Appendix 1. Glossary of Symbols

a	Fraction of convective cloud cover; also constant used in cloud microphysics
ABE	Available buoyant energy
A_T	The forcing terms of the thermodynamic equation that vary on the time-scale of the Rossby-waves
A_u, A_d, A_{tot}	Cloud Work Function for updraft, downdraft, and all of model cloud
A_v	The forcing terms of the v-momentum equation that vary on the time- scale of the Rossby-waves
A_v	The forcing terms of the u-momentum equation that vary on the time- scale of the Rossby-waves
A'	Parameter for heterogeneous freezing (K^{-1})
A	Antidiffusive flux
b	Backscattering coefficient; also fraction of total water vapor conver- gence used to moisten grid column (section $5.3.2.1$); also constant (0.8) used in cloud microphysics computation
В	Planck function
B_u	Acceleration due to buoyancy
B'	Parameter for heterogeneous freezing $(m^{-3}s^{-1})$
<i>c</i> ₀	Rainfall conversion parameter (section $5.3.2.2$)

c _m	Constant used in computation of D_m
Ci	Coefficients used in calculation of cloud effect on downward longwave radiation (Table 5.2)
c _p	Specific heat at constant pressure for dry air
c_{pm}	Specific heat at constant pressure for moist air
<i>c</i> *	Net condensation rate averaged over grid volume
<i>c</i> [*] _c	Net condensation rate in cumulus cloud (section 5.3.2.1)
C	Constant (2. m s ⁻¹ K ^{-1/2}) used in computing convective velocity
C_g	Thermal capacity of slab per unit area (J $m^{-2} K^{-1}$)
C_s	Heat capacity per unit volume (J $m^{-3} K^{-1}$)
$C_{ heta}$	Surface exchange coefficient for heat
C_u	Surface exchange coefficient for momentum; also total condensate in updraft (section 5.3.2.2)
C_D	Surface drag coefficient
C_D'	Component of surface-drag coefficient
C_{uN}	Value of surface momentum exchange coefficient under neutral stability conditions

$C_{\theta N}$	Value of surface heat exchange coefficient under neutral stability conditions
D	Mass divergence (hydrostatic split-explicit scheme); also horizontal deformation (section 5.1)
D_f	Diffusivity of water vapor in air
D_u, D_d, D_{tot}	Updraft, downdraft, and total cloud kinetic energy dissipation
	Distance between an observation and a given grid point (section 4)
D_i	Diameter of ice crystal (m)
D_{lpha}	Diffusion and PBL tendencies for variable α
D_m	Modified distance between an observation and a given grid point (section 4)
е	Horizontal Coriolis parameter (s^{-1})
e_s, e_{si}, e_{sw}	Saturation vapor pressure, over ice, over water (cb)
E	Efficiency of collection of cloud by precipitation; also vertical flux of water vapor
E_s	Flux of water vapor from surface into atmosphere
f	Coriolis parameter
f_1,f_2	Ventilation coefficients for rain or snow

F	Larger-scale forcing (section $5.3.2.2$ and $5.3.2.3$); also function of
	distance from lateral boundary (section $2.6.2$)
FH,FL	Flux from high-order and low-order advective scheme
F_{bot}, F_{top}	Longwave radiative flux at bottom, top of model atmosphere (W m $^{-2})$
F_d, F_u	Downward, upward longwave radiative flux (W m $^{-2}$)
$F_{H \alpha}$	Term representing contribution of horizontal diffusion of a variable α to the temporal rate of change of α
F_{Vlpha}	Term representing contribution of vertical diffusion of a variable α to the temporal rate of change of α
F_s	Flux of dry static energy (section 5.3.2.2); also Surface flux of heat, moisture or momentum
F_q	Flux of water vapor (section 5.3.2.2)
F_l	Flux of suspended cloud liquid water (section 5.3.2.2)
F_r	Deceleration
F_1,F_2	Amplitude factors used in computing lateral boundary conditions (section 2.6.2)
g	Acceleration of gravity (9.8 m s^{-2})
h	Moist static energy; also height of planetary boundary layer (m)
h_o	Local hour angle of sun

$ ilde{h}, h_c, h_u, h_d, ilde{h}^*$	Moist static energy in environment, cloud, updraft, downdraft, and
	saturation value in environment
Н	Vertical flux of sensible heat $(W m^{-2})$
H_m	Heat flux into substrate (W m^{-2})
H_s	Sensible heat flux from surface into atmosphere (W m $^{-2})$
Ι	Function of static stability and surface friction velocity; also horizontal grid-index in y-direction
IMAX	Maximum value of grid-index in y-direction
I_s	Net longwave iradiance at surface (wm^{-2})
$I\uparrow$	Outgoing longwave radiation from surface (W m^{-2})
$I\downarrow$	Downward longwave radiation absorbed at surface (W m $^{-2})$ under clear skies
$I\downarrow'$	Downward longwave radiation absorbed at surface (W m^{-2}) in presence of clouds
I_1	Normalized condensate in updraft (section $5.3.2.2$)
I_2	Normalized evaporate in updraft (section 5.3.2.2)
J	Horizontal grid index in x -direction
JMAX	Maximum value of grid index in x -direction

k	Dimensionless x -wavenumber for upper radiative scheme; also von
	Karman constant (0.4)
\hat{k}	Dimensionless effective x -wavenumber for upper radiative scheme
k_1	Constant used in formula for computing autoconversion of cloud drops
	to rain drops
Κ	Total horizontal waven number (m^{-1}) also Kernels
K_a	Background molecular diffusivity $(2.4 imes 10^{-5} m^2 s^{-1});$ also thermal
	conductivity of air (J m ⁻¹ s ⁻¹ K ⁻¹)
K_H	Horizontal eddy diffusivity $(m^2 s^{-1})$
K'_H	Coefficient used in fourth-order diffusion (s^{-1})
K_{HO}	Background value of horizontal eddy diffusivity $(m^2 \ s^{-1})$
K_m	Coefficient of heat transfer from ground into substrate (s^{-1})
KMAX	Maximum value of index in vertical direction
K_z	Coefficient of vertical diffusivity $(m^2 s^{-1})$
K_{z0}	Background value of coefficient of vertical diffusivity $(m^2 s^{-1})$
KE_u, KE_d, KE_{tot}	Kinetic energy for updraft, downdraft, and all of model cloud
L	Hydrostatic term due to liquid water loading; also Monin-Obukhov
	тепки
L_m	${ m Latent} { m heat} { m of} { m fusion} (0.35 imes 10^6 { m J} { m kg}^{-1})$

Ls	Latent heat of sublimation $(2.85 \times 10^6 \text{ J kg}^{-1})$
L_v	Latent heat of condensation (2.5 $ imes 10^6$ J kg ⁻¹)
l	Dimensionless y -wavenumber for upper radiative scheme; also vertical mixing length
Î	Dimensionless effective y -wavenumber for upper radiative scheme
M_{i}	Mass of ice crystal (kg)
M_{max}	Maximum mass of ice crystal (kg)
M_0	Initial mass of ice crystal (kg)
m	Mass flux (updraft and downdraft) in convective parameterization cloud (5.3.2.2); also map scale factor
$ar{m}$	Mixing coefficient used in free-convective regime of high-resolution PBL model
m_b	Cloud base mass flux (section 5.3.2.2)
m_0	Downdraft base mass flux (section 5.3.2.2)
m_u	Updraft mass flux in convective parameterization cloud $(5.3.2.2)$
m_d	Downdraft mass flux in convective parameterization cloud $(5.3.2.2)$
M	Surface moisture availability

M_t	Vertical integral of horizontal convergence of water vapor
n	Fraction of cloud
n_0	Cloud microphysics parameter
n _c	Number concentration of ice crystals (kg^{-1})
Ν	Brunt-Vaisälä frequency (s^{-1})
N _c	Number concentration of cloud droplets per unit volume (10^{10} m^{-3})
${N}_{h}$	Nondimensional function for vertical profile of convective heating
N_m	Nondimensional function for vertical profile of convective moistening
N_0	Cloud microphysics parameter $(8 \times 10^6 \text{ m}^{-4} \text{ for rain } 2 \times 10^7 \text{ m}^{-4} \text{ for snow})$
p	Pressure (cb)
p_b	Pressure (cb) at convective cloud base
p_s	Surface pressure (cb)
p_t	Pressure (cb) at top of model
p_u	Pressure (cb) at top of convective cloud
PLCL	Pressure (cb) at lifting condensation level

p^*	$p_{s}-p_{t}~({ m cb})$
p_d^*	Dot-point p^* (cb)
p_0	Reference-state pressure
p'	Perturbation pressure (Pa)
	Pressure value representing the free atmosphere, where terrain influences are small (in FDDA)
\hat{p}	Fourier transform of p' for upper radiative boundary condition
P_{CON}	Condensation of water vapor or evaporation of cloud drops (kg $\rm kg^{-1}$ $\rm s^{-1})$
P_{RA}	Accretion of cloud drops by rain drops (kg kg ⁻¹ s ⁻¹)
P_{RC}	Autoconversion of cloud drops to rain drops $(kg kg^{-1} s^{-1})$
P_{RE}	Evaporation of rain drops (kg kg ^{-1} s ^{-1})
P_{CI}	Heterogeneous freezing of cloud water (kg kg s ^{-1})
P_{ID}	Deposition of vapor onto ice crystals (kg kg s ^{-1})
P_{II}	Initiation of ice crystals (kg kg s ^{-1})
P_{MF}	Melting/freezing of cloud and precipitation due to advection (kg kg $\rm s^{-1})$

P_{RM}	Melting of falling precipitation (kg kg s ^{-1})
P_{SM}	Melting of falling snow (kg kg s ^{-1})
$ ilde q, q_u, q_d, ilde q^*$	Water vapor mixing ratio in environment, updraft, downdraft, and saturation value in environment
q_c	Mixing ratio of cloud water; also water vapor mixing ratio in cloud (section 5.3.2.2)
q_{c0}	Critical value of mixing ratio of cloud water
q_r	Mixing ratio of rain water
q_l	Suspended liquid water vapor mixing ratio inside updraft
q_v	Mixing ratio of water vapor
q_{vc}	Mixing ratio of water vapor in cumulus cloud
q_{vs}	Saturation mixing ratio of water vapor
Q	Diabatic heating rate per unit mass $(J \text{ kg}^{-1} \text{ s}^{-1})$
Q_s	Net short wave irradiance at the surface (W m^{-2})
R	Rainfall (convective-scale sink of cloud water, 5.3.2.2); also ideal gas constant for dry air (287 J kg ⁻¹ K ⁻¹)
RH	Relative humidity
R_i	Richardson number

R_n	Net radiation
R_{iB}	Bulk Richardson number
R_{ic}	Critical value of bulk Richardson number; also critical value of Richardson number
R_v	Gas constant for water vapor (461.5 J kg ⁻¹ K ⁻¹)
R_T	Radiative heating rate (K s^{-1})
r	Radius of convective parameterization cloud (sections $5.3.2.2$)
S	Supersaturation; also source or sink term (section 5.3.2.2); also square of the vertical wind shear
S _c	Schmidt number
So	Solar constant (1395.6 W m^{-2})
S_u	Source or sink term in updraft (section 5.3.2.2)
S_d	Downward solar flux (W m ^{-2}); also source or sink term in downdraft (section 5.3.2.2)
${S}_i$	Supersaturation over ice
8	Dry static energy
t	Time (s)

T	Temperature (K)
T_{c}	Longwave transmissivity due to cloud
T_d	Dewpoint temperature (K)
T_g	Temperature (K) of ground
T_p	Longwave transmissivity due to precipitation
T_v	Virtual temperature (K); also longwave transmissivity due to vapor
T_*	Surface friction temperature (K)
T_0	Reference-state temperature (K)
T'	Perturbation temperature (K)
u	Component of wind velocity in eastward direction (m $\rm s^{-1});$ also water vapor path (g $\rm m^{-2})$
u_*	Surface friction velocity (m s^{-1})
u_c, u_p	Liquid water path for cloud, precipitation (g m^{-2})
v	Component of wind velocity in northward direction (m $\rm s^{-1})$
v_t	Mass weighted mean terminal velocity of rain drops (m $\rm s^{-1})$
V	Fall speed of a precipitation particle (m s ^{-1}); also modified horizontal wind velocity in PBL

V	Horizontal wind vector
V_a	Horizontal windspeed at lowest model layer
V_c	Convective PBL velocity(m s^{-1})
V_{qf}	Divergence of vertical eddy flux of water vapor due to convective clouds
w	Vertical velocity (m s ^{-1}); also weight function for reducing mixing near top of mixed layer
w_n	Weight function for blending model tendencies and large-scale tendencies near lateral boundaries (section 2.6.1)
w_p	Precipitable water (cm)
w_u	Vertical velocity in updraft
\hat{w}	Fourier transform of w
x	Horizontal grid coordinate increasing generally eastward
X	Horizontal coordinate on earth surface increasing generally eastward
X_c	Multiple-reflection factor in cloudy air
X_d	Distance vector
X_R	Multiple-reflection factor in clear air

y	Horizontal grid coordinate increasing generally northward
Y	Horizontal coordinate on earth surface increasing generally northward
z	Height above surface (m)
za	Height of lowest layer in model (m)
z _b	Height of updraft originating level (section $5.3.2.2$) (m)
z_0	Height of downdraft originating level (section 5.3.2.2); also surface roughness length(m) $% = 100000000000000000000000000000000000$
z _{oc}	Background value of surface roughness length over water $(10^{-4}{\rm m})$
z_l	Depth of molecular layer
z_{LCL}	Height of lifting condensation level (m)
z_T	Height of updraft top (section 5.3.2.2)
α	Coefficient array for upper radiative boundary condition (m s ⁻¹ Pa^{-1}); also any thermodynamic variable (section 5.3.2.2)
$ ilde{lpha}$	Any thermodynamic variable in environment
$lpha_u$	Any thermodynamic variable in updraft
$lpha_d$	Any thermodynamic variable in downdraft
α_c, α_p	Longwave absorption coefficients for cloud, precipitation $(m^2 g^{-1})$

eta	Parameter in sound-wave temporal differencing; also precipitation
	efficiency parameter in section 5.3.2.2
Γ	Gamma function
Γ_d	Dry adiabatic lapse rate (K m^{-1})
Γ_{dp}	Dewpoint adiabatic lapse rate (K m^{-1})
γ	Ratio of heat capacities (c_p/c_v) for dry air
δ	Solar declination
δM	Supersaturation or undersaturation
Δp	Vertical grid size (Pa)
Δs	Horizontal grid length (m)
Δt	Time step (s)
$\Delta t'$	Short time step for rain fall term (s)
Δx	Horizontal grid length (m)
Δz	Thickness of vertical layer (m)
$\Delta \sigma$	Thickness of model σ levels

$\Delta \sigma_c$	Critical value of convective cloud depth
Δau	Short time step for sound waves (s)
$ abla_{\sigma}^2$	Horizontal Laplacian on σ -surfaces
$ abla_{\sigma}^4$	Fourth order diffusion operator on σ -surfaces
ε	Parameter relating updraft and downdraft mass flux (section 5.3.2.2); also small value; also entrainment coefficient used in high resolution PBL-model (0.2)
ϵ_a	Atmospheric emissivity
ϵ_g	Emissivity of ground
ϵ_u,ϵ_d	Atmospheric longwave emissivity
η_d	Normalized mass flux for downdraft (section 5.3.2.2)
η_u	Normalized mass flux for updraft (section 5.3.2.2)
θ	Potential temperature (K); also angle between y -axis and north for full Coriolis force
$ heta_a$	Potential temperature (K) at lowest layer in model
θ_{g}	Potential temperature (K) of ground surface
θ_{e}	Equivalent potential temperature (K)

θ_{es}	Saturation equivalent potential temperature (K)
θ_v	Virtual potential temperature (K)
λ	Longitude; also cloud type (section 5.3.2.2); also thermal conductivity $(J m^{-1} s^{-1} K^{-1})$; also parameter in raindrop distribution (m^{-1})
μ	Dynamic viscosity of air (kg m ⁻¹ s ⁻¹); also solar zenith angle ; also total net fractional entrainment rate (section 5.3.2.2); also constant in smoother (section 3.3)
μ_u	Total net fractional entrainment rate for updraft (section $5.3.2.2$)
μ_{ue}	Gross fractional entrainment rate for updraft (section $5.3.2.2$)
μ_{ud}	Gross fractional detrainment rate for updraft (section $5.3.2.2$)
ν	Coefficient for Asselin time filter; also for spatial smoother
π	Exner function
ρ	Density of air $(kg m^{-3})$
$ ho_r$	Particle density (kg m^{-3})
$ ho_u$	Density in updraft
$ ho_w$	Density of water $(kg m^{-3})$
$ ho_0$	Reference-state density (kg m^{-3})

ho'	Perturbation density (kg m^{-3})
σ	Nondimensional vertical coordinate of model
σ'	Dummy variable of integration
$\dot{\sigma}$	Vertical velocity in σ -coordinates (s ⁻¹)
$\dot{\sigma}_c$	Vertical velocity of convective cloud in σ -coordinates (s ⁻¹)
σ_{SB}	Stefan-Boltzmann constant (5.67051 \times 10 $^{-8}$ J m $^{-2}$ K $^{-4}$ s $^{-1})$
au	Half-period of time window of influence of an observation (section 4); also short-wave transmissivity
au'	Short-wave transmissivity obtained from lookup table
$ au_a$	Clear air absorption transmissivity
$ au_{ac}$	Cloudy air absorption transmissivity
$ au_s$	Clear air scattering transmissivity; also surface stress
$ au_{sc}$	Cloudy air scattering transmissivity
ϕ	Geopotential; also latitude; also scalar variable in advection equation
ϕ_s	Surface geopotential

Φ	Symbol denoting low-order, monotonic solution to advection equation
X	Diffusivity of vapor in air $(m^2 s^{-1})$; also thermal inertia
Ψ	Solar zenith angle; also function of bulk Richardson number
Ψ_m	Nondimensional stability parameter for momentum
Ψ_h	Nondimensional stability parameter for heat and water vapor
ω	Vertical velocity in pressure coordinates (cb s^{-1})
ω_c	Vertical velocity of convective cloud in pressure coordinates (cb $\rm s^{-1})$
Ω	Angular velocity of earth $(7.2722 imes 10^{-5} ext{ s}^{-1})$

Appendix 3. Map Projections

Map projections are constructed by projecting the surface of the earth onto a right circular cone, cutting the cone, and flattening it into a plane surface. Three projections are available for the MM4 system – Polar stereographic, Lambert conformal, and Mercator. Polar stereographic is preferred for high-latitude studies, Lambert conformal for middle-latitude studies, and Mercator for low-latitude studies. This appendix summarizes the map scale factors for each projection and gives the equations for converting from latitude and longitude to the x and y positions on the model grid.

Although the grid size $\Delta x = \Delta y = \Delta s$ is constant on the model's grid, the actual distance represented by Δs on the spherical earth varies with location on the grid because the earth is curved. The map scale factor m is defined as the ratio of the distance on the grid to the corresponding distance on the earth's surface

$$m = \frac{distance \ on \ grid}{actual \ distance \ on \ earth}$$
 A.1

a. Lambert Conformal

Conformal means that the scale is equal in all directions about a point, so that shapes of geographic features on the earth are preserved. The Lambert conformal grid is true at latitudes 30° and 60° N so that m = 1. at these latitudes. In general,

$$m = \frac{\sin\psi_1}{\sin\phi} \left[\frac{\tan\phi/2}{\tan\psi_1/2} \right]^{0.716}, \qquad A.2$$

where $\psi_1 = 30^\circ$ and ψ is the colatitude $(\psi = 90^\circ - \phi)$.

It is sometimes necessary to compute the position (x, y) on the grid given the latitude and longitude of a point, or vice versa. The following relations pertain to an X - Y grid with center X = 0, Y = 0 at latitude ϕ_0 and longitude λ_0 . Note that the relationship between (x, y) and (X, Y) is

$$x = X + rac{JMAX - 1}{2}\Delta s, \hspace{1cm} A.3$$

$$y=Y+rac{IMAX-1}{2}\Delta s, \hspace{1.5cm} A.4$$

 $\lambda = any \ longitude$

$$\lambda_0 = longitude of Y axis$$

 $\phi = any \; latitude$

 $\phi_0 = \ latitude \ along \ \lambda_0 \ at \ which \ Y = 0$

 $egin{aligned} \psi &= 90^\circ - \phi \ n &= .716 \ \psi_1 &= 30^\circ \ \psi_0 &= 90^\circ - \phi_0 \end{aligned}$

$$a=6370 km$$

$$r = rac{a}{n} sin\psi_1 \left[rac{tan\psi/2}{tan\psi_1/2}
ight]^n, \hspace{1.5cm} A.5$$

$$C_2 = rac{a}{n} sin\psi_1 \left[rac{tan\psi_0/2}{tan\psi_1/2}
ight]^n, \qquad \qquad A.6$$

$$C_1=-\lambda_0-90^\circ/n, \hspace{1.5cm} A.7$$

$$\lambda' = n(\lambda + C_1), \qquad \qquad A.8$$

$$X = r cos \lambda', \qquad \qquad A.9$$

$$Y = rsin\lambda' + C_2. \qquad A.10$$

The inverse problem to calculate latitude and longitude is done as follows:

$$\lambda' = \arctan\left(\frac{Y - C_2}{X}\right), \qquad \qquad A.11$$

$$\lambda = rac{\lambda'}{n} - C_1, \hspace{1cm} A.12$$

$$r = \frac{X}{\cos\lambda'} or \frac{Y - C_2}{\sin\lambda'}$$
 A.13

$$\psi = 2 \arctan \left[tan \psi_1 / 2 \left(rac{nr}{a sin \psi_1}
ight)^{1/n}
ight], \hspace{1.5cm} A.14$$

$$\phi = 90^\circ - \psi. \hspace{1cm} A.15$$

b. Polar Stereographic

For the polar stereographic projection, true at latitude $\phi_1 = 60^{\circ}N$, the map scale factor is

$$m = rac{1 + sin\phi_1}{1 + sin\phi}$$
 A.16

The relationships between latitude and longitude and X and Y on the polar stereographic grid are calculated as before on the Lambert conformal grid, but now n = 1.

$$r = amcos\phi,$$
 A.17

$$C_2 = a sin \psi_1 \left[rac{tan \psi_0 / 2}{tan \psi_1 / 2}
ight], \hspace{1.5cm} A.18$$

$$C_1=-\lambda_0-90^\circ, \qquad \qquad A.19$$

$$\lambda' = \lambda + C_1, \qquad \qquad A.20$$

$$X = r cos \lambda',$$
 A.21

$$Y = rsin\lambda' + C_2. \qquad \qquad A.22$$

and for the inverse problem

$$\lambda' = \arctan\left(\frac{Y - C_2}{X}\right),$$
 A.23

$$\lambda = \lambda' - C_1, \qquad \qquad A.24$$

$$r = \frac{X}{\cos\lambda'} or \frac{Y - C_2}{\sin\lambda'} \tag{A.25}$$

$$\psi = 2 \arctan \left[tan \psi_1 / 2 \left(\frac{r}{a \sin \psi_1} \right) \right],$$
 A.26

$$\phi = 90^\circ - \psi. \hspace{1cm} A.27$$

Note that the signs of $Y - C_2$ and X in (A.23) must be considered to obtain the correct quadrant for λ' .

c. Mercator

For the Mercator grid, $\phi_0(Y = 0)$ corresponds to the equator and the relationships between X and Y and ϕ and λ are relatively simple

$$X = (a cos \phi_1) (\lambda - \lambda_0),$$
 A.28

$$Y = (a cos \phi_1) ln \left[rac{1 + sin \phi}{cos \phi}
ight], \hspace{1.5cm} A.29a$$

$$Y=(acos\phi_1)ln[tan(45^\circ+\phi/2)]. ext{ A.29b}$$

Note that $(\lambda - \lambda_0)$ in (A.28) must be expressed in radians. The latitude ϕ_1 at which the Mercator projection is true is often taken to be 30° .

The reverse problem, to obtain X and Y from ϕ and λ , is also simple

$$\lambda = \lambda_0 + \frac{X}{a \cos \phi_1}.$$
 A.30

To solve for ϕ , use (A.29b)

$$\phi = -90^{\circ} + 2 \arctan\left[exp\left(rac{Y}{a cos \phi_1}
ight)
ight].$$
 A.31