3.1 UNIX make Utility

3. MAKE UTILITY m Two-fold purpose: 1) overview of UNIX

make command, and 2) use within MIMS

. system
Dave Gill Yy
m As programming complexity increases from

a single source file to multiple includes,
—dependenecies-and-conditional-compilatien;
make becomes a necessity

gill@ucar.edu
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3.1 UNIX make Utility 3.2 make Functionality

© w Only re-compiles what is required, m Dependency is the underlying relationship
recognizes tree-like structure of multiple between two files

source files for single executable m myprog.f = myprog.o = myprog.exe

myprog.f'is a dependency file for the target
myprog.o, and myprog.o is a dependency for
the target myprog.exe
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3.2 make Functionality 3.2 make Functionality

See section 3.8, hierarchical tree dependency structure ) . )
m Date and time of last modification used to

determine whether dependency is out of
average — date-wrt target

T m When improper time relationship exists,

mainprog.o | readito meanito printito make uses rules to restore the target

| | | | m Hierarchy of include files, source, object
mainprogf  readitf meanitf prinif and executable follows this sequential fime

—L— — — dependency, leading to natural association

unitinclude  data.include sum.include datainclude sum.include datainclude of dependency timestamps
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3.3 The Makefile

m Makefile, makefile (make —f make.file)
m File read by make utility which contains
and rules for
updating targets ( )

m Dependency relations — determine when a

—file mustbe regenerated ——

m Generation commands — how do you build
out of date files

NCAR M?

3.4 Sample make Syntax

m Rule — begins in the first position of a line,
with the following format

m If the files to the right are NEWER than the

_filesto the left of the colon, a new targetis

rebuilt
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3.5 Macros

m Similar to shell variables, syntactically and
semantically

m Usage of $(MyFlags) expands to:

—a-b-—c—d

m The () may be omitted if the macro name is only a
single character

m () are not required as in csh for an array
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- 34 Sample make Syntax
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3.4 Sample make Syntax

m Dependency rule be followed by one
or more commands

m Commands must begin with a <tab>
character to be recognized, otherwise they
are seen as rules or macros, and then you

. aretoast

m Commands are passed to the shell to
execute (note this is -1, not )
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3.6 Internal Macros

m Built in cool, short-cuts, sure to impress
members of the digiterati

name of the current target
dependency file, as if from implicit rule
list of all dependencies newer than target
basename of current target
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3.7 Default Suffixes and Rules

m Typical default rules for FORTRAN, shut off with
“make —1” (“make —p” for the brave and curious)

<tab>

3.7 Default Suffixes and Rules

m Typical default suffixes, typically at the
beginning of a Makefile (or included near
the top)

3.7 Detault Suffixes and Rules

m All of the MMS5 system Fortran codes are set up to
be processed by cpp.

m Not all Fortran compilers handle this in the same
way.

®_Gain uniformity through explicit rules:

3.8 Program Dependency Chart

m Head to that other slide, Dave

<tab>
<tab>
<tab>

3.9 Program Components

PROGRAM mainprog
CALL readit

3.9 Program Components

SUBROUTINE readit
Include ‘unit.include’

CALL meanit
CALL printit
STOP 99999

END

INCLUDE ‘“data.include’

OPEN(iunit, file="input.data’, ACCESS = &
‘sequential’, FORM="FORMATTED”)

READ(iunut,FMT=*(F10.4)’ ) data

RETURN

END




3.9 Program Components

SUBROUTINE meanit
INCLUDE ‘data.include’
INCLUDE ‘sum.include’
DO L=1,length

sum = sum + data(L)

—ENDDO —

sum = sum / FLOAT(length)
END

3.9 Program Components

® unit.include
® sum.include

m data.include

3.10' makefile Example 2

average: mainprog.o readit.o meanit.o printit.o
77 —o mainprog.o readit.o meanit.o printit.o

mainprog.o : mainprog.f

3.9 Program Components

SUBROUTINE printit
INCLUDE ‘data.include’
INCLUDE °‘sum.include’
PRINT *,data(1:length)
PRINT *,‘average = *,sum

END
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3.10 makefile Example 1

average: mainprog.o readit.o meanit.o printit.o

77 —o average mainprog.o readit.o meanit.o printit.o

mainprog.o : mainprog.f
77 —c mainprog.f

readit.o : readit.f unit.include data.include
f77 —c readit.f

177 —c

readit.o : readit.f unit.include data.include
77 —c $<

meanit.o : meanit.f data.include sum.include
77 —

printit.o : printit.f data.include sum.include

77 — $*.f

__ meanit.o : meanit.f data.include sum.include

77 — meanit.f
printit.o : printit.f data.include sum.include
f77 —c printit.f

3.10 makefile Example 3

average:
77 —0 $@

readit.o : readit.f unit.include data.include
77 —¢ $<

meanit.o : meanit.f data.include sum.include
77 —c $*.f

printit.o : printit.f data.include sum.include
f77 — $*.£
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3.10 makefile Example 4

OBIJS = mainprog.o readit.o meanit.o printit.o

average: $(OBJS)

3.11 MM5 make Commands

m Directly put macro definitions into the make
command

77 —0 $@ $(OBIS)

m Precedence over values initialized as
macros inside the makefile

readit.o : unit.include data.include
meanit.o : data.include sum.include
printit.o : data.include sum.include
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3.12 Top-level Makefile

m Example from TERRAIN, so just 2 levels:

1 |
LUP dida1owcor
same as —i
macros

first target is default, any name

3.12 Top-level Makefile

blah
“all” is the low-level target

includes
macro:

if test for vendor

3.12 Top-level Makefile

m 777 end of each block

. m Second target is icirain deck

m Must specifically name any target (other
than first) to activate it

[ typical target to zap detritus

3.13 Low-level Makefile

unnecessary with $(MAKE)
.F .f i .0 pseudo target, expl suffixes

macro definition
list of source files
first target




3.13 Low-level Makefile

easy etror trapping
target specified in top-level Makefile

three
dependency files

u defined in top-level Makefile
] then the list of dependencies
is listed more than once
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