3.1 UNIX make Utility

3. MAKE UTILITY m Two-fold purpose: 1) overview of UNIX

make command, and 2) use within MIMS

. system
Dave Gill Yy
m As programming complexity increases from

a single source file to multiple includes,
—dependenecies-and-conditional-compilatien;
make becomes a necessity

gill@ucar.edu

NCAR M3

3.1 UNIX make Utility 3.2 make Functionality

© w Only re-compiles what is required, m Dependency is the underlying relationship
recognizes tree-like structure of multiple between two files

source files for single executable m myprog.f = myprog.o = myprog.exe

myprog.f'is a dependency file for the target
myprog.o, and myprog.o is a dependency for
the target myprog.exe

NCAR M3 NCAR M3

3.2 make Functionality 3.2 make Functionality

See section 3.8, hierarchical tree dependency structure ) . )
m Date and time of last modification used to

determine whether dependency is out of
average — date-wrt target

T m When improper time relationship exists,

mainprog.o | readito meanito printito make uses rules to restore the target

| | | | m Hierarchy of include files, source, object
mainprogf  readitf meanitf prinif and executable follows this sequential fime

—L— — — dependency, leading to natural association

unitinclude  data.include sum.include datainclude sum.include datainclude of dependency timestamps

NCAR M3 NCAR M3




3.3 The Makefile

m Makefile, makefile (make —f make.file)
m File read by make utility which contains
and rules for
updating targets ( )

m Dependency relations — determine when a

—file mustbe regenerated ——

m Generation commands — how do you build
out of date files

NCAR M?

3.4 Sample make Syntax

m Rule — begins in the first position of a line,
with the following format

m If the files to the right are NEWER than the

_filesto the left of the colon, a new targetis

rebuilt

NCAR M3

3.5 Macros

m Similar to shell variables, syntactically and
semantically

m Usage of $(MyFlags) expands to:

—a-b-—c—d

m The () may be omitted if the macro name is only a
single character

m () are not required as in csh for an array

NCAR M3

- 34 Sample make Syntax

NCAR M3

3.4 Sample make Syntax

m Dependency rule be followed by one
or more commands

m Commands must begin with a <tab>
character to be recognized, otherwise they
are seen as rules or macros, and then you

. aretoast

m Commands are passed to the shell to
execute (note this is -1, not )

NCAR M3

3.6 Internal Macros

m Built in cool, short-cuts, sure to impress
members of the digiterati

name of the current target
dependency file, as if from implicit rule
list of all dependencies newer than target
basename of current target

NCAR M3




3.7 Default Suffixes and Rules

m Typical default rules for FORTRAN, shut off with
“make —1” (“make —p” for the brave and curious)

<tab>

3.7 Default Suffixes and Rules

m Typical default suffixes, typically at the
beginning of a Makefile (or included near
the top)

3.7 Detault Suffixes and Rules

m All of the MMS5 system Fortran codes are set up to
be processed by cpp.

m Not all Fortran compilers handle this in the same
way.

®_Gain uniformity through explicit rules:

3.8 Program Dependency Chart

m Head to that other slide, Dave

<tab>
<tab>
<tab>

3.9 Program Components

PROGRAM mainprog
CALL readit

3.9 Program Components

SUBROUTINE readit
Include ‘unit.include’

CALL meanit
CALL printit
STOP 99999

END

INCLUDE ‘“data.include’

OPEN(iunit, file="input.data’, ACCESS = &
‘sequential’, FORM="FORMATTED”)

READ(iunut,FMT=*(F10.4)’ ) data

RETURN

END




3.9 Program Components

SUBROUTINE meanit
INCLUDE ‘data.include’
INCLUDE ‘sum.include’
DO L=1,length

sum = sum + data(L)

—ENDDO —

sum = sum / FLOAT(length)
END

3.9 Program Components

® unit.include
® sum.include

m data.include

3.10' makefile Example 2

average: mainprog.o readit.o meanit.o printit.o
77 —o mainprog.o readit.o meanit.o printit.o

mainprog.o : mainprog.f

3.9 Program Components

SUBROUTINE printit
INCLUDE ‘data.include’
INCLUDE °‘sum.include’
PRINT *,data(1:length)
PRINT *,‘average = *,sum

END

NCAR M3

3.10 makefile Example 1

average: mainprog.o readit.o meanit.o printit.o

77 —o average mainprog.o readit.o meanit.o printit.o

mainprog.o : mainprog.f
77 —c mainprog.f

readit.o : readit.f unit.include data.include
f77 —c readit.f

177 —c

readit.o : readit.f unit.include data.include
77 —c $<

meanit.o : meanit.f data.include sum.include
77 —

printit.o : printit.f data.include sum.include

77 — $*.f

__ meanit.o : meanit.f data.include sum.include

77 — meanit.f
printit.o : printit.f data.include sum.include
f77 —c printit.f

3.10 makefile Example 3

average:
77 —0 $@

readit.o : readit.f unit.include data.include
77 —¢ $<

meanit.o : meanit.f data.include sum.include
77 —c $*.f

printit.o : printit.f data.include sum.include
f77 — $*.£

< NCAR M3




3.10 makefile Example 4

OBIJS = mainprog.o readit.o meanit.o printit.o

average: $(OBJS)

3.11 MM5 make Commands

m Directly put macro definitions into the make
command

77 —0 $@ $(OBIS)

m Precedence over values initialized as
macros inside the makefile

readit.o : unit.include data.include
meanit.o : data.include sum.include
printit.o : data.include sum.include

NCAR M?*

3.12 Top-level Makefile

m Example from TERRAIN, so just 2 levels:

1 |
LUP dida1owcor
same as —i
macros

first target is default, any name

3.12 Top-level Makefile

blah
“all” is the low-level target

includes
macro:

if test for vendor

3.12 Top-level Makefile

m 777 end of each block

. m Second target is icirain deck

m Must specifically name any target (other
than first) to activate it

[ typical target to zap detritus

3.13 Low-level Makefile

unnecessary with $(MAKE)
.F .f i .0 pseudo target, expl suffixes

macro definition
list of source files
first target




3.13 Low-level Makefile

easy etror trapping
target specified in top-level Makefile

three
dependency files

u defined in top-level Makefile
] then the list of dependencies
is listed more than once

NCAR M?




	3. MAKE UTILITY
	3.1 UNIX make Utility
	3.1 UNIX make Utility
	3.2 make Functionality
	3.2 make Functionality
	3.2 make Functionality
	3.3 The Makefile
	3.4 Sample make Syntax
	3.4 Sample make Syntax
	3.4 Sample make Syntax
	3.5 Macros
	3.6 Internal Macros
	3.7 Default Suffixes and Rules
	3.7 Default Suffixes and Rules
	3.7 Default Suffixes and Rules
	3.8 Program Dependency Chart
	3.9 Program Components
	3.9 Program Components
	3.9 Program Components
	3.9 Program Components
	3.9 Program Components
	3.10 makefile Example 1
	3.10 makefile Example 2
	3.10 makefile Example 3
	3.10 makefile Example 4
	3.11 MM5 make Commands
	3.12 Top-level Makefile
	3.12 Top-level Makefile
	3.12 Top-level Makefile
	3.13 Low-level Makefile
	3.13 Low-level Makefile

