
1

MM5 Model Code (Appendix B)

Code features
Portability
Vectorization
Parallelization
Use of pointers
Code flow outline

NCAR/MMM

Code features
More than 220 subroutines
Selective compilation for physics and nesting
50 directories sorted by function (see end of
Chapter 8)
More than 55000 lines
Standard Fortran 77 plus “Cray” pointers
CPP #ifdef and #include commands
Shared-memory parallel directives
Distributed-memory extension library

NCAR/MMM

Portability
Shared memory or single processor

Cray
SGI
Sun
Compaq/DEC
HP
IBM
Linux

Distributed memory (next talk)

NCAR/MMM

Vectorization
Originally written for Cray
Vectorized over I index
Inner loop (y direction)
Solver-called routines operate on (I ,K)
slices
Only some physics options are
vectorized

NCAR/MMM

Vector and parallel directions

NCAR/MMM

Parallelization
Shared-memory parallel directives
Solver has outermost J loops
Multi-tasking over J slices (each
processor takes a J slice)
Distinction made between shared and
private/local variables
No dependencies on results from other
slices

2

NCAR/MMM

Parallelization (cont.)
Local common blocks need special
directives (taskcommon or
threadprivate) to keep memory separate
Multi-tasked loops have special
directives (e.g. c$omp) ahead of them
These are only seen as comments by
non-parallel Fortran compilers

NCAR/MMM

Parallel loop directives
cmic$ do all autoscope
c$doacross
c$& local(i,j,k)
c$omp parallel do default(shared)
c$omp&private(i,j,k)

DO J=1,JL
DO I=1,ILX

QDOT(I,J,1)=0.
QDOT(I,J,KLP1)=0.
W3DTEN(I,J,KLP1)=0.

ENDDO

NCAR/MMM

Pointers
A Cray feature that is now widely accepted by
Fortran compilers
MM5 uses pointers to handle nests
Arrays in COMMON blocks appear as

COMMON/ADDR1/IAUA, IAUB, IAVA, …
POINTER (IAUA, UA(MIX,MJX,MKX)), …

IAUA is an address for array UA
MM5 has about 300 such addresses for all
arrays/variables/constants associated with a
single domain

NCAR/MMM

Pointers (cont.)
2 “super-arrays” ALLARR and INTALL store all
these arrays end-to-end
Additional super-arrays for FDDA
Super-arrays are 2D, second dimension is
domain id number (1 to MAXNES)
2D array IAXALL stores pointers (IAUA, etc.)
Routine ADDALL sets pointer values in
IAXALL
Routines ADDRX1C/ADDRX1N reset pointers
to different domains using IAXALL.
Pointers are used in all the main COMMON
blocks

NCAR/MMM NCAR/MMM

Pointers (cont.)
Pointers were also used to handle boundary
I/O
MM5 arrays are all dimensioned (MIX,MJX,…)
using maximum dimensions of any nest
However I/O needs actual domain dimension
(IX,JX,…) to read in boundary file
Pointers are used to mimic local variable-
dimensioned arrays (IX,JX,…) that standard
F77 does not allow
Note: This has been discontinued with
Version 3 format (1D scratch array read now)

3

NCAR/MMM

Code flow
Main program is Run/mm5.F

Initialization
Main time loop for solver
Calls first-level nest driver

Main solver is dynamics/nonhydro/solve.F
Calls dynamics and physics routines
Advances one domain by one timestep

Nest driver is domain/drivers/nstlev1.F
Calculates nest boundary tendencies
Calls solver for nest 3 times
Calls next-level nest driver
Finally calls feedback for nest

NCAR/MMM

NCAR/MMM

	MM5 Model Code (Appendix B)
	Code features
	Portability
	Vectorization
	Vector and parallel directions
	Parallelization
	Parallelization (cont.)
	Parallel loop directives
	Pointers
	Pointers (cont.)
	Pointers (cont.)
	Code flow

