
1. Introduction

This technical report is a description of the �fth-generation Penn State/NCAR

Mesoscale Model (MM5). It is based on the original version described by Anthes and

Warner (1978). Although a few of the following details of this model are well represented

in Anthes et al. (1987), extensive changes and increases in options have occurred. For

completeness, those parts that have changed little or none will also be represented here.

The document structure is as follows. In section 2 we will describe the governing equations,

algorithms, and boundary conditions. This will include the �nite di�erence algorithms

and time splitting techniques of both the hydrostatic and the nonhydrostatic equations

of motion (hydrostatic and nonhydrostatic solver). All subsequent sections will describe

features common to both solvers. Section 3 will discuss the mesh-re�nement scheme,

section 4 the four-dimensional data-assimilation technique, and section 5 will focus on the

various physics options.

2. Governing equations and numerical algorithms

2.1 Hydrostatic model equations

The vertical �-coordinate is de�ned in terms of pressure.

� =
p � pt

ps � pt
;

where ps and pt are the surface and top pressures respectively of the model, where pt is a

constant.

The model equations are given by the following, where p� = ps � pt.
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Temperature;
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where the D terms represent the vertical and horizontal di�usion terms and vertical mixing

due to the planetary boundary layer turbulence or dry convective adjustment. The heat

capacity for moist air at constant pressure is given by cp = cpd(1 + 0:8qv), where qv is

the mixing ratio for water vapor and cpd is the heat capacity for dry air.

Surface pressure is computed from
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which is used in its vertically integrated form
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Then the vertical velocity in �-coordinates, _�, is computed from (2.1.4) by vertical

integration. Thus
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where �0 is a dummy variable of integration and _�(� = 0) = 0.

In the thermodynamic equation, (2.1.3), ! = dp

dt
and is calculated from

! = p� _� + �
dp�

dt
; (2:1:7)

where
dp�

dt
=
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u
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�
: (2:1:8)

The hydrostatic equation is used to compute the geopotential heights from the virtual

temperature, Tv:

@�

@ln(� + pt=p�)
= �RTv

�
1 +

qc + qr

1 + qv

�
�1

; (2:1:9)
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where Tv is given by Tv = T (1 + 0:608qv), and qc and qr are the mixing ratios of cloud

water and rain water.

2.2 Nonhydrostatic model equations

For the nonhydrostatic model we de�ne a constant reference state and perturbations

from it, as follows:

p(x; y; z; t) = p0(z) + p0(x; y; z; t);

T (x; y; z; t) = T0(z) + T 0(x; y; z; t);

�(x; y; z; t) = �0(z) + �0(x; y; z; t):

Typically the temperature pro�le for the reference state may be an analytic function that

�ts the mean tropospheric temperature pro�le.

The vertical �-coordinate is then de�ned entirely from the reference pressure.

� =
p0 � pt

ps � pt
;

where ps and pt are the surface and top pressures respectively of the reference state and

are independent of time. The total pressure at a grid point is therefore given by

p = p�� + pt + p0;

where p�(x; y) = ps(x; y) � pt. The three-dimensional pressure perturbation, p0, is a

predicted quantity.

The model equations (Dudhia 1993) are then given by the following:

Horizontal momentum;
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Vertical momentum;
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Temperature;
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The DIV terms are not in the hydrostatic equations and arise because p� is now

constant in time. Thus the hydrostatic continuity equation no longer applies, leaving

the right hand side terms in (2.2.6) uncancelled by the surface pressure tendency. The

equations are thus in advective form.

Equation (2.2.4) can be derived from the fully compressible mass continuity relation

and the perfect gas law. The only term neglected in equations (2.2.1)-(2.2.5) is a diabatic

term contributing to the perturbation pressure tendency in (2.2.4). This term is negligible

in normal meteorological regimes since it only forces a small divergence (i.e. expansion)
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in regions of heating. The Dp0 term in (2.2.5) is a small correction to DT allowing for

horizontal pressure di�erences in thermal di�usion.

2.2.1 Complete Coriolis force option

In the nonhydrostatic model it is possible to include the other components of

the Coriolis force that are neglected in the traditional approximation. The full

Coriolis force leads to a small upward/downward acceleration on westerly/easterly 
ows

and an westward/eastward acceleration on upward/downward 
ows in addition to the

rightward/leftward de
ection of horizontal 
ows in the northern/southern hemisphere.

To determine this force, two additional parameters are de�ned. We will refer to the

other component of the Coriolis parameter as e = 2
cos�, where 
 is the angular velocity

of the earth and � is the latitude. The other new parameter is �, which is the angular

di�erence between the y-axis of the grid and true north. It is found from

tan � = �cos�
@�=@y

@�=@y
; (2:2:8)

where � is longitude. A special provision is made for the dateline. Thus � is positive

if north is rotated clockwise from the y-axis.

The momentum equations are then given by the following:

Horizontal momentum
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Vertical momentum;
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2.3 Nonhydrostatic Finite Di�erence Algorithms

The B-grid staggering of horizontal velocity variables with respect to the other �elds

is shown in Fig. 2.1. Vertical velocity is staggered vertically. Noting that the j index

increments in the x direction, and i in the y direction, the conventional notation will be

as follows.

ax = (ai;j+ 1

2

� ai;j� 1

2

)=�x: (2:3:1)

ax =
1

2
(ai;j+ 1

2

+ ai;j� 1

2

); (2:3:2a)

Multiple averaging terms such as axyy can also be de�ned as successive averages where the

order of superscripts does not matter, e.g.,

axyy = ax
yy

:

Averaging vertically allows for non-uniform grid-lengths and nonlinearly varying �elds,

such as temperature and water vapor, by suitably weighting the values.

Thus for half-level �elds averaged to full levels
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2
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2

)
; (2:3:2b)

while averaging full-level �elds to half levels uses an equation similar to (2.3.2a). For

temperature, a is the potential temperature, and for water vapor, a is log qv.

The spatial di�erencing of the terms in the horizontal momentumprediction equations

is [including the map-scale factor m(x; y)],

@p�du

@t
= � m2

2
4
 
ux

p�du

m

xyy
!
x

+

 
uy

p�dv

m

xyx
!
y

3
5 � (p�du

�
_�
xy
)�

+ uDIV
xy

�

mp�d
�xy

"
p0x

y
� (�p�)x

y p0�
p�

xy�
#

+ p�dfv + D(p�du); (2:3:3)
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Fig. 2.1 Horizontal grid structure in the model.
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where p�d = p�
xy
, and DIV , the mass divergence term, is given by
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The triple averaging in the horizontal momentum advection terms follows that of the

hydrostatic model as discussed by Anthes (1972). The subgrid-scale and di�usion operators

are represented by D(a) = Kh�x
2(axxxx + ayyyy ) + (Kvaz)z+ (PBL tendencies), where

the fourth-order scheme is modi�ed to second-order near the boundaries.

The coordinate vertical velocity, _�, is obtained from
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and the vertical momentum equation is
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The pressure tendency equation, neglecting diabatic terms, is given by
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and temperature tendency is di�erenced as
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where Dp0=Dt is di�erenced like the corresponding terms in (2.3.8). Moisture variables

have similar advection forms to those in (2.3.8) and (2.3.9) except when using the upstream

option where qx is replaced by the upstream value alone.
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2.4 Hydrostatic Finite Di�erence Algorithms

The hydrostatic �nite di�erencing of advection, Coriolis and heating follows (2.3.3),

(2.3.4) and (2.3.9) without the DIV terms. The pressure gradient terms in (2.3.3) become

PG = �mp�d�x
y
�

mRTv
xy

(1 + pt=p
�

d)
p�x

y
; (2:4:1)

and likewise for the y-gradient in (2.3.4). The surface pressure tendency is found from the

integration over all (KMAX) layers of thickness ��(k),
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Then _� is found from downward integration,
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using the upper boundary condition that _�(k = 1) = 0. The adiabatic term in (2.3.9),

represented by the second set of terms in square brackets, becomes p�! in the hydrostatic

model, where ! is de�ned by

! =
dp

dt
= p� _�

�
+ �

�
@p�

@t
+ muxyp�x

x
+ mvxyp�y

y

�
: (2:4:4)

The integration of the hydrostatic equation to obtain geopotential height, �, in the

hydrostatic model is done as follows.

�� = � RTvL
�
�ln(� + pt=p

�); (2:4:5)

where

L =

�
1 +

qc + qr

1 + qv

�
�1

;

and allows for water loading when the explicit moisture scheme is used. Because � is

required on the velocity levels (half-levels), it has to be integrated �rst between the surface,

where � = 1 and � = gh (h is the terrain height above sea-level), and the lowest half-level

using (2.4.5) with just the lowest-level values Tv; qv; qc; qr. At all other levels (2.4.5) uses

vertical averaging between two levels.
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The temporal di�erencing in the hydrostatic and nonhydrostatic models consists of

leapfrog steps with an Asselin �lter. With this time �lter, splitting of the solution often

associated with the leapfrog scheme is avoided. It is applied to all variables as

�̂t = (1 � 2�)�t + �(�t+1 + �̂t�1); (2:4:6)

where �̂ is the �ltered variable. The coe�cient � in the model is 0.1 for all variables. For

stability, di�usion terms are evaluated on the variables at time t � 1, as are the terms

associated with the moist physical processes.

2.5 Time splitting

In both the nonhydrostatic as well as the hydrostatic numerics, a time splitting scheme

is applied to increase e�ciency. Because the nonhydrostatic equations above are fully

compressible, they permit sound waves. These are fast and require a short time step for

numerical stability. For the hydrostatic equations, fast moving external gravity waves are

the limiting factor. The techniques described next are designed to split these fast moving

waves from the rest of the solution.

2.5.1 The nonhydrostatic semi-implicit scheme

For the nonhydrostatic equations it is possible to separate terms directly involved with

acoustic waves from comparatively slowly varying terms, and to handle the former with

shorter time steps while updating the slow terms less frequently. The reduced equation

set for the short time step makes the model more e�cient. The separated equations only

contain interactions between momentum and pressure and can be written as:

Horizontal momentum;
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�

�0g
p

p�
@w

@�
� �0gw = Sp0; (2:5:1:4)

where the S terms contain advection, di�usion, buoyancy and Coriolis tendencies. These

are kept constant during the sub-steps. Note that only part of the p0=p term is in (2.5.1.3),

where the rest has been absorbed in the buoyancy term that contributes to Sw.

The method of solution follows the semi-implicit scheme of Klemp and Wilhelmson

(1978) for the short time step. Starting with u; v;w; p0 known at time � , �rst the two

horizontal momentum equations are stepped forward to give u�+1 and v�+1 which are then

used in the pressure equation, giving a time-centered explicit treatment of horizontally

propagating sound waves. Vertical propagation of sound waves is treated implicitly by

making w�+1 and p0�+1 depend upon time-averaged values of p0 and w respectively in

(2.5.1.3) and (2.5.1.4). For instance, where p0 appears in (2.5.1.3) it is represented by

p0
�

=
1

2
(1 + �)p0

�+1
+

1

2
(1 � �)p0

�
;

and similarly for w in (2.5.1.4). The parameter � determines the time-weighting, where

zero gives a time-centered average and positive values give a bias towards the future time

step that can be used for acoustic damping. In practice, values of � = 0:2� 0:4 are used.

With second-order vertical spatial derivatives the �nite di�erence forms of equations

(2.5.1.3) and (2.5.1.4) can be combined, eliminating p0
�+1

, into a �nite di�erence equation

for w�+1, which is solvable by direct recursion on a tri-diagonal matrix.

The implicit vertical di�erencing scheme allows the short time step to be independent

of the vertical resolution of the model, which is important for e�ciency, and thus the

step only depends upon the horizontal grid length. Additionally, the divergence damping

technique of Skamarock and Klemp (1992) is used to control horizontally propagating

sound waves. This method is similar to using time-extrapolated pressure terms in (2.5.1.1)

and (2.5.1.2), where in practice the extrapolation is about 0.1 �� .

Temperature and moisture are predicted using the normal leapfrog step, �t, because

they have no high-frequency terms contributing to acoustic waves. The slow terms for

momentum and pressure contained in the S-terms above are also evaluated on these

leapfrog steps, but for these variables the march from t��t to t+�t is split into typically

four steps of length �� during which momentum and pressure are continually updated.
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2.5.2 The hydrostatic split-explicit scheme

When numerically solving the hydrostatic equations of motion, the stability criterion

is severely limited by external gravity waves. These are very fast moving gravity waves

that are small in amplitude (quasi-linear) and contain only a small fraction of the total

energy. Hence they change slowly over the time scale of the Rossby waves. Because of this,

splitting methods have been developed to split these fast waves from the solution (similar

also to the above method for the nonhydrostatic equations to split sound-waves). From

all the existing di�erent options, we have chosen a method developed by Madala (1981).

This scheme separates the terms governing the gravity modes from those governing the

Rossby modes. The term \split" here refers to the separation of the motion in terms of

eigenmodes. Similar to the nonhydrostatic method, the equations are rewritten in �nite

di�erence form as
@Psu

@t
+ �x� = Au; (2:5:2:1)

@Psv

@t
+ �y� = Av; (2:5:2:2)

@PsT

@t
+M2 �D = AT ; (2:5:2:3)

@Ps

@t
+N1 �D = 0; and (2:5:2:4)

� =M1 � T: (2:5:2:5)

where the right hand sides change slowly over the time scale of the Rossby-waves. Matrices

M1, M2, and vector N1 are independent of x, y, and t. Notice the similarity to the

nonhydrostatic splitting method (equations 2.5.1-2.5.4). However, rather then integrating

the \fast" terms on a small time-step directly, the method described below only computes

correction terms to the equations, making this process extremely e�cient. To illustrate

this, we follow Madala (1981). From the governing equations he derives equations for the

mass divergence D and the generalized geopotential �. They are

@D

@t
+ [�2x + �2y]� = �xAu + �yAv (2:5:2:6)

and
@�

@t
+M3 �D =M1 �AT : (2:5:2:7)
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Integrating equations (2.5.2.1-2.5.2.3) from t��t to t+�t, where �t is the time step of

the slow Rossby modes, one gets

psu(t+�t)� psu(t��t) + 2�t�x~� = 2�tAu(t); (2:5:2:8)

psv(t+�t)� psv(t��t) + 2�t�y ~� = 2�tAv(t); (2:5:2:9)

psT (t +�t)� psT (t��t) + 2�tM2
~� = 2�tAT (t); (2:5:2:10)

where the operator (~) for the split-explicit scheme is de�ned as

~� =
��

�t

mX
n=1

�(t��t+ n�� );

where m = ��
�t

. Denoting with superscript ex solutions computed using only the explicit

time integration over 2�t, equations (2.5.2.8-2.5.2.10) can be written as

psu(t+�t) + 2�t�x[ ~�� �(t)] = psu
ex(t+�t); (2:5:2:11)

psv(t+�t) + 2�t�x[ ~�� �(t)] = psv
ex(t +�t); (2:5:2:12)

psT (t +�t) + 2�tM2[ ~D �D(t)] = psT
ex(t+�t): (2:5:2:13)

Here �(t) and D(t) have been computed using the explicit time integration over 2�t.

Similar, for the pressure tendency we can write

Ps(t+�t) + 2�tN1 � [ ~D �D(t)] = P ex(t +�t): (2:5:2:14)

To �nd equations for the correction terms on the left hand side of equations (2.5.2.11-

2.5.2.13), the divergence and geopotential equations (2.5.2.6-2.5.2.7) are then solved over

the the small time-steps using

[D(t + (n + 1)�� )�D(t)] � [D(t + (n� 1)�� )�D(t)]

+ 2�� (�2x + �2y)[�(t + n�� )� �(t)]

=
1

mi
[Dex(t +�t)�D(t ��t)]

(2:5:2:15)
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and
[�(t+ (n+ 1)�� )� �(t)]� [�(t+ (n � 1)�� )� �(t)]

+ 2��M3[D(t + n�� )�D(t)]

=
1

mi
[�ex(t+�t)� �(t��t)]

: (2:5:2:16)

The correction terms themselves are integrated in equations (2.5.2.15)and (2.5.2.16), and

then added to equations (2.5.2.11-2.5.2.14).

�� , the timestep of the fast modes, of course varies with the mode. For a clean

separation of the modes, a vertical normal mode initialization developed and applied to the

MM4/MM5 system by Errico (1986) is used at the beginning of the model run to calculate

the vertical modes. In MM5, only the external and the fastest internal mode are being

considered with di�erent time steps. This allows the time-steps of the slow tendencies to

be twice as large as they were with the previously used Brown-Campana (1978) algorithm,

and they are comparable to the ones used in the nonhydrostatic numerics.
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2.6 Lateral Boundary conditions for the coarsest mesh domain

2.6.1 Sponge Boundary Conditions

The sponge boundary condition is given by�
@�

@t

�
n

= w(n)

�
@�

@t

�
MC

+ (1� w(n))

�
@�

@t

�
LS

; (2:6:1)

where n = 1; 2; 3; 4 for cross-point variables, n = 1; 2; 3; 4; 5 for dot-point variables, �

represents any variable, MC denotes the model calculated tendency, LS the large-scale

tendency which is obtained either from observations or large-scale model simulations (one-

way nesting), and n is the displacement in grid-points from the nearest boundary (n = 1

on the boundary). The weighting coe�cients w(n) for cross point variables (counting from

the boundary points inward) are 0.0, 0.4, 0.7, and 0.9, while for dot-point variables they are

equal to 0.0, 0.2, 0.55, 0.8, and 0.95. All other points in the coarse domain have w(n) = 1.

The above method cannot be used for the nonhydrostatic part of the model.

2.6.2 Nudging Boundary Conditions

The relaxation boundary condition involves \relaxing" or \nudging" the model-

predicted variables toward a large-scale analysis. The method includes Newtonian and

di�usion terms�
@�

@t

�
n

= F (n)F1(�LS � �MC) � F (n)F2�2(�LS � �MC): n = 2; 3; 4 (2:6:2)

F decreases linearly from the lateral boundary, such that

F (n) =

�
5� n

3

�
n = 2; 3; 4; (2:6:3)

F (n) = 0 n > 4; (2:6:4);

where F1 and F2 are given by

F1 =
1

10�t
(2:6:5)

and

F2 =
�s2

50�t
: (2:6:6)

This method is also used for the nonhydrostatic part of the model to nudge the

pressure perturbation to the observations or larger-scale model simulations. However, for
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the nonhydrostatic solver the vertical velocity is not nudged. It can vary freely, except

for the outermost rows and columns, where zero gradient conditions are speci�ed. For the

velocity components, the values at the in
ow points are speci�ed in a manner similar to

the speci�cation of temperature and pressure. The values at the out
ow boundaries are

obtained by extrapolation from the interior points. These boundary values are required

only in the computation of the nonlinear horizontal momentum 
ux divergence terms;

They are not required in the computation of the horizontal divergence.

2.6.3 Moisture variables

Cloud water, rain water, snow, and ice are considered zero on in
ow and zero gradient

on out
ow. There is an option to specify the boundary values in the same way as for the

other variables (e.g., these variables may be known in a one-way nesting application).

2.7 Upper radiative boundary condition

An option in the nonhydrostatic model is the upper radiative boundary condition.

Klemp and Durran (1983) and Bougeault (1983) have developed an upper boundary

condition that allows wave energy to pass through unre
ected. It can be expressed for

hydrostatic waves as

p̂ =
�N

K
ŵ; (2:7:1)

where p̂ and ŵ are horizontal Fourier components of pressure and vertical velocity

respectively, � and N are the density and buoyancy frequency near the model top, and

K is the total horizontal wavenumber of the Fourier component. This expression should

be enforced for all components if the energy transport is to be purely upward with no

re
ection.

The upper boundary condition is combined with the implicit pressure/vertical

momentum calculation. Before either value at time n + 1 is known, the values at the

top model level (w1 is staggered half a grid length above p1) can be expressed as

pn+11 = b + awn+1
1 ; (2:7:2)

where the coe�cient a(x; y; t) is dependent upon the thermodynamic structure and the

bottom boundary condition on w in the model column. It varies within only 5 per cent

of a constant value even with high terrain, and is also not strongly time-dependent. The
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value of b(x; y; t) depends on pressure and most of the pressure tendency terms, and both

a and b are known at this stage. So transforming, assuming a varies little about a non-zero

constant and taking a mean value a

p̂ = b̂ + aŵ: (2:7:3)

Combining (2.7.3) with the radiative condition (2.7.1) for wavenumber K = 2�=�, taking

�N at the top of the model, and eliminating p̂, gives

ŵ =
Kb̂

�N � aK
: (2:7:4)

Using a limited-area 2D cosine transform, the forward transform, multiplication and

backward transform can be combined into a single operator on the b �eld to give wn+1
1 .

Hence

wIJ =

I+6X
i=I�6

J+6X
j=J�6

�ijbij ; (2:7:5)

where we have localized the transform to 13� 13 points, and array � can be precalculated

and kept constant for the time integration. The elements of � are found from

�ij =

6X
k=0

6X
l=0

�i�j�k�l

36
cos

2�ki

12
cos

2�lj

12
f(K);

(2:7:6)

with f(K) = K

�N�aK
and K = (k̂2 + l̂2)

1

2 . � = 1 except for limits of summations where

� = 1

2
.

Following the suggestion of Klemp and Durran, the �nite di�erencing of pressure

gradients and divergences should be taken into account in de�ning the e�ective

wavenumbers. For a B-grid staggering, the e�ective wavenumbers can be expressed in

terms of the dimensionless wavenumbers, k and l, where

k̂ =
2

�x
sin

k�

12
cos

l�

12
; (2:7:7a)

l̂ =
2

�x
sin

l�

12
cos

k�

12
; (2:7:7b)

and �x is the grid length.

The scheme is summarized as follows; by the precalculation of parameters a and �N

for the model domain, use of (2.7.6) to precalculate coe�cients �, then implementation of

(2.7.5) during the simulation.
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