NFT INTEGRATION ON UNSTRUCTURED MESHES: FLOWS PAST OBSTACLES

Loughborough

Francesco Cocetta, Zhixin Cao, Mike Gillard, Joanna Szmelter Loughborough University

Lipps-Hemler anelastic system

 φ

Mass, momentum and entropy conservation laws:

$$\nabla \cdot (\mathbf{V}\rho_o) = 0$$

$$\frac{\partial \rho_o V_I}{\partial t} + \nabla \cdot (\mathbf{V}\rho_o V_I) = -\rho_o \frac{\partial \varphi}{\partial x_I} + \rho_o g \frac{\theta'}{\theta_o} \delta_{I3} + (\nabla \cdot \boldsymbol{\tau})_I$$

$$\frac{\partial \rho_o \theta'}{\partial t} + \nabla \cdot (\mathbf{V}\rho_o \theta') = -\mathbf{V} \cdot \nabla \theta_{\mathbf{e}}$$

$$ds = c_p d \ln \theta$$

$$= c_p \theta_o (\pi - \pi_e) \quad \pi \equiv (p/p_o)^{R/c_p} \qquad \qquad \theta' = \theta - \theta_e$$

$$\theta_e(x_3) = \theta_o + S_o x_3$$

Loughborough

University

Mass and momentum conservation laws:

$$abla \cdot (\mathbf{V}
ho_o) = 0$$
 .

Loughborough

University

$$\frac{\partial \rho_o V_I}{\partial t} + \nabla \cdot (\mathbf{V} \rho_o V_I) = -\rho_o \frac{\partial \varphi}{\partial x_I} + (\nabla \cdot \boldsymbol{\tau})_I$$

Deviatoric stress tensor $\tau_{IJ} = (\mu + \mu_T) \left(\frac{\partial V_I}{\partial x_J} + \frac{\partial V_J}{\partial x_I} \right)$ Dynamic eddy viscosity $\mu_T = \mu_t$ for RANS; $\mu_T = \mu_{sgs}$ for LES

DES hybrid approach for simulating turbulent incompressible flows

Particularly, μ_t is computed by Spalart-Allmaras model: $\mu_t = \rho_0 \hat{\nu} f_{\nu 1}$

$$\frac{\partial \hat{\nu}}{\partial t} + \mathbf{V} \cdot \nabla \hat{\nu} = c_{b1} \hat{S} \hat{\nu} + \frac{1}{\sigma} \nabla \cdot (\nu + \hat{\nu}) \nabla \hat{\nu} + \frac{c_{b2}}{\sigma} (\nabla \hat{\nu})^2 - c_{w1} f_w \left(\frac{\hat{\nu}}{d}\right)^2$$

NFT- Finite Volume integration

Time and space discretization

Generalized equation

$$\frac{\partial \rho_o \xi}{\partial t} + \nabla \cdot \left(\boldsymbol{\mathcal{V}} \rho_o \xi \right) = \rho_o R$$

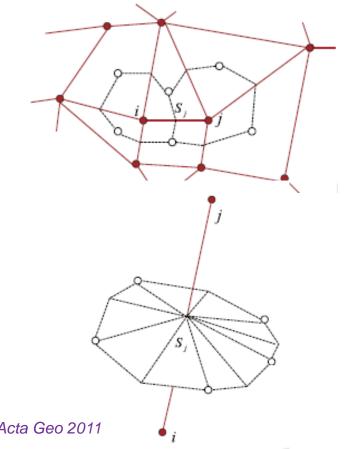
Semi-Implicit NFT based solver

$$\xi_P^{n+1} = \mathcal{A}_P\left(\tilde{\xi}, \mathcal{V}^{n+1/2}, \rho_o\right) + 0.5\delta t R_P^{n+1}$$

Advection using MPDATA

BVP (Poisson equation) solved using GCR Solver

Median dual meshes with edge-based connectivity



Summary of the procedure

1. Linear extrapolation of the advective components to the time $t^{n+1/2}$

 $\rho_o V_I^{n+1/2} = 1.5 \rho_o V_I^n - 0.5 \rho_o V_I^{n-1}$

- 2. Computation of auxiliary variables according to previous time steps $\widetilde{\mathbf{V}} = (\mathbf{V} + 0.5\delta t R^{\mathbf{V}})^n \quad \widetilde{\theta'} = (\theta' + 0.5\delta t R^{\theta'})^n$ $\widetilde{\nu} = \hat{\nu} + 0.5\delta t 2R^{\nu}$
- 3. MPDATA transports the auxiliary variables \tilde{V} and $\tilde{\theta}'$. For solution using DES, MPDATA completes the solution of \hat{v}^{n+1}

4. The solution of elliptic BVP leads to an updated value of pressure φ^{n+1}

$$\forall P \quad \left\{ \sum_{J=1,3} \frac{\partial}{\partial x_J} \left[\rho_o \left(\widehat{\widehat{V}_J} - 0.5 \delta t \, \beta_J^{-1} \frac{\partial \varphi}{\partial x_J}^{n+1} \right) \right] \right\}_P = 0$$

5. Evaluation of updated V_I^{n+1} and θ'^{n+1}

$$V_I^{n+1} = \widehat{\widehat{V}_I} - 0.5\delta t \,\beta_I^{-1} \frac{\partial \varphi}{\partial x_I}^{n+1} \qquad \theta'^{n+1} = \widehat{\theta'} - 0.5\delta t \,\frac{\partial \theta_e}{\partial x_3} V_3^{n+1}$$

6. Update the forcings using V_I^{n+1} and θ'^{n+1} . For solution using DES, Spalart-Allmaras model retrieve μ_t using \hat{v}^{n+1}

Incompressible viscous flow past a sphere University

Setup of experiment

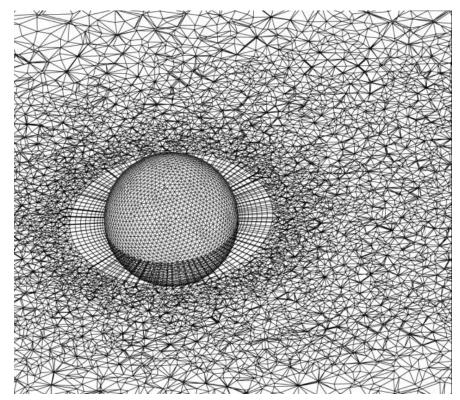
Computational domain: 20 x 20 x 20 cube Sphere in the centre having diameter D=1

Meshes adopted

- Prismatic layers in the proximity of the sphere
- Tetrahedral elsewhere

Ambient state is the constant velocity flow $V_e = (1,0,0)$, and potential flow determines the initial condition of Navier-Stokes equations

Variable Reynolds number



Re = 200

Number of nodes: 190327 Prismatic elements:

- 9 layers of increasing thickness
- within 0.6D from the boundary of sphere

Results

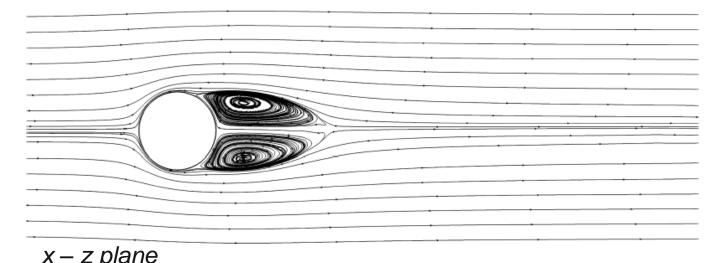
Steady flow: circulation behind the sphere is axisymmetric to the x-directed axis

Agreement with previous results, both numerical and experimental:

- drag coefficient C_d •
- recirculation length L_r ullet
- separation angle ϕ_s ٠

x_c, y_c	L_r			
			· · · · · · · · · · · · · · · · · · ·	· · · · ·
x – y plane				

Streamlines



Results

Steady flow: circulation behind the sphere is axisymmetric to the x-directed axis

Agreement with previous results, both numerical and experimental:

- drag coefficient C_d
- recirculation length L_r
- separation angle ϕ_s

	C_d	L_r	ϕ_{s}
NFTFV	0.774	1.429D	116.6°
[34] (experiment)	-	-	116.5°
[3]	0.77	1.43D	116.3°
[70]	-	1.429D	116.1°
[14]	0.768	1.436D	-
[17]	0.776	1.427D	116.2°
[4]	0.775	1.430D	116.7°
[30]	0.749	-	114.3°
[7]	-	1.436D	116.3°
[67]	0.771	-	-
[62]	0.784	1.310D	118°
[25]	0.772	-	-

Setup of experiment

Computational domain: 20 x 20 x 20 cube Sphere in the centre having diameter D=1

Meshes adopted

- 24 prismatic layers in the proximity of the sphere
- Tetrahedral elsewhere

Ambient state is the constant velocity flow $V_e = (V_0, 0, 0) = (1, 0, 0)$ m/s, and kinematic viscosity $v = 5 \cdot 10^{-3} m^2 s^{-1}$ is chosen to give Re = 200

Varying Froude number

$$Fr = \frac{2V_0}{ND}$$

Loughborough

where N is the buoyancy frequency function of the stratification S_0

$$N = \sqrt{\frac{g}{S_0}}$$
$$\theta_e(x_3) = \theta_o + S_o x_3$$

Stratification is modified to have resulting Froude numbers equals to

 $Fr \nearrow \infty$ Fr = 1 Fr = 0.25

Fr ≯ ∞

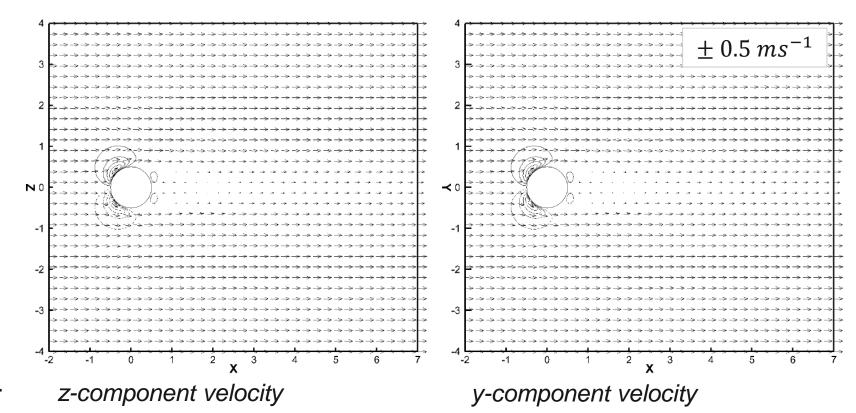
Flow neutrally stratified, axisymmetric circulation

Fr = 1

Buoyancy-induced gravity waves, Dividing streamline height $h_s = h(1 - Fr)$

Fr = 0.25Large horizontal eddies

Good agreement with linear theory, λ of gravity waves *Smith R.B., 1988*



 $Fr \nearrow \infty$

Fr ≯ ∞

Flow neutrally stratified, axisymmetric circulation

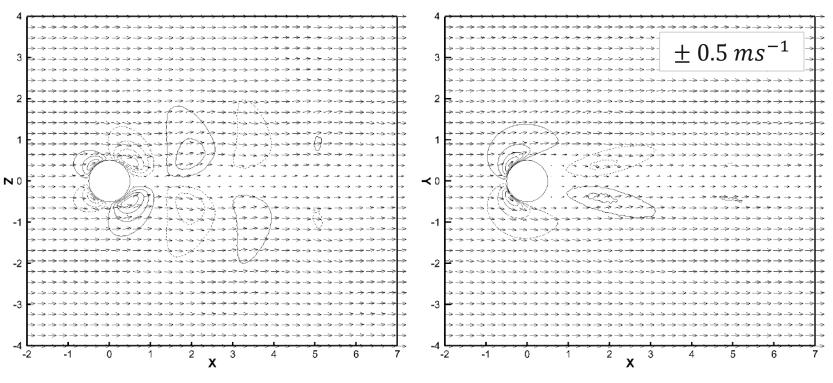
Fr = 1

Buoyancy-induced gravity waves, Dividing streamline height $h_s = h(1 - Fr)$

Fr = 0.25Large horizontal eddies

Good agreement with linear theory, λ of gravity waves *Smith R.B., 1988*

Fr = 1



z-component velocity

y-component velocity

z-component velocity

N 0

Fr ≯ ∞

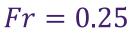
Flow neutrally stratified, axisymmetric circulation

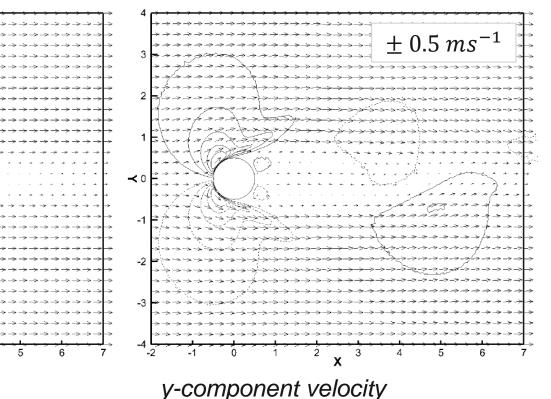
Fr = 1

Buoyancy-induced gravity waves, Dividing streamline height $h_s = h(1 - Fr)$

Fr = 0.25Large horizontal eddies

Good agreement with linear theory, λ of gravity waves *Smith R.B., 1988*





Effects of stratification on drag coefficient

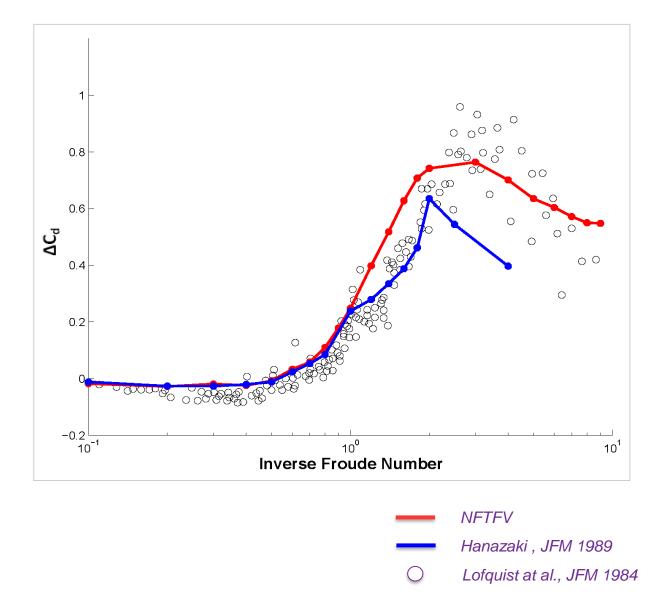
Drag coefficient of flow compared to neutral stratified flow

$$\Delta C_d = C_d(Re, 1/Fr) - C_d(Re, 0)$$
$$C_d = \frac{F_d}{0.5\rho_0 V_0^2 A}$$

- NFTFV solutions
- Re = 200
- Early numerical solutions
- Laboratory experiments $10^2 < Re < 10^4$

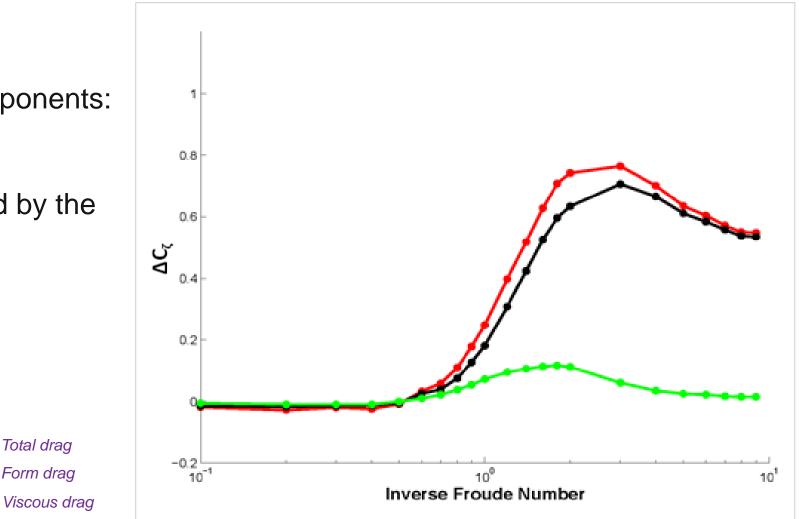
Reasonable agreement between numeric solutions and experimental data

Sharp transition related to the concept of dividing streamline height



Loughborough University Study on drag coefficient components:

Flow organization is controlled by the stratification



Loughborough University

Stratified flow past a steep isolated hill

• Hill definition

$$h(x,y) = \begin{cases} h_0 \cos^2\left(\frac{\pi r}{2L}\right), & \text{if } r \ge L\\ 0, & \text{otherwise} \end{cases}$$
$$r = \sqrt{\left(x - x_0\right)^2 + \left(y - y_0\right)^2}, \quad L = 3000 \, m, \quad h_0 = 1500 \, m \end{cases}$$

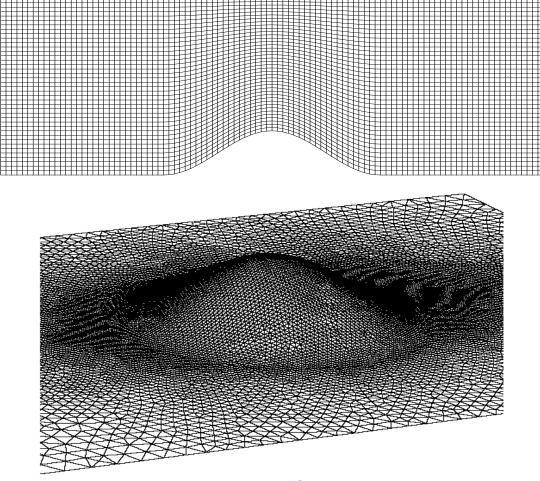
Vertical mesh construction

$$z_{ijk} = (k-1)\delta z * \left(1 - \frac{h_{ij}}{H}\right) + h_{ij}$$

• Flow features

$$Fr = \frac{1}{3}$$
, $N = 0.01 \, s^{-1}$, $u_e = 5 \, m s^{-1}$

Computational meshes



Smolarkiewicz et. al., JCP 2013

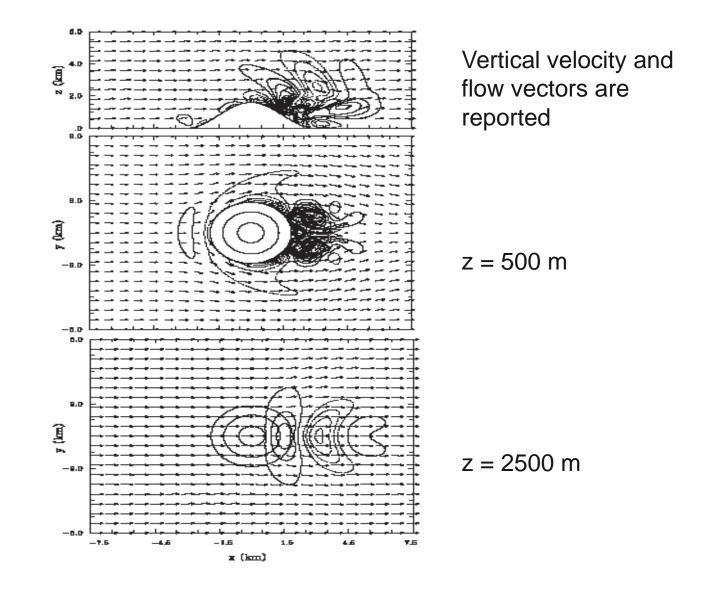
Stratified flow past a steep isolated hill

Previous results

Smolarkiewicz et al., JCP 2013

• Turbulent wake on the lee side

Gravity-wave response above dividing streamline height



MPI-Parallelization of the code

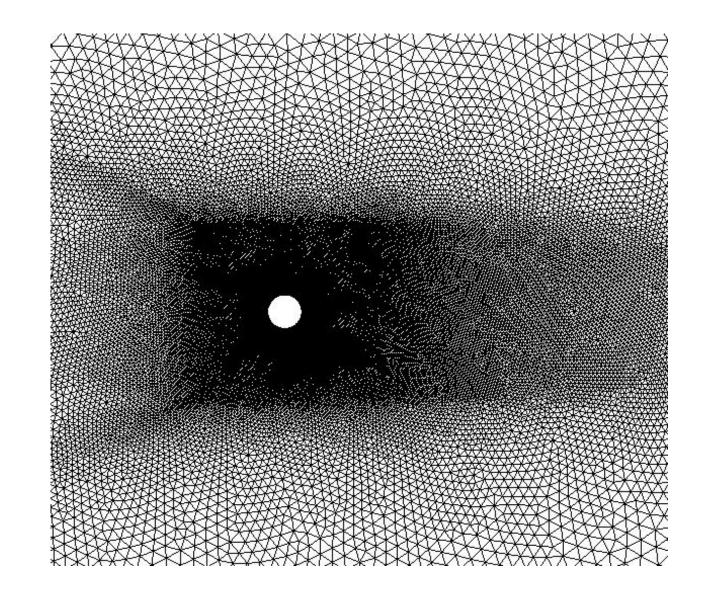
MPI library specification for distributed memory model

Domain decomposed using METIS library

Communication using double halos

Hydra HPC architecture:

- 2460 cores
- 64-bit Intel Xenon CPUs



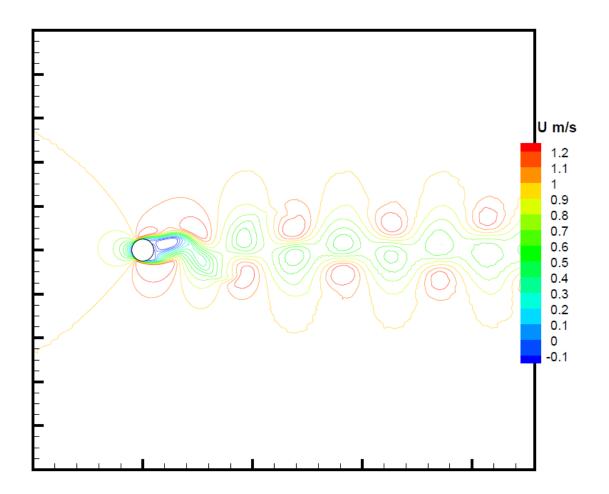
Void 2D-cylinder in uniform flow

Setup of experiment

- Domain 90D x 20D, where D is the diameter of the cylindrical void – 22524 points
- Velocity of the uniform flow u = (1,0)Re = 200
- Incompressible Navier-Stokes equations

Performance

- Speedup ratio $S_N = \frac{T_1}{T_N} \cdot 100$
- Good scaling until 24 cores, then scaling deteriorates
- Parallel efficiency is affected by relatively small number of points



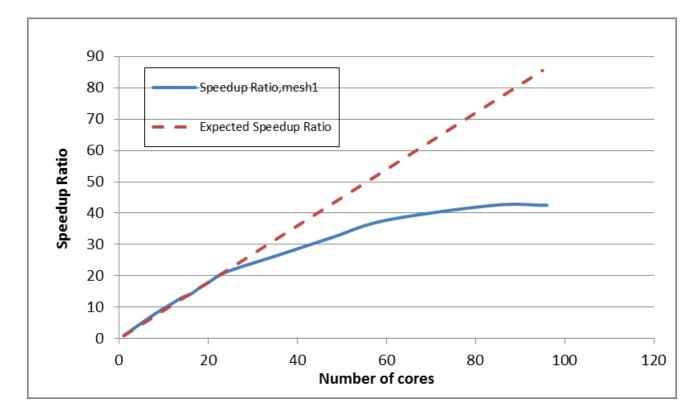
Void 2D-cylinder in uniform flow

Setup of experiment

- Domain 90D x 20D, where D is the diameter of the cylindrical void – 22524 points
- Velocity of the uniform flow u = (1,0)Re = 200
- Incompressible Navier-Stokes equations

Performance

- Speedup ratio $S_N = \frac{T_1}{T_N} \cdot 100$
- Good scaling until 24 cores, then scaling deteriorates
- Parallel efficiency is affected by relatively small number of points



Loughborough

University

- Capability of NFTFV schemes to accurately simulate viscous and stratified flows at a range of Reynolds and Froude numbers has been demonstrated.
- Parallel implementation in 2D shows a promising speed up.
 For the 2D-cylinder benchmark the parallel efficiency is about 90% when using up to 24 cores.

THANK YOU FOR YOUR ATTENTION

Preconditioners adopted

Richardson-iteration preconditioner

For any initial guess ϕ^0 , subsequent $\phi^{\nu+1}$ are evaluated by

$$\begin{aligned} \frac{\partial \phi_i^{\nu}}{\partial \tau} &= \mathcal{L}(\phi_i^{\nu}) - r_i \\ \frac{\phi_i^{\nu+1} - \phi_i^{\nu}}{\beta} &= \mathcal{L}(\phi_i^{\nu}) - r_i \\ \phi_i^{\nu+1} &= \phi_i^{\nu} + \beta(\mathcal{L}(\phi_i^{\nu}) - r_i) \end{aligned}$$

where pseudo-time β is defined minimizing the distance between points of the primary mesh (\widetilde{dx}) and applying $\beta = \frac{1}{2}\widetilde{dx}^2$ Jacobi smoother as preconditioner

Starting from Poisson equation $\mathcal{L}(\phi_i^{\nu}) = r_i$ $\mathcal{L}(\phi_i^{\nu}) - \mathcal{D}_i \phi_i^{\nu} + \mathcal{D}_i \phi_i^{\nu+1} = r_i$

For any initial guess ϕ^0 , subsequent $\phi^{\nu+1}$ are evaluated by

$$\phi_i^{\nu+1} = \phi_i^{\nu} - (\mathcal{L}(\phi_i^{\nu}) - r_i)\mathcal{D}_i^{-1}$$

where \mathcal{D}_i aims to consider the diagonal part of Laplacian operator $\mathcal{D}_i = \frac{1}{4\mathcal{V}_i} \sum_{j=1}^{l(i)} \left[\frac{S_{x_j}^2}{\mathcal{V}_j} + \frac{S_{y_j}^2}{\mathcal{V}_j} + \frac{S_{z_j}^2}{\mathcal{V}_j} \right]$

Preconditioners adopted

Mixed preconditioner

Starting from Richardson preconditioner $\phi_i^{\nu+1} = \phi_i^{\nu} + \beta (\mathcal{L}(\phi_i^{\nu}) - r_i)$ $\phi_i^{\nu+1} = \phi_i^{\nu} + \beta (\mathcal{L}(\phi_i^{\nu}) - r_i - \mathcal{D}_i \phi_i^{\nu} + \mathcal{D}_i \phi_i^{\nu+1})$

Relaxation

Elliptic solver could also benefit from relaxing (or over-relaxing) the solution of preconditioner operator, e.g.

$$\phi_i^{\nu+1} = (1-\omega)\phi_i^{\nu} + \omega\beta(\mathcal{L}(\phi_i^{\nu}) - r_i)$$

	Richardson	Jacobi	Mixed
ω	1.5	0.6	1.5

For any initial guess ϕ^0 , subsequent $\phi^{\nu+1}$ are evaluated by

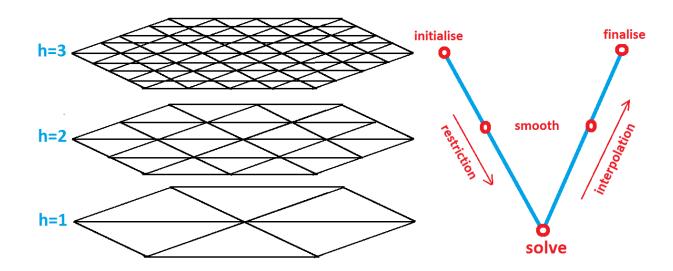
$$\phi_i^{\nu+1} = \phi_i^{\nu} + \frac{\beta}{1 - \beta \mathcal{D}_i} (\mathcal{L}(\phi_i^{\nu}) - r_i)$$

where pseudo-time β and \mathcal{D} operator are mesh-dependent and can be pre-computed

Multigrid Preconditioning

V-Cycle

The aim is to minimize the solution error acting on length-waves quickly detected by coarser meshes



Example on 2-levels multigrid

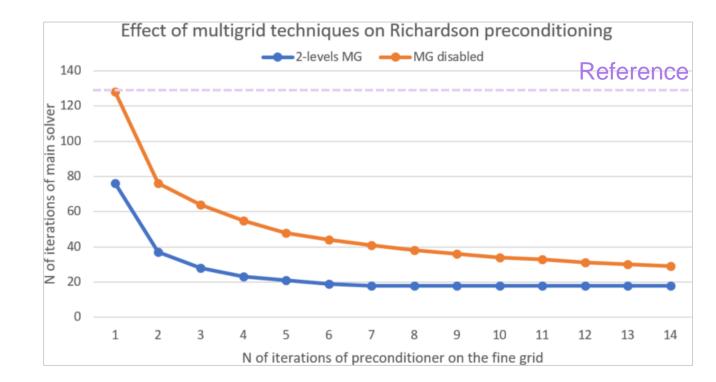
Smooth p_i^f on the finest grid Calculate residuals $rr_i^f = rr_i^f - \mathcal{L}(p_i^f)$ $\rightarrow \text{Restrict } rr_j^c = I_f^c rr_i^f$ Solution for e_j^c \leftarrow Interpolate $e_i^f = I_c^f e_j^c$ Add coarse grid error $p_i^f = p_i^f + e_i^f$ Smooth p_i^f on the finest grid

Preliminary/Intermediate results

- Flow past a steep hill
- Cartesian grid
- Relaxation factor $\omega = 1.5$

Considering the potential flow

- Number of iterations of the flow solver VS number of iterations of preconditioner
- Comparison between Richardson preconditioner and Richardson preconditioner implemented with 2-levels multigrid (5 loops on the coarser grid)
- No gain in terms of elapsed time



Loughborough

University