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Outline

¢ The spectral transform method: de-aliasing of spectral
computations on the linear grid

¢ The role of horizontal diffusion

¢ Non-linear diffusion
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Schematic description of the spectral transform
method in the ECMWF IFS model

Grid-point space
/ -semi-Lagrangian advection \
-physical parametrizations

FFT -products of terms

Inverse FFT
1 No grid-staggering of 1
prognostic variables
Fourier space Fourier space
LT Inverse LT

Spectral space

\ -horizontal gradients /
-semi-implicit calculations

-horizontal diffusion

FFT: Fast Fourier Transform, LT: Legendre Transform
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The Gaussian grid About 30% reduction in number of points
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associated Legendre polynomials are very small near the poles for large m.
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De-aliasing

¢ Aliasing of quadratic terms on the linear grid (2N+1 gridpoints
per N waves), where the product of two variables transformed
to spectral space cannot be accurately represented with the
available number of waves (as quadratic terms would need a
3N+1 ratio).

¢ Absent outside the tropics in E-W direction due to the design
of the reduced grid (obeying a 3N+1 ratio) but present
throughout (and all resolutions) in N-S direction.

¢ By subtracting the difference between a specially filtered and
the unfiltered pressure gradient term at every time-step the
stationary noise patterns can be removed at a cost of approx.
5% at T1279 (2 extra transforms).
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De-aliasing
E-W
500hPa adiabatic

zonal wind
tendencies (T159)
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De-aliasing T e e
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De-aliasing
N-S

konday 15 Jure 2009 DOUTT ECMAF  Fomecaes 24 WT. Tuesday 16 June 2009 DOUTC SD0hPa Expermental product

500hPa adiabatic
meridional wind i
tendencies (T159) |
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De-aliasing

Mfioragay 15 Juns 2005 D0UTC ECWWE Fonead =24 VT Tuesday 15 June 2005 D0UTC S00nFa Experimenial product
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de-aliasing: vorticity noise

Wadnesday S Aprll 2011 DOUTC ECAMNF Forecast 848 VT Friday 8 April 2041 DOUTC Z00hFa WorthcRy (nelafve)
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De-aliasing: vorticity noise

Wedrssday & Aprl 2011 DOUTC SECHMWF Forscast B+48 VT Friday S A&prl 2011 DOUTCS 200nPa Voriddty (relathe]
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Kinetic Energy Spectra - 100 hPa

Horizontal kinetic energy spectra plots
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Kinetic Energy Spectra - 100 hPa

Horizontal kinetic energy spectra plots
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Horizontal Diffusion

¢ Four reasons for horizontal diffusion:
¢ “Sponge” for vertically propagating gravity waves

¢ Dampen the accumulation of KE and enstrophy at the
smallest resolved scales

¢ Represent unresolved subgrid-scale mixing

¢ Make tangent-linear and non-linear evolution more
similar (relevant for variational data-assimilation)

¢ Given the removal of aliasing, horizontal diffusion can now
be reduced or alternative schemes applied to represent
unresolved subgrid-scale mixing

¢ => Non-linear horizontal diffusion

ECMWF €3



Satellite picture of N. Atlantic

METEOSAT VIS 13\ MAR 1995 15:00 UTC
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Enlarged picture over U.K.

AVHRR VIS 13 MAR 1995 13:15 UTC

More detall ...
Gravity-wave train
running SW-NE over
UK.
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Balloon measurements of static stability
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Because it does not satisfy the equations since it is/contains already the nonlinear response of some forcing far
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Scales of atmospheric phenomena
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“Averaged” equations

¢ The equations as used in an operational NWP model represent
the evolution of a space-time average of the true solution.

¢ The sub-grid model represents the effect of the unresolved
scales on the averaged flow expressed in terms of the
resolved flow variables which represent an averaged state.

ECMWF €3



(Ailrcraft) observed spectra of motions
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Energy to all scales


2D vs 3D turbulence

¢ So far horizontal correlations are simply neglected and only
the vertical correlations of subgrid-scale fluctuations are
parameterized.

¢ based on scale arguments accelerations of the larger scale
flow caused by eddy motions ...

¢ ... in 2D turbulence decrease as the scale of motion
decreases (i.e. as the model resolution increases)

¢ ... in 3D turbulence increase as the scale of motion
decreases (i.e. as the model resolution increases)

¢ So as long as the resolved flow regime behaves like 2D
turbulence the neglect of horizontal eddy fluxes in NWP is

okay ... (Tennekes, 1978)
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rotational/divergent energy of T3999 10 day fc

Horizontal kinetic energy spectra plots Horizontal kinetic energy spectra plots
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leg(horizontal KE)
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Kinetic Energy of T3999 10 day fc

Horizontal kinetic energy spectra plots
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Attempt to apply LES techniques to global
NWP

¢ Take into account horizontal and vertical non-linear
Interactions of scales that are still represented on the grid.

¢ Utilize similarity of spectral slope over a wide range of
wavenumbers while assuming self-similar behaviour of
nonlinear interactions at the smallest resolved scales and
at the largest unresolved (subgrid) scales.
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Two parts to the SGS stress tensor
Domaradzki and Adams (2002)

The result of non-linear interactions of scales

_ _ truly subgrid-scale
actually represented on the numerical grid Y SU
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Truly subgrid-scale In EULAG ==
== Model with spectral viscosity in IFS ILES of MPDATA ?

e.g. Gelb and Gleeson (2001)

Fc?(e@—e@?( (ot ))cm

a’t

. ] 0 n<ne,
7\ exp(=(n = N)2/(n—n)?) n.<n<N,

¢ =2a°/N° and n.= N/2,
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SGS Stress tensor - similarity model
TED
]

Ti;(x) = / vi(2u; (2 Galk, l,x — 2")d2' — 7;(2)T;(2).

— U; ’Uj—’U@j ’Ujj

vi(x) = /’U?;(LU!)GA(IQLLE — 2')da'.

De-convolution operation to recover the “true” velocity

vi(z) = /E—(:B"')Ggl(kj [, v —2")dx'

» T () = /t_)@-(x’)@j(x’)Ggl(k:? [, v — 2" )da' — 7;(x)v;(x).
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The Gaussian filter

kD) — exp{ A*n(n + 1)}

24a?

o Ay — B6AN, Ay — SAN.

Has the same shape in physical and in wave space !
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SGS Stress tensor - similarity model

Based on the idea of similar behaviour between the smallest
(well) resolved scales and the actual subgrid scales

rep o
‘ Ti;  — CLL%J Secondary filter

B

Lij — U; ’Uj — @@' Uja
Minimize error norm (Lilly 1991)

F(Cr) = IQUF = (1i; — CpLij)*.
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Friday 15 October 2010 12UTC ECMWF Forecast t+1 VT: Friday 15 October 2010 13UTC Model Level 49 Experme C W velocity
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T511 simulation with 6,8 dx filters ~ 240km



Friday 15 October 2010 12UTC ECMWF Forecast t+1 VT: Friday 15 October 2010 13UTC Model Level 49 Experime C W velocity
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Friday 15 October 2010 12UTC ECMWF Forecast t+1 VT: Friday 15 October 2010 13UTC Model Level 4 ntal product
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T511 simulation with 19,25 dx filters ~750km



Total physics tendency Au T511 simulation

Friday 15 October 2010 12UTC ECMWF Forecast t+4 VT: Friday 15 October 2010 16UTC Model Level 64 Expenimental product/ WV velocity
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New stress Au T511 simulation

Friday 15 October 2010 12UTC ECMWF Forecast t+4 VT: Friday 15 October 2010 16UTC Model Level 64 Expenimental product’ V velocity
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log(horizantal KE)
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Spectra T1279

Horizontal kinetic energy spectra plots
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SGS Stress tensor — similarity model

¢ The turbulent stress clearly not “random” and
complimentary to physical parameterizations

¢ Similarity constant appears to be a property of the flow,
guite independent of the model resolution while it’s value is
Influenced by the chosen physical length-scale of the flow.

¢ Similarity constant naturally defines (dynamically
consistent) backscatter (positive and negative C_L) that
may be used in generating EPS perturbations.
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Summary

¢ De-aliasing improved mass conservation by 50 %,
Improved energy spectra and removed unphysical noise
“seen” (and compensated in part) by the physical
parametrizations.

¢ Potential for weaker and/or alternative schemes for
horizontal (hyper-)diffusion

¢ Potential for the use of a dynamic similarity model to
compute non-linear velocity correlations, in particular in
the context of ensemble prediction systems

¢ More work required to assess the impact of different filter
choices on the resulting kinetic energy spectra
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The final additional contributions to the
IFS equations

du | Crl1q Crl g 0 |
i - _9 Y0

dt _Vn ( Cr Lo ) RT V- or ( Crlas ) RT o L8|
dv | C'r Lo CrlLo g 0 _
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Direct spectral transform

Fourier transform: FET (fast Fourier

transform)

1 o —m usin
Cm(f)) — %/0 C()\v 6))8 /\d)\ NF2g2N+1

points (linear grid)
(3N+1 if quadratic grid)

Legendre transform:

1 _
. m
o 9 Cmpn (COS(Q))dCOS(Q)' Legendre transform
—1 by Gaussian quadrature
C — using N, > (2N+1)/2

“Gaussian” latitudes (linear grid)

E Wi Cm gjk (ij ) ((3N+1)/2 if quadratic grid)
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Inverse spectral transform

(normalized) associated Legendre polynomials

/

CON) = D ™ Y CrPr(cos(0)),

v v
N Triangular truncation
C )= D> > Erm b)Y, (A, p) (isotropic)
m=-N n=|m| /
/ Triangular truncation:
n
Spherical harmonics . 4 N

m=-N m=N_M
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Heat
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Temperature
(Control)
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log(herizontal KE)

Kinetic Energy of T3999 10 day fc

Horizontal kinetic energy spectra plots Horizontal kinetic energy spectra plots
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log(horizontal KE)

Temperature variance

Horizontal power spectra of Temperature Horizontal power spectra of Temperature
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