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Motivation

General motivation for high-order schemes

Using a high-order scheme can be more cost-effective than increasing resolution with a lower
order scheme.

The functional form of a scheme leading-order truncation error determines its behavioural
aspects such as respecting solution symmetries and minimising implicit diffusion or
dispersion.

High-order schemes with compact stencils make more efficient use of modern computers due
to usually higher arithmetic intensity than lower order methods.

Motivation for third-order MPDATA for variable flows

Third-order MPDATA for constant flows was derived in
L. Margolin, P. K. Smolarkiewicz, SISC, 1998.

This variant exhibits more uniform distribution of the truncation error as function of the
Courant number leading to better preservation of the solution symmetries.

It is especially beneficial for tracer transport.



Second-order accurate MPDATA

Background

MPDATA is a sign-preserving second-order accurate scheme for numerical integration of the
generalised transport equation

∂GΨ

∂t
+∇ · (V Ψ) = 0

based on iterative application of the first-order-accurate upwind algorithm.

The basic version with two iterations uses physical velocity V in the first iteration and
leading-error-compensating pseudo-velocity V in the second.

Pseudo-velocity is derived via truncation error analysis of the upwind scheme.
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Third-order accurate MPDATA for time and space dependant flows

New idea

Find a new pseudo-velocity V that compensates the leading-order MPDATA error for variable
flows.

The derivation of V uses MPDATA as a starting point in contrast to the derivation of the
constant coefficients third-order scheme.

Analytical calculation were verified and extended by using symbolic computer algebra.

Third-order error-compensating velocity
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Benefits of the fully third-order MPDATA
for global tracer transport



Moving vortices on the sphere – Nair & Jablonowski MWR 2008

Initial Analytic

Difference Numerical
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Interlude – labels

Sign-preserving MPDATA variants

Mp2 – fully second-order-accurate MPDATA

Mp3 – fully third-order-accurate MPDATA

Mp3cc – third-order constant-coefficient MPDATA

Nonoscillatory infinite-gauge MPDATA variants

Mg2No – nonoscillatory infinite-gauge variant of Mp2

Mg3No – nonoscillatory infinite-gauge variant of Mp3

Mg3ccNo – nonoscillatory infinite-gauge variant of Mp3cc



Moving vortices on the sphere – convergence results
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Moving vortices – runtimes

Selected runtimes relative to the upwind scheme

Upwind Mp2 Mg2No Mp3cc Mp3 Mg3No
1.0 3.6 5.9 9.5 10.3 12.6

Remarks

Negligible difference between the fully third-order scheme and the
constant-coefficient third-order variant.

Going from second to third-order is a factor of ∼ 3 for the sign-preserving variant
but only a factor of ∼ 2 for the nonoscillatory infinite-gauge variant.



Reversing deformational flow – Lauritzen et al. GMD 2012
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Reversing deformational flow – Lauritzen et al. GMD 2012
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Reversing deformational flow – convergence results
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Reversing deformational flow – numerical mixing results
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Benefits of the fully third-order MPDATA
for fluid dynamics applications



Double shear layer rollup – Brown & Minion 1995 JCP

Setup details

Incompressible 2D Navier-Stokes in doubly periodic
unit square.

Only advection is integrated with third-order
schemes.

Explicit viscosity integrated to the first-order in time.

Initial condition: shear profile u(y) as seen on the
right.

Single harmonic perturbation of v to initiate the flow.

Reynolds number Re = 10000.
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Double shear layer rollup – vorticity contours
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Double shear layer rollup – errors

`2 error norms of u after t = 1.5 and convergence rates

Grid Mg2No Order Mg3ccNo Order Mg3No Order
129× 129 3.35× 10−1 — 3.65× 10−1 — 5.96× 10−2 —
257× 257 1.96× 10−1 0.77 1.09× 10−1 1.74 4.83× 10−2 0.30
513× 513 7.21× 10−2 1.44 2.90× 10−2 1.91 1.57× 10−2 1.62
1025× 1025 2.05× 10−2 1.82 7.06× 10−3 2.04 4.29× 10−3 1.87

Remarks

Errors calculated using the Mg3No result on 2049 × 2049 grid in lie of the true
solution.

Mg2No > Mg3ccNo > Mg3No error ordering even for the converged solutions.

Overall convergence rates are around 2 (not formally assured).



Dry convective boundary layer – Margolin & Smolarkiewicz 1999

Setup details

Incompressible Boussinesq equations
in 3D.

No explicit subgrid model, ILES
benchmark.

Driven by a prescribed heat flux.

Domain 3.2 km × 3.2 km × 1.5 km.

Grid spacing 50 m × 50 m × 30 m
(65 × 65 × 51 points).

Time step 8 s, simulation time ∼ 4 h ∼
13 eddy turnover times.
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Convective boundary layer – profiles
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Convective boundary layer – vertical velocity variance
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Convective boundary layer – spectra
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For more information see the paper
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This paper extends the multidimensional positive definite advection transport algorithm 
(MPDATA) to third-order accuracy for temporally and spatially varying flows. This is 
accomplished by identifying the leading truncation error of the standard second-order 
MPDATA, performing the Cauchy–Kowalevski procedure to express it in a spatial form 
and compensating its discrete representation—much in the same way as the standard 
MPDATA corrects the first-order accurate upwind scheme. The procedure of deriving the 
spatial form of the truncation error was automated using a computer algebra system. This 
enables various options in MPDATA to be included straightforwardly in the third-order 
scheme, thereby minimising the implementation effort in existing code bases. Following 
the spirit of MPDATA, the error is compensated using the upwind scheme resulting in 
a sign-preserving algorithm, and the entire scheme can be formulated using only two 

          



Code availability

Fully third-order MPDATA is available in libmpdata++
free & open source C++ library of MPDATA solvers developed in our group

libmpdata++ repository
https://github.com/igfuw/libmpdataxx

Tracer transport examples from the paper
https://github.com/igfuw/libmpdataxx/tests/mp3_paper_JCP_2018

SageMath scripts used in the derivation
https://github.com/igfuw/mpdata_mea

https://github.com/igfuw/libmpdataxx
https://github.com/igfuw/libmpdataxx/tests/mp3_paper_JCP_2018
https://github.com/igfuw/mpdata_mea


Conclusions and outlook

Conclusions

Third-order MPDATA is beneficial for tracer transport with the degree of
improvement dependant on the flow and tracer field structure and measured
statistics.

Using third-order MPDATA results in improved resolution even when embedded in
overall lower order accurate flow solver.

Fully third-order MPDATA shows similar or better results than the
constant-coefficient third-order variant at negligible computational expense.

Fully third-order MPDATA can be used for ILES and the implicit subgrid model
shows different scale-selectivity.

Outlook

Closer investigation of the implicit turbulence model.

Extension to unstructured meshes.


