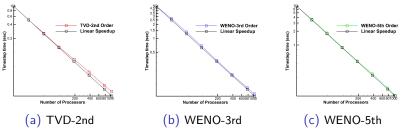


Figure: Scalability of various methods

Robert Smooth Bubble Non linear, non-hydrostatic mountain flow Parallel scalability & efficiency

< 17 ▶

## Parallel efficiency

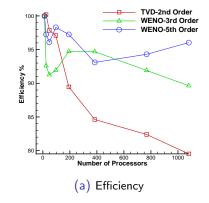


Figure: Parallel efficiency of various methods

## Conclusions

- The subcell resolution through decomposition and Gaussian quadrature integration rules is the mechanism that provides higher-accuracy on under-resolved meshes
- The crucial process for achieving high-order of accuracy is a reconstruction process that can combine elements of different shapes
- The subject schemes have been applied to a series of idealized test cases in order to assess their robustness, accuracy, and efficiency
- The numerical result obtained from the test cases demonstrated the aforementioned properties of the schemes
- The WENO reconstruction can be utilised as a building-block in a dynamical core that is not limited by the type of meshes, or the formulation of the governing equations.
- The higher-order schemes exhibit excellent scalability since the ratio of computational time over communication time is greater than lower order schemes
- In the future the extension of the current numerical methods to global idealized simutations will be implemented.

(日)

## Questions?

### Thank you very much for your time and attention !

Conclusions

P. Tsoutsanis, D. Drikakis, J. Lelieveld 3rd EULAG Workshop

э

э