
Turbulence in Marine Cumulus and Stratocumulus Clouds:
Observations and Large-Eddy Simulation

Jesper G. Pedersen, Yong-Feng Ma, Szymon P. Malinowski

Institute of Geophysics, Faculty of Physics, University of Warsaw

6th International EULAG Users Workshop
30.05.2018

J. G. Pedersen (IGF UW) Turbulence in Cu and Sc clouds 1/2930.05.2018 1 / 29



Outline

Motivation

RICO: Cumulus (Cu)

DYCOMS-II flight 1: Stratocumulus (Sc)
I Temperature forcing due to evaporation/condensation
I Advection: mpdata3/mpdatm3
I ε as a funtion of height and LWC (observations and grid-dependency)

Conclusions
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Motivation
- Why are we interested in the dissipation rate of TKE in clouds?

An important scaling parameter:
I l ∼ u3/ε

I η =
(
ν3/ε

)1/4
I λ =

√
νu2

ε
I etc.

Parametrization of cloud processes, for example:
I Entrainment at the top of Sc:

ε ∝ σ3
w
li

(Zeman and Tennekes, 1977)

I Cumulus entrainment rate:
λc ' f(w,B, ε) (Lu et al., 2016)

I Microphysics, e.g., “eddy hopping” and droplet growth:

E =
(
Lε
CE

)2/3
(Grabowski and Abade, 2017)

I What is the value of ε?
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High-resolution observational studies of ε in Sc and shallow Cu

Study Reported values of ε [ m2s−3] Comments

Siebert et al. (2006), BBC2 10 × 10−3 (2 × 10−3) Cu, z = 760 ± 20 m, values
are based on 1-sec segments
in (outside) clouds.

Siebert et al. (2006), INSPECTRO2 5 × 10−3 (8 × 10−3) Cu, z = 1540 ± 40 m, as
above.

Ma et al. 2018, RICO 3.9 × 10−3 (0.4 × 10−3) Cu, values are based on
all flight legs in (outside)
clouds.

Siebert et al. (2010), Kiel 07 0.29 × 10−3 MSc, ∼30 m below cloud
top.

Katzwinkel et al. (2012), Kiel 07 ∼10−3 MSc, porpoises through
cloud top (see their figure 3
for vertical profiles).

Fang et al. (2014) 1.2 × 10−3 CSc (see their figures 4 and
5 for vertical profiles and di-
urnal variation of ε).

Jen-La Plante et al. (2016), POST 0.81 × 10−3 (0.19 × 10−3) MSc, values from CTMSL
(TISL) averaged over 8
flights.

Ma et al. 2018 (in preparation) analyse measurements from ASTEX,
DYCOMS-II, EPIC, RICO, and POST with focus on ε.
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RICO - marine shallow cumulus
Snapshot from EULAG simulation (t = 24 h)
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Standard RICO setup (100 × 100 × 40 m3, as in van Zanten et al., 2011).

“TKE” subgrid-scale model and no precipitation.

Modified temperature forcing (Fθ).
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RICO - marine shallow cumulus
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Temperature forcing due to condensation/evaporation

θ′ = θ − θe

Original Modified

1. θ′ = θ′ + Fθ′∆t θ′ = θ′ + Fθ′∆t

2. θ′ = mpdata(θ′) θ′ = mpdata(θ′)

3. θ = mpdata(θ) + mpdata(Fθ) ∗ ∆t

4. ∆qc = f(θ, ...) ∆qc = f(θ′ + θe, ...)

5. Fθ = ∆qc
Lθe
cpTe
∗ 1

∆t
Fθ′ = ∆qc

Lθe
cpTe
∗ 1

∆t

6. θ = θ + Fθ ∗ ∆t

7. θ′ = θ′ + Fθ ∗ ∆t θ′ = θ′ + Fθ′ ∗ ∆t

8. Fθ′ = Fθ

9. θ = θ′ + θe
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RICO - marine shallow cumulus
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RICO - marine shallow cumulus
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Calculation of dissipation rate ε (cloudy segments)

Ew(k) = C1ε
2/3k−5/3
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Vertical profiles of TKE and ε (cloudy segments)
Observations and LES (100× 100× 40 m3)
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Vertical profiles of TKE and ε (cloudy segments)
Observations and LES (100× 100× 40 m3 and 50× 50× 20 m3)
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Dissipation rate vs. liquid water content
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DYCOMS-II flight 1 - marine stratocumulus
Snapshot from EULAG simulation (t = 0 min, cloud cover = 100%)
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Standard setup (35 × 35 × 5 m3, as in Stevens et al., 2005).

“TKE” subgrid-scale model and no precipitation.

Modified temperature forcing.
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DYCOMS-II flight 1 - marine stratocumulus
Snapshot from EULAG simulation (t = 60 min, cloud cover = 96%)
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Standard setup (35 × 35 × 5 m3, as in Stevens et al., 2005).

“TKE” subgrid-scale model and no precipitation.

Modified temperature forcing.
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DYCOMS-II flight 1 - marine stratocumulus
Snapshot from EULAG simulation (t = 120 min, cloud cover = 92%)
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Standard setup (35 × 35 × 5 m3, as in Stevens et al., 2005).

“TKE” subgrid-scale model and no precipitation.

Modified temperature forcing.
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DYCOMS-II flight 1 - marine stratocumulus
Snapshot from EULAG simulation (t = 240 min, cloud cover = 83%)
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Standard setup (35 × 35 × 5 m3, as in Stevens et al., 2005).

“TKE” subgrid-scale model and no precipitation.

Modified temperature forcing.
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DYCOMS-II flight 1 - marine stratocumulus
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Vertical profiles of TKE and ε
Observations and LES (35× 35× 5 m3)
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DYCOMS-II flight 1 - marine stratocumulus
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Vertical profiles of TKE and ε
Observations and LES (35× 35× 5 m3 and 17.5× 17.5× 5 m3)
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DYCOMS-II flight 1 - marine stratocumulus
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Vertical profiles of TKE and ε
Observations and LES (with and without subsidence)
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DYCOMS-II flight 1 - marine stratocumulus
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Vertical profiles of TKE and ε
Observations and LES (mpdata LES and mpdata/mpdatm ILES)
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Conclusions

Agreement with previously published Cu LES results (e.g. RICO and
BOMEX) is obtained with modified Fθ.
The modification has no clear impact on Sc-results.

Overestimation of in-cloud RICO dissipation rate can be reduced by
decreasing the grid spacing (horizontal and vertical).

Reasonable agreement between observed and simulated LWC-dependency
of ε (in RICO case).

Good agreement between observed and simulated vertical profiles of TKE
in both cases (RICO and DYCOMS).

Simulations underestimate LWP and ε in DYCOMS case.

Improvement regarding ε can be obtained by switching from LES to ILES
and by using the infinite-gauge version of mpdata for velocity components.

Thank you for your attention
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