
3. The Mesh re�nement scheme

The 2-way interactive mesh re�nement scheme is constructed to allow for an arbitrary

number of overlapping and translating rectangular grids with an arbitrary number of

re�nement levels. The grids must be aligned with the model coordinates (no rotating

meshes), and the mesh re�nement ratio of the temporal and spatial grid increments is

common for all meshes, and currently set to three. Vital parts of this re�nement scheme

are the interpolation routines (Smolarkiewicz and Grell, 1992), which are used upon

initialization of new nests as well as for de�ning the boundaries of the �ne meshes. If

the user can supply his own analysis for the �ner grids (or a �ner grid), the interpolated

�elds can be overwritten. In the following section we describe the heart of the scheme, the

monotone interpolation routines.

3.1 The monotone interpolation routines

The most vital element of any mesh re�nement scheme is an accurate and e�cient

interpolation procedure. A complaint about traditional polynomial-�tting methods used

for interpolating scalar �elds de�ned on a discrete mesh is that they often lead to spurious

numerical oscillations in regions of steep gradients of the interpolated variables. In order

to suppress computational noise, which is characteristic of quadratic and higher-order

interpolation schemes, one often implements a smoothing procedure or increased di�usion.

These, however, introduce excessive numerical di�usion that smears out sharp features

of interpolated �elds. A more advanced approach invokes the so-called shape-preserving

interpolation, which incorporates appropriate constraints on the derivative estimates used

in the interpolation schemes (see Rasch and Williamson (1990) for a review). In MM5

we consider as an alternate approach a class of schemes derived from monotone advection

algorithms (Smolarkiewicz and Grell, 1992). Smolarkiewicz and Grell (1992) show that

the interpolation problem becomes identical to the advection problem, when the distance

vector is replaced by the velocity vector (see also the end of this section). Here we will

describe the implementation of the advection algorithm used in MM5. The interested

reader is referred to Smolarkiewicz and Grell (1992) for a detailed derivation of the

\advection-interpolation" equivalence.

Since shape preservation and monotonicity are important in the interpolation problem,
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we chose the Flux Corrected Transport (FCT) scheme that uses the high-order accurate

constant-grid-
ux dissipative algorithms developed by Tremback et al. (1987). We will

�rst describe, in abbreviated form, a general FCT algorithm, as used in MM5. Given

the exactness of the alternate-direction representation of the interpolation algorithm,

it is su�cient to consider only one-dimensional FCT schemes. Starting with the one-

dimensional advection equation in 
ux-form
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; (3:1:1)

where � is a scalar variable advected with a 
ow �eld u(x; t), an FCT advection scheme

may be compactly written as

�n+1i = �n+1i � ( ~Ai+1=2 � ~Ai�1=2); (3:1:2)

where � denotes a low-order, monotone solution to (3.1.1), and ~A is the antidi�usive 
ux,

limited such as to ensure that the solution (3.1.2) is free of local extrema absent in the

low-order solution. Note that
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where

Ai+1=2 � FHi+1=2 � FLi+1=2; (3:1:4)

with FH and FL denoting 
uxes from a high-order and a low-order advection scheme,

respectively. [ ]+ �max(0; ) and [ ]� � min(0; ) are the positive- and the negative-part

operators, respectively, and
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where AINi , AOUTi are the absolute values of the total incoming and outgoing A-
uxes,

(3.1.4), from the i-th grid box, respectively. " is a small value, e.g. � 10�15, and allows

for e�cient coding of �-ratios when AIN
i

or AOUT
i

vanish. The limiters �MAX
i and �MIN

i

de�ne monotonicity of the scheme (i.e., by design �MIN
i � �n+1 � �MAX

i ), and they are

traditionally speci�ed (Zalesak 1979) as
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A shape-preserving interpolation scheme requires less restrictive monotonicity

constraints than a conservative advection scheme. The minima over � ratios appearing

in (3.1.3) ensure that the antidi�usive 
ux attributed to the i + 1=2 position on the grid

does not contribute to the generation of spurious extrema, either in gridbox i or in gridbox

i+1. However, monotonicity of the interpolation scheme only requires that �n+1i =  (xo)

is free of spurious extrema. Consequently, equation (3.1.3) may be replaced by
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Furthermore, since the e�ective 
ow �eld is constant, and therefore incompressible, the

limiters in (3.1.6) may be simpli�ed to
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where the redundant dependence of the limiters on �n+1i has been retained to ensure

strictly nonnegative values of the � ratios in (3.1.5) (cf., Section 3.1 in Smolarkiewicz and

Grabowski, 1990). Since the low-order solution may always be written as an old value,

minus the divergence of 
uxes from the low-order scheme, the entire algorithm consisting

of (3.1.2), (3.1.30), (3.1.4), (3.1.5), and (3.1.60) is in the form of a general advection scheme.

The advection schemes used to calculate the high- and low-order 
uxes for the above

equations are from Tremback et al. (1987). They derive as follows. Starting with the 
ux

form of the one-dimensional advection equation (3.1.1) in �nite di�erence form
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where
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were used. Following Tremback et al. (1987), the solutions for the even-order schemes

which are used in the mesh re�nement scheme are then given by
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for second order accuracy;
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and for fourth order accuracy;
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for sixth order accuracy; � is de�ned as

� = U
�t

�x
: (3:1:13)

In MM5, equations (3.1.10 - 3.1.12) are used together with (3.1.1), (3:1:30), (3.1.4), 3.1.5),

and (3:1:60) to solve the interpolation problem. Note that the velocity vector, is replaced by

the distance vector, Xd, which, with a mesh-re�nement ratio of three, simply becomes 1=3

or 2=3. For interpolating boundary conditions to the �ner meshes, fourth order accuracy
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is used, while for new nest initialization, sixth order accuracy is used. While the new

nest initialization covers the whole domain, boundary interpolation is performed for the

outermost 2 rows and columns of the nest. Two rows were necessary to ensure that the

same operators were applied to each nested grid-point (including fourth-order di�usion).

3.2 Overlapping and moving grids

The mesh-re�nement scheme allows for overlapping grids on the same nest-level. To

ensure numerical stability, the solution in the overlap region has to be identical. To

accomplish this, after each time-step of the grids in question, the boundary conditions

in the overlap regions are provided by the overlapping mesh. It is very important that this

procedure be performed at every timestep.

Nests can also be moved at any time in the forecast. This can be done many times,

and for any distance (integer number of grid points). The user may also move the nests

automatically if he supplies an algorithm to do so. Upon a move, a new nest initialization

is performed �rst. Then all high-resolution information from the previous location of the

mesh is used to overwrite the �elds of the newly initialized mesh. Therefore, to ensure

best use of high resolution information, it is better to move a nest more often and for a

smaller distance.

3.3 The feedback to the coarser grids

Since the mesh re�nement ratio in MM5 is set to three, a higher resolution mesh has

to be integrated three times as often as its \Mother Domain"(MD), where MD means the

coarser domain fromwhich it gets its boundary conditions. To keep the solutions in a 2-way

interaction from diverging, the meteorological �elds have to be fed back from the higher-

resolution mesh to its MD. This is done at the end of the three time-step integration.

Naturally, when this is done without smoothing or averaging, the solution on the MD

will appear somewhat noisy (diluted with small-scale information). To avoid numerical

instability, the following methods are supported in MM5 to remove non-resolvable noise

from the MD. Note that these smoothers are only applied over an interior area that is

completely determined by the higher resolution domain. It is important that input into

the nest, and feedback back to the MD does not overlap. The smoother that is used by
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the MM5 system in various forms was de�ned by Shapiro (1970) as
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3.3.1 A Nine-point averager

This method was in the original MM4 nested version (Zhang et al. 1986). It is a

feedback method that averages information for a whole MD grid box (surrounding and

centering on the nested grid point). However, it does not take out all non-resolvable

information on the MD. It also imposes a severe restriction on the terrain for the hydrostatic

model. In case of overlapping and moving nests on several nest levels, it is very elaborate

and complicated to apply. It is still an option in the model, because it may be useful

for simpler applications (like one coarse and one nested domain). However, care must be

taken to create a terrain data set that is consistent with this method. The operator that

is applied to the nested grid-points (note that nothing is done to the MD) is de�ned by

using � = 0:5 in (3.3.1).

3.3.2 A Smoother-Desmoother

The smoother-desmoother is a �lter that removes 2�x waves and damps short waves,

but leaves long waves almost una�ected. It is muchmore selective than di�usive smoothers.

It is applied to the \coarser grid" only in the area where the coarse grid values are

overwritten with the nested grid values.

A single pass of the smoother-desmoother involves two steps. Equation (3.3.1) is

used �rst to smooth the �elds, then to desmooth the �elds. �1 = 0:50 is used for the

smoothing coe�cient, and �2 = �0:52 for the desmoothing coe�cient. The �rst step

strongly smoothes the �eld, completely removing the 2�x wave, and the second step

attempts to restore the other waves to their original amplitudes. There are two passes of

the smoother-desmoother applied in the model.
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