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Lipps-Hemler anelastic system

Mass, momentum and entropy conservation laws:



Incompressible Navier-Stokes equations

Mass and momentum conservation laws:

Deviatoric stress tensor 𝜏𝐼𝐽 = 𝜇 + 𝜇𝑇
𝜕𝑉𝐼

𝜕𝑥𝐽
+

𝜕𝑉𝐽

𝜕𝑥𝐼

Dynamic eddy viscosity 𝜇𝑇 = 𝜇𝑡 for RANS; 𝜇𝑇 = 𝜇𝑠𝑔𝑠 for LES

DES hybrid approach for simulating turbulent incompressible flows

Particularly, 𝜇𝑡 is computed by Spalart-Allmaras model: 𝜇𝑡 = 𝜌0 Ƹ𝜈𝑓𝑣1



Generalized equation

Semi-Implicit NFT based solver

Advection using MPDATA

BVP (Poisson equation) solved using GCR Solver

NFT- Finite Volume integration

Time and space discretization Median dual meshes with 

edge-based connectivity

Smolarkiewicz & Szmelter, Acta Geo 2011



1. Linear extrapolation of the advective 

components to the time tn+1/2

2. Computation of auxiliary variables 

according to previous time steps

3. MPDATA transports the auxiliary 

variables ෨𝑉 and ෩𝜃′. For solution using 

DES, MPDATA completes the solution 

of Ƹ𝜈𝑛+1

4. The solution of elliptic BVP leads to an 

updated value of pressure 𝜑𝑛+1

5. Evaluation of updated 𝑉𝐼
𝑛+1 and 𝜃′𝑛+1

6. Update the forcings using 𝑉𝐼
𝑛+1 and 

𝜃′𝑛+1. For solution using DES, Spalart-

Allmaras model retrieve 𝜇𝑡 using Ƹ𝜈𝑛+1

Summary of the procedure



Re = 200
Number of nodes: 190327

Prismatic elements:

• 9 layers of increasing thickness

• within 0.6D from the boundary of sphere

Incompressible viscous flow past a sphere

Setup of experiment

Computational domain: 20 x 20 x 20 cube

Sphere in the centre having diameter D=1

Meshes adopted

• Prismatic layers in the proximity of the 

sphere

• Tetrahedral elsewhere

Ambient state is the constant velocity flow 

𝑽𝑒 = (1,0,0), and potential flow determines 

the initial condition of Navier-Stokes 

equations

Variable Reynolds number



Results

x – y plane

x – z plane

Steady flow: circulation behind the sphere 

is axisymmetric to the x-directed axis

Agreement with previous results, both 

numerical and experimental:

• drag coefficient 𝐶𝑑
• recirculation length 𝐿𝑟
• separation angle 𝜙𝑠

Streamlines

Szmelter et al., under review JCP
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Stratified laminar flow past a sphere

Setup of experiment

Computational domain: 20 x 20 x 20 cube

Sphere in the centre having diameter D=1

Meshes adopted

• 24 prismatic layers in the proximity of 

the sphere

• Tetrahedral elsewhere

Ambient state is the constant velocity flow 

𝑽𝑒 = (𝑉0, 0,0) = (1,0,0) m/s, and kinematic 

viscosity 𝜈 = 5 ∙ 10−3𝑚2𝑠−1 is chosen to 

give Re = 200

Varying Froude number

where N is the buoyancy frequency 

function of the stratification 𝑆0

Stratification is modified to have resulting 

Froude numbers equals to 

𝐹𝑟 ↗ ∞ 𝐹𝑟 = 1 𝐹𝑟 = 0.25



Stratified laminar flow past a sphere

𝐹𝑟 ↗ ∞
Flow neutrally stratified,

axisymmetric circulation

𝐹𝑟 = 1
Buoyancy-induced gravity 

waves,

Dividing streamline height

ℎ𝑠 = ℎ(1 − 𝐹𝑟)

𝐹𝑟 = 0.25
Large horizontal eddies

Good agreement with linear 

theory, 𝜆 of gravity waves

Smith R.B., 1988

z-component velocity y-component velocity

𝐹𝑟 ↗ ∞

± 0.5 𝑚𝑠−1
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𝐹𝑟 = 0.25

Stratified laminar flow past a sphere
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Effects of stratification on drag coefficient

Drag coefficient of flow compared to neutral 

stratified flow

• NFTFV solutions

• Early numerical solutions

• Laboratory experiments

Reasonable agreement between numeric 

solutions and experimental data

Sharp transition related to the concept of 

dividing streamline height Hanazaki , JFM 1989

Lofquist at al., JFM 1984

NFTFV



Effects of stratification on drag coefficient

Study on drag coefficient components:

Flow organization is controlled by the 

stratification

Form drag

Viscous drag

Total drag



Stratified flow past a steep isolated hill

• Hill definition

• Vertical mesh construction

• Flow features

Stratified flow past a steep isolated hill

Computational meshes

𝑧𝑖𝑗𝑘 = 𝑘 − 1 𝛿𝑧 ∗ 1 −
ℎ𝑖𝑗
𝐻 + ℎ𝑖𝑗

Smolarkiewicz et. al., JCP 2013



Stratified flow past a steep isolated hill

Previous results

• Turbulent wake on the lee side

• Gravity-wave response above 

dividing streamline height

Smolarkiewicz et al., JCP  2013

Vertical velocity and 

flow vectors are 

reported

z = 500 m

z = 2500 m



MPI-Parallelization of the code

MPI library specification for distributed 

memory model

Domain decomposed using METIS library

Communication using double halos

Hydra HPC architecture:

• 2460 cores

• 64-bit Intel Xenon CPUs



Void 2D-cylinder in uniform flow

Setup of experiment

• Domain 90D x 20D, where D is the diameter of 

the cylindrical void – 22524 points

• Velocity of the uniform flow u = (1,0)

Re = 200

• Incompressible Navier-Stokes equations

Performance

• Speedup ratio 𝑆𝑁 =
𝑇1

𝑇𝑁
∙ 100

• Good scaling until 24 cores, then scaling 

deteriorates

• Parallel efficiency is affected by relatively small 

number of points
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Conclusions

• Capability of NFTFV schemes to accurately simulate viscous and stratified 

flows at a range of Reynolds and Froude numbers has been demonstrated. 

• Parallel implementation in 2D shows a promising speed up.

For the 2D-cylinder benchmark the parallel efficiency is about 90% when using 

up to 24 cores.
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Preconditioners adopted

Richardson-iteration preconditioner

For any initial guess 𝜙0, subsequent 𝜙𝜈+1 are 

evaluated by   

𝜕𝜙𝑖
𝜈

𝜕𝜏
= ℒ 𝜙𝑖

𝜈 − 𝑟𝑖

𝜙𝑖
𝜈+1 − 𝜙𝑖

𝜈

𝛽
= ℒ 𝜙𝑖

𝜈 − 𝑟𝑖

𝜙𝑖
𝜈+1 = 𝜙𝑖

𝜈 + 𝛽 ℒ 𝜙𝑖
𝜈 − 𝑟𝑖

where pseudo-time 𝛽 is defined minimizing 

the distance between points of the primary 

mesh (෪𝑑𝑥) and applying

𝛽 = 1
2
෪𝑑𝑥2

Jacobi smoother as preconditioner

Starting from Poisson equation

ℒ 𝜙𝑖
𝜈 = 𝑟𝑖

ℒ 𝜙𝑖
𝜈 −𝒟𝑖𝜙𝑖

𝜈 +𝒟𝑖𝜙𝑖
𝜈+1 = 𝑟𝑖

For any initial guess 𝜙0, subsequent 𝜙𝜈+1 are 

evaluated by  

𝜙𝑖
𝜈+1 = 𝜙𝑖

𝜈 − ℒ 𝜙𝑖
𝜈 − 𝑟𝑖 𝒟𝑖

−1

where 𝒟𝑖 aims to consider the diagonal part of 

Laplacian operator

𝒟𝑖 =
1
4𝒱𝑖

σ
𝑗=1
𝑙(𝑖)

𝑆𝑥𝑗
2

𝒱𝑗
+
𝑆𝑦𝑗
2

𝒱𝑗
+
𝑆𝑧𝑗
2

𝒱𝑗



Preconditioners adopted

Mixed preconditioner

Starting from Richardson preconditioner

𝜙𝑖
𝜈+1 = 𝜙𝑖

𝜈 + 𝛽 ℒ 𝜙𝑖
𝜈 − 𝑟𝑖

𝜙𝑖
𝜈+1 = 𝜙𝑖

𝜈 + 𝛽 ℒ 𝜙𝑖
𝜈 − 𝑟𝑖 −𝒟𝑖𝜙𝑖

𝜈 +𝒟𝑖𝜙𝑖
𝜈+1

For any initial guess 𝜙0, subsequent 𝜙𝜈+1 are evaluated 

by   

𝜙𝑖
𝜈+1 = 𝜙𝑖

𝜈 +
𝛽

1 − 𝛽𝒟𝑖
ℒ 𝜙𝑖

𝜈 − 𝑟𝑖

where pseudo-time 𝛽 and 𝒟 operator are mesh-dependent 

and can be pre-computed

Relaxation

Elliptic solver could also benefit from relaxing 

(or over-relaxing) the solution of 

preconditioner operator, e.g.

𝜙𝑖
𝜈+1 = 1 − 𝜔 𝜙𝑖

𝜈 + 𝜔𝛽 ℒ 𝜙𝑖
𝜈 − 𝑟𝑖

Richardson Jacobi Mixed

𝜔 1.5 0.6 1.5



Multigrid Preconditioning

V-Cycle

The aim is to minimize the solution error 

acting on length-waves quickly detected by 

coarser meshes

Example on 2-levels multigrid

Smooth 𝑝𝑖
𝑓

on the finest grid

Calculate residuals 𝑟𝑟𝑖
𝑓
= 𝑟𝑟𝑖

𝑓
− ℒ 𝑝𝑖

𝑓

→ Restrict 𝑟𝑟𝑗
𝑐 = 𝐼𝑓

𝑐𝑟𝑟𝑖
𝑓

Solution for 𝑒𝑗
𝑐

← Interpolate 𝑒𝑖
𝑓
= 𝐼𝑐

𝑓
𝑒𝑗
𝑐

Add coarse grid error 𝑝𝑖
𝑓
= 𝑝𝑖

𝑓
+ 𝑒𝑖

𝑓

Smooth 𝑝𝑖
𝑓

on the finest grid



Preliminary/Intermediate results

• Flow past a steep hill

• Cartesian grid

• Relaxation factor ω = 1.5

Considering the potential flow 

• Number of iterations of the flow solver VS 

number of iterations of preconditioner

• Comparison between Richardson 

preconditioner and Richardson 

preconditioner implemented with 2-levels 

multigrid (5 loops on the coarser grid)

• No gain in terms of elapsed time

Reference


