Section 7

NAMELIST RECORDS

This section lists the variables that are contained in the four NAMELIST records \$OPARAM, \$PPARAM, \$LPARAM, and \$FPARAM. The definition, dimension, and units for all variables (listed alphabetically for each record) are given along with a brief description of the record's general contents.

7.1 OPARAM

\$OPARAM contains variables used mainly for selection of options regarding model output.

IFPRT	is printer output desired, (0=no;1=yes).
IFREST	is this run restarted from a saved file, (.T. or. F.).
IFSAVE	will a saved file will be written for restart, (.T. or .F.).
IFTAPE	will output be saved on files for INTERP, (0=no;1=yes).
ISFOUT	will output of surface/terrain parameters be printed (IFPRT =1), (0=no;1=yes).
IXTIMR	restart time (min) into forecast.
LEVIDN	(MAXSES); nest level.
MASCHK	time-step frequency for printout of mass conservation information.
NUMNC	(MAXSES); mother domain.
PRTFRQ	interval (min) for printer output (IFPRT =1).
SAVFRQ	interval (min) between save operations (IFSAVE =.T.).
TAPFRQ	interval (min) of output data for INTERP (IFTAPE =1).

7.2 PPARAM

\$PPARAM contains variables used for selection of options related to physical processes, model numerics, and vertical resolution.

ALBLND	albedo over land, used when $ISFPAR = 0$.
CONF	condensation threshold (= 1.).
IABSOR	sponge absorber at top of model, (0=no;1=yes).
IFEED	feedback option: = 0; one-way. = 1; MM4 method. = 2; no smoothing. = 3; light smoothing.
ISOLVE	= 1 (standard numerics).
РТОР	pressure (cb) at the top of the model.
QCK1	constant autoconversion rate (= $1.E-3 \text{ kg kg}^{-1} \text{ s}^{-1}$).
QCTH	threshold for the onset of autoconversion (kg kg ⁻¹).
SIGMA	(KXP1); full-sigma levels.
THINLD	thermal inertia over land when ISFPAR = 0 (cal cm ⁻² K ⁻¹ s ^{-1/2}).
TIMAX	maximum forecast time (min).
TISTEP	model DT , use $3*$ DX for ISOLVE = 1.
XMAVA	moisture availability, used when ISFPAR = 0.
ZZLND	roughness length (m) over land, used when $ISFPAR = 0$.
ZZWTR	roughness length (m) over water, used when $ISFPAR = 0$.

7.3 LPARAM

\$LPARAM contains variables (mainly integers) pertaining to selection of options regarding physical processes, boundary conditions, nested domain specifications, PBL processes, and printer output.

HYDPRE (MAXSES); will water-loading effects be considered in hydrostatic equation (IMOIST=2), (0=no;1=yes).

IACTIV (MAXSES); is nested domain active, (0=no;1=yes). **IBLIQ** are QCTEN and QRTEN at nested boundary available: = 0; no, when IDRY(1) = 1, or when IDRY(1) = 0 and IMOIST(1) = 1. = 1; yes, when IDRY(1) = 0 and IMOIST(1) = 2. (MAXSES); will bulk PBL or Blackadar PBL be used in the model: **IBLTYP** = 0; frictionless. = 1; bulk PBL. = 2; multi-level Blackadar PBL. **IBMOIST** will initial and boundary conditions be provided for water/ice variables, (0=no;1=yes). **IBOUDY** (MAXSES); indicates type of lateral boundary conditions: = 0: fixed. = 1: relaxation. = 2; time dependent (from observations or large-scale model). = 3; time and inflow/outflow dependent. Nonhydrostatic boundary conditions. = 4; sponge. **IBVAP** is **QVTEN** at the nested boundaries available: = 0; no when **IDRY**(1) = 1. = 1; yes when IDRY(1) = 0. **ICDCON** (MAXSES); are drag coefficients constants when using bulk PBL, (0=no;1=yes--function of terrain height only). **ICLOUD** (MAXSES); will the radiation effects due to clouds be considered. Used if surface heat and moisture fluxes are calculated (ISFFLX=1) and ground temperature is predicted from the budget (**ITGFLG**=1), (0=no;1=yes). **ICOR3D** will full Coriolis force including vertical component be considered (nonhydrostatic option only), (0=no;1=yes). **ICUPA** (MAXSES); what type of cumulus parameterization will be employed: = 1; none. = 2; Anthes-Kuo scheme. = 3; Grell-type scheme. = 4; Arakawa-Schubert scheme. **ICUSTB** will the stability check in the Kuo cumulus parametrization scheme be activated, (0=no;1=yes). **IDRY** (MAXSES); is this run a moist or dry forecast, (0=moist;1=dry).

IEVAP	 (MAXSES); will evaporation effects be considered (IMOIST=2): < 0; The evaporation of rainwater is not considered. = 0; The evaporation is not considered for cloud or rain. > 0; The evaporation is considered.
IEXICE	will explicit moisture scheme with simple ice-physics effects be used, (0=no;1=yes).
IFDRY	is this a fake dry run (no latent heat release), (0=no;1=yes).
IFRAD	 will radiative cooling of the atmosphere be considered: = 0; no. = 1; use simple radiation routine. = 2; use full radiation (LWRAD and SWRAD).
IFSNOW	(MAXSES); will snow-cover data be considered, (0=no;1=yes).
IFUPR	will upper radiative boundary conditions be used, (0=no;1=yes).
IMOIAV	(MAXSES); is moisture availability a function of time, (0=no;1=yes).
IMOIST	(MAXSES); will explicit moisture be used: = 0; dry case with passive, moisture variables (including q_v , q_c , q_r). = 1; no explicit moisture. = 2; explicit moisture.
IMOVCO	(MAXSES); counter for how often nest is moved.
IMOVE	(MAXSES); will nest be moved, (0=no;1=yes).
IMOVEI	(MAXSES, 10); how many grid points to move nest in the I-direction.
IMOVEJ	(MAXSES, 10); how many grid points to move nest in the J-direction.
IMOVET	(MAXSES, 10); at what time will nest be moved.
IMVDIF	will moist-adiabatic vertical diffusion in clouds be included, (0=no:1=yes).
IOVERW	(MAXSES); will interpolated nested domain be over-written with user's own analysis, (0=no;1=yes).
ISFFLX	(MAXSES); will surface heat and moisture fluxes be calculated, (0=no;1=yes).
ISFPAR	(MAXSES); are surface/land-use parameters variable or constant. Used only if (ISFFLX = 1 and ITGFLG =1), (0=constant;1=variable).

ISHALLO	(MAXSES); will shallow convection be used, (0=no;1=yes).
ITGFLG	 (MAXSES); indicates method for calculating ground temperature (ISFFLX): = 1; it will be calculated from the budget. = 2; it will be calculated from a sinusoidal function. = 3; it will be determined from specified constants.
ITQPBL	tendencies at the boundaries will be computed in HIRPBL (IBLTYP =2) when IBOUDY = 1, 2, 3, or 4, (0=no;1=yes).
IVMIXM	(MAXSES); will vertical mixing of momentum be considered (IBLTYP =2), (0=no;1=yes).
JXSEX	(MAXSES); J-index of the north-south vertical slice for printer output.
KXOUT	(MAXSES); K-level of the horizontal slice for printer output.
NESTI	(MAXSES); origin location of nest in I-direction in mother domain.
NESTIX	(MAXSES); I-dimension of nest.
NESTJ	(MAXSES); origin location of nest in J-direction in mother domain.
NESTJX	(MAXSES); J-dimension of nest.
RADFRQ	frequency (min) that solar radiation is computed, (ISFFLX=1;ITGFLG=1).
XENNES	ending time of computations for a given nest.
XMOIST	(MAXSES); will moisture effects be used in the thermodynamic equation, (0=no;1=yes).
XSTNES	beginning time of computations for a given nest.

7.4 FPARAM

\$FPARAM contains variables used for selection of FDDA options. (For arrays with second index = 2 this varies over type of analysis nudging: 1 = 3-D analysis nudging, 2 = surface analysis nudging within PBL).

DIFTIM	(MAXNES, 2); time (min) between input analyses for analysis nudging.
DPSMX	maximum p* change (cb) allowed within influence range of a surface observation used for observation nudging.

7: Namelist Records

FDAEND	(MAXSES); time (min) for termination of FDDA.
FDASTA	(MAXSES); time (min) for initiation of FDDA.
GIQ	(MAXSES); observation-nudging coefficient (s^{-1}) for mixing ratio.
GIT	(MAXSES); observation-nudging coefficient (s^{-1}) for temperature.
GIV	(MAXSES); observation-nudging coefficient (s^{-1}) for wind.
GQ	(MAXSES , 2); analysis-nudging coefficient (s^{-1}) for mixing ratio.
GR	(MAXSES , 2); analysis-nudging coefficient ($m^2 s^{-1}$) for vorticity.
GT	(MAXSES , 2); analysis-nudging coefficient (s^{-1}) for temperature.
GV	(MAXSES , 2); analysis-nudging coefficient (s^{-1}) for wind.
I4D	(MAXSES, 2); will FDDA analysis nudging be employed, (0=no;1=yes).
I4DI	(MAXSES); will FDDA observation nudging be employed, (0=no;1=yes).
IMOIS	(MAXSES, 2); will the mixing ratio be nudged from analyses, (0=no;1=yes).
INONBL	(MAXSES , 4); will PBL fields be nudged from 3-D analyses when not using surface-analysis nudging within PBL. (0=yes; 1=exclude certain variables depending on integer value of second index).
IONF	observation-nudging frequency in coarse grid time steps for observation- nudging calculations.
IROT	(MAXSES); will vorticity be nudged from analyses, (0=no;1=yes).
ISMOIS	(MAXSES); will the mixing ratio be nudged from observations, (0=no;1=yes).
ISTEMP	(MAXSES); will the temperature be nudged from observations, (0=no;1=yes).
ISWIND	(MAXSES); will the wind field be nudged from observations, (0=no;1=yes).
ITEMP	(MAXSES, 2); will the temperature be nudged from analyses, (0=no;1=yes).
IWIND	(MAXSES, 2); will the wind field be nudged from analyses, (0=no;1=yes).
IWINDS	(MAXSES , 2); will logarithmic-wind adjustment of analyzed surface wind speed be used before applying it throughout the PBL, $(0=no;1=yes)$.

coarse-grid time-step frequency for select diagnostic print of analysis nudging.
coarse-grid time-step frequency for select diagnostic print of observation nudging.
user-defined pressure level (cb) where terrain effect becomes small.
radius of influence (km) for surface-analysis nudging where the horizontal weighting function depends on surface data density.
multiplier for observation-nudging influence radius (RINXY) at the surface.
multiplier for observation-nudging influence radius (RINXY) at the PFREE level.
vertical radius of influence (on sigma) for distance-weighted nudging corrections (for observation nudging).
default horizontal radius of influence (km) for distance-weighted nudging corrections (for observation nudging).
(time window)/2 (min) over which an observation will be used for nudging.