
Python tools supporting development and data analysis

PROPOZE project: Numerical Weather Prediction for sustainable Europe

Marcin Polkowski

Institute of Meteorology and Water Management

29 May 2018

Introduction

1. Python in simple, reliable and easy to port cross platform

2. Python is available on most supercomputers

3. Python allows easy automation of testing process

4. Python allows easy data visualization

Introduction

User FiletOfFish1066:
From around 6 years ago up until now, I have done nothing at
work. I am not joking. For 40 hours each week I go to work, play
League of Legends in my office, browse reddit, and do whatever I
feel like. In the past 6 years I have maybe done 50 hours of real
work. So basically nothing. (...) I explained I had automated my
own job (...). Anyway, I was fired.

Python scripts in PROPOZE project

1. Testing and comparing result from different versions of the
dwarf

2. Testing performance on supercomputer

3. Comparing weather forecasts from different versions of model

Testing and comparing result from different versions of the
dwarf

1. During test single process run signal variable is dumped to
binary file every n time steps

2. Same data dumping can be achieved during MPI multi
process runs

3. Ideally both single and multiprocess output should be exactly
same

4. Python script compiles code for each run (different versions,
different compiler options, different CPU config [for static
memory], mpi / no mpi), runs the executable, compare results.

Testing and comparing result from different versions of the
dwarf

Figure: Example of multi process test result

Testing performance on supercomputer

1. We want to check how computation scales up with number of
CPUs used

2. We want to check how performance differs depending on CPU
distribution along 3 axis of the model

3. We want this testing process fully automatic

4. We use Python to work for us!

Testing performance on supercomputer: scalability

1. Tested executables (multiple are supported) need to support
dynamic memory allocation and feature setting number of
CPUs in x, y and z-direction as command line parameters

2. Tested executables need to support execution timer (MPI or
CPU time)

3. Python testing framework requires just few parameters to run

Testing performance on supercomputer: scalability

mode = ”group ” # or ” s i n g l e ”
T = Tes t e r ()
T. SetTimer (” d i f f f c k f l x d v ”)

T. AddDomain (512 , 256 , 128 , c o l o r=’#800000 ’)
T. AddDomain (1024 , 512 , 128 , c o l o r=’#000080 ’)
T. AddDomain (2048 , 1024 , 128 , c o l o r=’#008000 ’)

T. Add I t e r a t i o n s (0 ,1500 ,100)

T. SetTemplate (’GRAD. t p l ’)
T . S e tOu tpu tSu f f i x (” l o gou t ”)
T. AddExecutab le (’ . / t e s t . out ’ , ’ t e s t ’ , symbol=’ o ’)

T. SetCpuConf ig ([2 , 4 , 8 , 1 6 , 3 2 , 6 4 , 1 28] , [2 , 4 , 8 , 1 6 , 3 2 , 6 4] , [1 , 2 , 4 , 8 , 1 6 , 3 2])
T. Gene ra teJobs ()

Testing performance on supercomputer: scalability

Figure: Example of scalability test result

Testing performance on supercomputer: scalability

Figure: Example of scalability test result

Testing performance on supercomputer: scalability

Figure: Example of CPU config test result

Testing performance on supercomputer: scalability

mode = ”group ” # or ” s i n g l e ”
T = Tes t e r ()
T. SetTimer (” d i f f f c k f l x d v ”)

T. AddDomain (525 , 437 , 128 , c o l o r=’#058062 ’)

T. Add I t e r a t i o n s (0 ,1500 ,100)
T. SetTemplate (’GRAD. t p l ’)
T . S e tOu tpu tSu f f i x (” l o gou t ”)
T. AddExecutab le (’ . / t e s t . out ’ , ’ t e s t ’ , symbol=’ o ’)

T. GenerateJobsTotalCPU (240 ,50 ,50 ,1)
T. GenerateJobsTotalCPU (480 ,50 ,50 ,1)

Testing performance on supercomputer: scalability

1. This Python framework is under constant development

2. It is available on github:
https://github.com/gozwei/HPC-performance-tester

3. Documentation is still on to do list

Comparing weather forecasts from different versions of
model

1. One Python scripts reads SYNOP weather reports and saves
data into easy to use SQL database (this is done for efficiency)

2. Second script allows comparing real measurements with
forecasts from different model versions for selected station

3. Third script allows computing and visualizing mean error
between real world data and model forecast over selected set
of stations

Testing performance on supercomputer: scalability

Figure: Example of forecast verification

Summary

Python makes our lives easier :)

