





One-way nesting One-way interaction (boundaries only) Any integer ratio Run as separate MM5 job

Two-way nesting Two-way interaction (interior feedback) All domains run in one MM5 job 3:1 ratio in grid length and time step Multiple levels (up to four) Multiple domains on each level (up to 9 total) Overlapping nests allowed Moving innermost nest allowed

Lateral Boundary Conditions

Outermost domain

- Multiple times of analysis needed
- Boundary values time-interpolated from analyses
- Boundary file contains initial value and tendency for each period
- Outer row/column is specified
- Next 4 are nudged/relaxed towards analysis

NCAR/MMM

Lateral Boundary Conditions

Nested domain

- All boundary values and tendencies come from parent domain
- Updated each parent-domain timestep
- Outer two rows and columns specified
- No relaxation zone required

NCAR/MMM

NCAR/MMM

Nonhydrostatic versus Hydrostatic Dynamics

- NH has additional equations for
 - prognostic 3D vertical velocity
 - perturbation pressure
- NH has no equations for
 - prognostic surface pressure
 - diagnostic pressure integration
 - diagnostic omega integration
- H dynamics holds for large aspect ratio (horiz scale : vert scale)

NCAR/MMM

Nonhydrostatic versus Hydrostatic Dynamics (cont'd)

- NH dynamics become important when aspect ratio approaches unity
- NH effects include
 - overturning eddy motion (such as in a density current)
 - parcel theory for thunderstorm updrafts
 - tilting of mountain-wave pattern downstream

Reference State in Nonhydrostatic Model

- Reference state defines base-state pressure and temperature
- Function of height only
- T0 is linear with log p0
- Three parameters define it (Ts0, A, p00)
- Isothermal layer can be used for stratosphere (A=0, Ts0=Tiso)

$$T_0 = T_{s0} + A\log_e(p_0/(p_{00}))$$

NCAR/MMM

Reference State in Nonhydrostatic Model

■ Base-state pressure, p0, defines sigma levels

$$p_0 = p_{s0}\sigma + p_{top}$$

■ Ps0(x,y) is a function of surface elevation only

$$p_{s0} = p_0(surface) - p_{top}$$

NCAR/MMM

Reference State in Nonhydrostatic Model

Height and p0 are related by the reference state parameters

$$Z = -\frac{RA}{2g} \left(\ln \frac{p_0}{p_{00}} \right)^2 - \frac{RT_{s0}}{g} \left(\ln \frac{p_0}{p_{00}} \right)$$

■ This also relates ps0 to terrain elevation

NCAR/MMM

Coordinate system

The vertical coordinate, σ , is defined from

$$\sigma = (p_0 - p_I)/(p_0(surface) - p_I)$$

where p_θ is a reference pressure, $p_0(surface)$ is reference surface pressure, and p_t is reference top pressure.

The reference state temperature profile is

$$T_0 = T_{x0} + A \log_e(p_0/(p_{00}))$$

where T_{s0} , p_{00} and A are constants, and

$$p_0 = p^a \sigma + p_t$$

 $p^* = p_0(surface) - p_t$

NCAR/MMM

Four-Dimensional Data Assimilation

- Method of nudging model towards observations or analysis
- May be used for
 - Dynamical initialization (pre-forecast period)
 - Creating 4D meteorological datasets (e.g. for air quality model)
 - Boundary conditions (outer domain nudged towards analysis)

NCAR/MMM

Four-Dimensional Data Assimilation (cont'd)

- Methods
 - Grid or analysis nudging (suitable for coarse resolution)
 - Observation or station nudging (suitable for fine-scale or asynoptic obs)
- Nudging can be applied to winds, temp, and water vapor

Note: nudging terms are fake sources, so avoid FDDA use in dynamics or budget studies

Land-use Categories

- Used to specify physical properties of land and water in the model (see Table 4.2, page 4-12)
 - Old 13 categories (mostly 1 degree global, locally 5' in East USA)
 - USGS 24 categories (30" global)
 - SiB 16 categories (30" North America only, used by NCEP Eta model)

NCAR/MMM

Table 4.2e: 24-category USGS vegetation and physical properties for summer									
ID	Description	Albedo (%)	Moisture Avail. (0-1)	Emissivity (% at 9 um)	Roughness length (cm)	Thermal inertial			
- 1	urban	18	10	88	50	.03			
2	drylnd crop	17	30	92	15	.04			
3	Irrg, crop	18	50	92	15	.04			
4	mixdry/irrg	18	25	92	15	.04			
5	crop/grass	18	25	92	14	.04			
6	crop/wood	16	35	93	20	.04			
7	grassland	19	15	92	.12	.03			
8	shrubland	22	10	88	10	.03			
9	mix shrb/gr	20	15	90	11	.03			
10	savanna	20	15	92	15	.03			
11	dec broadlf	16	30	93	50	.04			
12	dec needle	14	30	94	50	.04			
13	everg br-lf	12	50	95	50	.05			
NCAR/MMM									

Table 4.2c: 24-category USGS	vegetation and physical properties for							
summer (cont)								

ID	Description	Albedo (%)	Moisture Avail. (0-1)	Emissivity (% at 9 um)	Roughness length (cm)	Thermal inertial		
14	everg nd-lf	12	30	95	50	.04		
15	mix forest	13	30	94	50	.04		
16	water	8	100	98	.01	.06		
17	herb wetlnd	14	60	95	20	.06		
18	wd wetland	14	35	95	40	.05		
19	sparse veg	25	2	85	10	.02		
20	herb tundra	15	50	92	10	.05		
21	wd tundra	15	50	93	30	.05		
22	mix tundra	15	50	92	15	.05		
23	bare grnd tundra	25	2	8,5	.10	.02		
24	snow or ice	55	95	95	5	.05		
25	no data							
	NCAR/MMM							

Land-Surface Properties

- Albedo (%): solar radiation reflection
- Moisture Availability (0-1): determines water available for evaporation
- Emissivity (%): long-wave emission factor from ground
- Roughness length (cm): determines surface momentum flux (friction)
- Thermal inertia: determines response of ground temperature to net forcing

NCAR/MMM

Map Projections and Map-Scale Factors

- Projections (all conformal : dx = dy)
 - Polar Stereographic (suitable for high lats)
 - Lambert Conformal (suitable for mid lats)
 - Mercator (suitable for low lats)
- Map-scale factor
 - distance on grid (const) ÷ actual distance on earth
 - Only varies with latitude
 - Usually stays close to 1.0

NCAR/MMM

Data Required to Run Modeling System

- Topography and land-use
- Gridded analyses (global or regional)
 - Need several times for boundaries
 - A minimum number of levels (10 mandatory levels
 - 3D winds, heights, temperature, RH
 - 2D SLP, SST, and snow cover (optional) for surface

Data Required to Run Modeling System (cont'd)

- Observation data
 - Radiosonde and surface data
 - Needed if doing a reanalysis (e.g. with coarse gridded data)
 - At least at initial time (optionally at later times for boundaries)
- Land-surface model requires more data (see Appendix C)