Turbulence in Marine Cumulus and Stratocumulus Clouds: Observations and Large-Eddy Simulation

Jesper G. Pedersen, Yong-Feng Ma, Szymon P. Malinowski

Institute of Geophysics, Faculty of Physics, University of Warsaw

6th International EULAG Users Workshop 30.05.2018

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

30.05.2018 1 / 29

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 - のへぐ

Outline

- Motivation
- RICO: Cumulus (Cu)
- DYCOMS-II flight 1: Stratocumulus (Sc)
 - ▶ Temperature forcing due to evaporation/condensation
 - Advection: mpdata3/mpdatm3
 - $\blacktriangleright~\epsilon$ as a funtion of height and LWC (observations and grid-dependency)
- Conclusions

◆□ > ◆母 > ◆臣 > ◆臣 > ―臣 = のへぐ

Motivation

- Why are we interested in the dissipation rate of TKE in clouds?
 - An important scaling parameter:
 - $\blacktriangleright \ l \sim u^3/\epsilon$
 - $\eta = \left(\nu^3/\epsilon\right)^{1/4}$

•
$$\lambda = \sqrt{\frac{\nu u^2}{\epsilon}}$$

 \blacktriangleright etc.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 つへぐ

Motivation

- Why are we interested in the dissipation rate of TKE in clouds?
 - An important scaling parameter:
 - $\blacktriangleright \ l \sim u^3/\epsilon$
 - $\bullet \ \eta = \left(\nu^3/\epsilon\right)^{1/4}$

•
$$\lambda = \sqrt{\frac{\nu u^2}{\epsilon}}$$

- \blacktriangleright etc.
- Parametrization of cloud processes, for example:
 - Entrainment at the top of Sc: $\epsilon \propto \frac{\sigma_w^3}{l_i}$ (Zeman and Tennekes, 1977)
 - ► Cumulus entrainment rate: $\lambda_{c} \simeq f(w, B, \epsilon)$ (Lu et al., 2016)
 - Microphysics, e.g., "eddy hopping" and droplet growth: $E = \left(\frac{L\epsilon}{C_E}\right)^{2/3}$ (Grabowski and Abade, 2017)
 - What is the value of ϵ ?

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

30.05.2018 3 / 29

High-resolution observational studies of ϵ in Sc and shallow Cu

Study	Reported values of $\epsilon [\mathrm{m^2 s^{-3}}]$	Comments
Siebert et al. (2006), BBC2	$10 \times 10^{-3} (2 \times 10^{-3})$	Cu, $z = 760 \pm 20$ m, values are based on 1-sec segments in (outside) clouds.
Siebert et al. (2006), INSPECTRO2	$5 \times 10^{-3} \ (8 \times 10^{-3})$	Cu, $z = 1540 \pm 40$ m, as above.
Ma et al. 2018, RICO	$3.9 \times 10^{-3} \ (0.4 \times 10^{-3})$	Cu, values are based on all flight legs in (outside) clouds.
Siebert et al. (2010), Kiel 07	0.29×10^{-3}	MSc, ~ 30 m below cloud top.
Katzwinkel et al. (2012), Kiel 07	~10 ⁻³	MSc, porpoises through cloud top (see their figure 3 for vertical profiles).
Fang et al. (2014)	1.2×10^{-3}	CSc (see their figures 4 and 5 for vertical profiles and di- urnal variation of ϵ).
Jen-La Plante et al. (2016), POST	$0.81 \times 10^{-3} \ (0.19 \times 10^{-3})$	MSc, values from CTMSL (TISL) averaged over 8 flights.

Ma et al. 2018 (in preparation) analyse measurements from ASTEX, DYCOMS-II, EPIC, RICO, and POST with focus on ϵ .

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

30.05.2018 4 / 29

RICO - marine shallow cumulus Snapshot from EULAG simulation (t = 24 h)

• Standard RICO setup $(100 \times 100 \times 40 \text{ m}^3, \text{ as in van Zanten et al., 2011}).$

- "TKE" subgrid-scale model and no precipitation.
- Modified temperature forcing (F_{θ}) .

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

(ロ)、(部)、(主)、(主)、 き、うへで 30.05.2018 5 / 29

RICO - marine shallow cumulus

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

Temperature forcing due to condensation/evaporation

$$\theta' = \theta - \theta_e$$

	Original	Modified
1.	$\theta'=\theta'+{\rm F}_{\theta'}{\rm \Delta t}$	$\theta' = \theta' + \mathbf{F}_{\theta'} \Delta \mathbf{t}$
2.	$\theta' = \texttt{mpdata}(\theta')$	$egin{aligned} & heta' = heta' + {f F}_{ heta'} \Delta t \ & heta' = {f mpdata}(heta') \end{aligned}$
3.	$\boldsymbol{\theta} = \texttt{mpdata}(\boldsymbol{\theta}) + \texttt{mpdata}(\mathtt{F}_{\boldsymbol{\theta}}) \ast \Delta \mathtt{t}$	
4.	$\Delta q_c = f(\theta,)$	$\begin{split} \Delta \mathbf{q}_{\mathrm{c}} &= \mathbf{f}(\boldsymbol{\theta}' + \boldsymbol{\theta}_{\mathrm{e}}, \ldots) \\ \mathbf{F}_{\boldsymbol{\theta}'} &= \Delta \mathbf{q}_{\mathrm{c}} \frac{\mathbf{L} \boldsymbol{\theta}_{\mathrm{e}}}{c_{\mathrm{p}} \mathbf{T}_{\mathrm{e}}} * \frac{1}{\Delta t} \end{split}$
5.	$F_{\theta} = \Delta q_{c} \frac{L\theta_{\theta}}{c_{p} T_{e}} * \frac{1}{\Delta t}$	$F_{\theta'} = \Delta q_c \frac{L\theta_{\theta}}{c_p T_{\theta}} * \frac{1}{\Delta t}$
6.	$ heta= heta+{f F}_{ heta}*\Delta{f t}$	
7.	$ heta'= heta'+{ t F}_ heta*\Delta{ t t}$	$\theta' = \theta' + {\bf F}_{\theta'} * \Delta {\bf t}$
8.	$F_{ heta'} = F_{ heta}$	
9.	$\begin{split} \theta' &= \theta' + F_{\theta'} \Delta t \\ \theta' &= mpdata(\theta') \\ \theta &= mpdata(\theta) + mpdata(F_{\theta}) * \Delta t \\ \Delta q_c &= f(\theta, \ldots) \\ F_{\theta} &= \Delta q_c \frac{L\theta_e}{c_p T_e} * \frac{1}{\Delta t} \\ \theta &= \theta + F_{\theta} * \Delta t \\ \theta' &= \theta' + F_{\theta} * \Delta t \\ F_{\theta'} &= F_{\theta} \\ \theta &= \theta' + \theta_e \end{split}$	

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

4 □ ト 4 □ ト 4 □ ト 4 □ ト 4 □ ト 2 つ Q (~ 30.05.2018 7 / 29

RICO - marine shallow cumulus

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

RICO - marine shallow cumulus

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

30.05.2018 9 / 29

Calculation of dissipation rate ϵ (cloudy segments)

$$E_w(k) = C_1 \epsilon^{2/3} k^{-5/3}$$

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

30.05.2018 10 / 29

Calculation of dissipation rate ϵ (cloudy segments)

$$E_w(k) = C_1 \epsilon^{2/3} k^{-5/3}$$

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

30.05.2018 11 / 29

Calculation of dissipation rate ϵ (cloudy segments)

$$E_w(k) = C_1 \epsilon^{2/3} k^{-5/3}$$

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

30.05.2018 12 / 29

Vertical profiles of TKE and ϵ (cloudy segments) Observations and LES $(100 \times 100 \times 40 \text{ m}^3)$

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

<□ ト < □ ト < □ ト < 三 ト < 三 ト 三 のへで 30.05.2018 13 / 29 Vertical profiles of TKE and ϵ (cloudy segments) Observations and LES (100 × 100 × 40 m³ and 50 × 50 × 20 m³)

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

30.05.2018 14 / 29

990

< ロト < 団ト < 三ト < 三ト

Dissipation rate vs. liquid water content

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

5900 30.05.2018 15 / 29

1

DYCOMS-II flight 1 - marine stratocumulus Snapshot from EULAG simulation (t = 0 min, cloud cover = 100%)

• Standard setup $(35 \times 35 \times 5 \text{ m}^3)$, as in Stevens et al., 2005).

- "TKE" subgrid-scale model and no precipitation.
- Modified temperature forcing.

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

30.05.2018 16 / 29

A D + A D + A D +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

DYCOMS-II flight 1 - marine stratocumulus Snapshot from EULAG simulation (t = 60 min, cloud cover = 96%)

- Standard setup $(35 \times 35 \times 5 \text{ m}^3)$, as in Stevens et al., 2005).
- "TKE" subgrid-scale model and no precipitation.
- Modified temperature forcing.

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

30.05.2018 17 / 29

DYCOMS-II flight 1 - marine stratocumulus Snapshot from EULAG simulation (t = 120 min, cloud cover = 92%)

- Standard setup $(35 \times 35 \times 5 \text{ m}^3)$, as in Stevens et al., 2005).
- "TKE" subgrid-scale model and no precipitation.
- Modified temperature forcing.

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

30.05.2018 18 / 29

A D + A D + A D +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

DYCOMS-II flight 1 - marine stratocumulus Snapshot from EULAG simulation (t = 240 min, cloud cover = 83%)

- Standard setup $(35 \times 35 \times 5 \text{ m}^3)$, as in Stevens et al., 2005).
- "TKE" subgrid-scale model and no precipitation.
- Modified temperature forcing.

J. G. Pedersen (IGF UW)

DYCOMS-II flight 1 - marine stratocumulus

Vertical profiles of TKE and ϵ Observations and LES $(35 \times 35 \times 5 \text{ m}^3)$

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

Ξ 30.05.2018 21 / 29

590

< ロ ト < 回 ト < 三 ト < 三 ト</p>

DYCOMS-II flight 1 - marine stratocumulus

Vertical profiles of TKE and ϵ Observations and LES $(35 \times 35 \times 5 \text{ m}^3 \text{ and } 17.5 \times 17.5 \times 5 \text{ m}^3)$

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

Ξ 30.05.2018 23 / 29

590

< ロ ト < 回 ト < 三 ト < 三 ト</p>

DYCOMS-II flight 1 - marine stratocumulus

Vertical profiles of TKE and ϵ Observations and LES (with and without subsidence)

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

30.05.2018 25 / 29

DYCOMS-II flight 1 - marine stratocumulus

Vertical profiles of TKE and ϵ Observations and LES (mpdata LES and mpdata/mpdatm ILES)

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

Ξ 30.05.2018 27 / 29

590

< ロ ト < 回 ト < 三 ト < 三 ト</p>

• Agreement with previously published Cu LES results (e.g. RICO and BOMEX) is obtained with modified F_{θ} . The modification has no clear impact on Sc-results.

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

- Agreement with previously published Cu LES results (e.g. RICO and BOMEX) is obtained with modified F_{θ} . The modification has no clear impact on Sc-results.
- Overestimation of in-cloud RICO dissipation rate can be reduced by decreasing the grid spacing (horizontal and vertical).

- Agreement with previously published Cu LES results (e.g. RICO and BOMEX) is obtained with modified F_{θ} . The modification has no clear impact on Sc-results.
- Overestimation of in-cloud RICO dissipation rate can be reduced by decreasing the grid spacing (horizontal and vertical).
- Reasonable agreement between observed and simulated LWC-dependency of ϵ (in RICO case).

- Agreement with previously published Cu LES results (e.g. RICO and BOMEX) is obtained with modified F_{θ} . The modification has no clear impact on Sc-results.
- Overestimation of in-cloud RICO dissipation rate can be reduced by decreasing the grid spacing (horizontal and vertical).
- Reasonable agreement between observed and simulated LWC-dependency of ϵ (in RICO case).
- Good agreement between observed and simulated vertical profiles of TKE in both cases (RICO and DYCOMS).

- Agreement with previously published Cu LES results (e.g. RICO and BOMEX) is obtained with modified F_{θ} . The modification has no clear impact on Sc-results.
- Overestimation of in-cloud RICO dissipation rate can be reduced by decreasing the grid spacing (horizontal and vertical).
- Reasonable agreement between observed and simulated LWC-dependency of ϵ (in RICO case).
- Good agreement between observed and simulated vertical profiles of TKE in both cases (RICO and DYCOMS).
- ${\circ}\,$ Simulations underestimate LWP and ϵ in DYCOMS case.

- Agreement with previously published Cu LES results (e.g. RICO and BOMEX) is obtained with modified F_{θ} . The modification has no clear impact on Sc-results.
- Overestimation of in-cloud RICO dissipation rate can be reduced by decreasing the grid spacing (horizontal and vertical).
- Reasonable agreement between observed and simulated LWC-dependency of ϵ (in RICO case).
- Good agreement between observed and simulated vertical profiles of TKE in both cases (RICO and DYCOMS).
- ${\circ}\,$ Simulations underestimate LWP and ϵ in DYCOMS case.
- Improvement regarding ϵ can be obtained by switching from LES to ILES and by using the infinite-gauge version of mpdata for velocity components.

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

30.05.2018 28 / 29

- Agreement with previously published Cu LES results (e.g. RICO and BOMEX) is obtained with modified F_{θ} . The modification has no clear impact on Sc-results.
- Overestimation of in-cloud RICO dissipation rate can be reduced by decreasing the grid spacing (horizontal and vertical).
- Reasonable agreement between observed and simulated LWC-dependency of ϵ (in RICO case).
- Good agreement between observed and simulated vertical profiles of TKE in both cases (RICO and DYCOMS).
- $\circ\,$ Simulations underestimate LWP and ϵ in DYCOMS case.
- Improvement regarding ϵ can be obtained by switching from LES to ILES and by using the infinite-gauge version of mpdata for velocity components.

Thank you for your attention

J. G. Pedersen (IGF UW)

- Fang, M., Albrecht, B. A., Ghate, V. P., and Kollias, P. (2014). Turbulence in continental stratocumulus, part ii: Eddy dissipation rates and large-eddy coherent structures. *Boundary-layer meteorology*, 150(3):361–380.
- Grabowski, W. W. and Abade, G. C. (2017). Broadening of cloud droplet spectra through eddy hopping: Turbulent adiabatic parcel simulations. Journal of the Atmospheric Sciences, 74(5):1485-1493.
- Jen-La Plante, I., Ma, Y., Nurowska, K., Gerber, H., Khelif, D., Karpinska, K., Kopec, M. K., Kumala, W., and Malinowski, S. P. (2016). Physics of Stratocumulus Top (POST): turbulence characteristics. Atmos. Chem. Phys., 16:9711-9725.
- Katzwinkel, J., Siebert, H., and Shaw, R. A. (2012). Observation of a self-limiting, shear-induced turbulent inversion layer above marine stratocumulus. *Bound.-Layer Meteor.*, 145:131-143.
- Lu, C., Liu, Y., Zhang, G. J., Wu, X., Endo, S., Cao, L., Li, Y., and Guo, X. (2016). Improving parameterization of entrainment rate for shallow convection with aircraft measurements and large-eddy simulation. *Journal of the Atmospheric Sciences*, 73(2):761-773.
- Siebert, H., Lehmann, K., and Wendisch, M. (2006). Observations of small-scale turbulence and energy dissipation rates in the cloudy boundary layer. Journal of the atmospheric sciences, 63(5):1451-1466.
- Siebert, H., Shaw, R. A., and Warhaft, Z. (2010). Statistics of small-scale velocity fluctuations and internal intermittency in marine stratocumulus clouds. *Journal of the Atmospheric Sciences*, 67(1):262-273.
- Stevens, B., Moeng, C.-H., Ackerman, A. S., Bretherton, C. S., Chlond, A., de Roode, S., Edwards, J., Golaz, J.-C., Jiang, H., Khairoutdinov, M., Kirkpatrick, M. P., Lewellen, D. C., Lock, A., Müller, F., Stevens, D. E., Whelan, E., and Zhu, P. (2005). Evaluation of Large-Eddy Simulations via Observations of Nocturnal Marine Stratocumulus. Mon. Wea. Rev., 133:1443-1462.
- van Zanten, M. C. et al. (2011). Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3:M06001.
- Zeman, O. and Tennekes, H. (1977). Parameterization of the turbulent energy budget at the top of the daytime atmospheric boundary layer. Journal of the Atmospheric Sciences, 34(1):111-123.

J. G. Pedersen (IGF UW)

Turbulence in Cu and Sc clouds

30.05.2018 29 / 29

000

+ = + + = + + = + + = +