
5. Treatment of physical processes

5.1 Horizontal di�usion

Two types of di�usions are used to control nonlinear instability and aliasing. These

are a second-order di�usion of the form

FH2� = p�KHr
2
��; (5:1:1)

where � is any prognostic variable, and a more scale-selective fourth-order form

FH4� = p�K 0

Hr
4
��; (5:1:2)

where

K 0

H = �s2KH (5:1:3);

The second order di�usion is only used in the coarsest domain for the row and column of

the grid points next to the lateral boundaries, while the fourth-order form is used in the

interior of the coarsest domain as well as in the entire domain of any re�nement mesh.

The horizontal di�usion coe�cient KH consists of a background value KH0 and a

term proportional to the deformation D

KH = KH0 + :5k2�s2D (5:1:4)

where k is the von Karman constant and D is given by (Smagorinski et al. 1965)

D =

"�
@u

@x
�
@v

@y

�2
+

�
@v

@x
+
@u

@y

�2# 1
2

: (5:1:5)

A background value of KH is a function of grid size and time step, where

KH0 = 3:� 10�3
�x2

�t
: (5:1:6)

Note that the horizontal operators r4 and r2 are applied on constant sigma surfaces. To

ensure computational stability, an upper limit of �x2

64�t
is imposed on KH

5.2 Dry Convective Adjustment

There may be situations in which super-adiabatic layers are produced in the model

atmosphere. When this happens, and there is no call to the Blackadar planetary boundary
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layer parameterization, a simple scheme is used to remove any unstable layers. The scheme

operates on the entire sounding at once and conserves the vertical integral of internal and

potential energy. When the model lapse rate of potential temperature @�
@p

exceeds a critical

value
�
@�
@p

�
c
, the sounding is adjusted so that (1) mass-weighted mean temperature is

unchanged, and (2) the potential temperature lapse rate after adjustment equals
�
@�
@p

�
c
.

Given n layers in which the model potential temperature lapse rate exceeds the critical

value, the �rst constraint gives

(Tn +�Tn)��n + (Tn�1 +�Tn�1)��n�1 + :::+ (T1 +�T1)��1 = �T

nX
i�1

��i; (5:2:1)

where Ti are the adjustments to be added to the temperature at layer i, Ti and �i are

the temperature and thickness of the sigma layers, and �T is the mass weighted mean

temperature. The second constraint gives

(Ti +�Ti)�i � (Ti�1 +�Ti�1)�i�1 =

�
@�

@p

�
(pi � pi�1) i = 2; :::; n; (5:2:2)

where �i is the Exner function. There are n equations that can be solved for n variables

�Ti. The Gaussian elimination method is used to solve the n � n matrix system. After

adjustment, the entire sounding is rechecked for unstable layers.

The moisture in the adjusted layers is assumed constant in the vertical, i.e.,

qvi = �qv =

Pn
i=1 qvi��iPn
i=1��i

(5:1:3)

5.3 Precipitation physics

MM5 has many di�erent choices to treat precipitation physics. They are usually

divided into two di�erent groups: explicit and implicit schemes. Explicit schemes treat

resolved precipitation physics while implicit schemes treat the non-resolved precipitation

physics. Both may be operating at a grid-point at the same time. A commonly used

terminology of \convective" versus \stable" precipitation is generally not acceptable on

�ner grid-resolutions, where convective precipitation is quite often resolved. Hence in the

following subsections we will use resolved/non-resolved and explicit/implicit as common

terminologies. As two additional options, MM5 allows for dry runs, where moisture is
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treated as a passive variable (no explicit and implicit schemes are applied). Another

option is a \fake dry run", where only the e�ects of the latent heat release are removed.

These 2 options do not require any further description and will not be discussed in the

following subsections.

5.3.1 Resolvable scale precipitation processes

These schemes are usually activated whenever grid-scale saturation is reached.

In other words, they treat resolved precipitation processes. The most simple way

that sometimes is still used on larger-scales, is to simply remove super-saturation as

precipitation and add the latent heat to the thermodynamic equation. More sophisticated

schemes carry additional variables such as cloud and rainwater (subsection 5.3.1.1), or

even ice and snow (subsection 5.3.1.2). Both schemes described next are enhancements of

MM4's original scheme (Hsie 1984).

5.3.1.1 Explicit treatment of cloudwater, rainwater, snow, and ice

This scheme optionally allows for ice-phase processes below 0 �C, where cloud water

is treated as cloud ice and rain is treated as snow (Dudhia 1989). The equations for water

vapor, cloud water (ice) and rain water (snow) mixing ratios are given by the following

@p�qv

@t
= � m2

�
@p�uqv=m

@x
+

@p�vqv=m

@y

�
�

@p�qv _�

@�
+ �nhqvDIV

+ p�( � PRE � PCON � PII � PID) + Dqv; (5:3:1:1:1)

@p�qc

@t
= � m2

�
@p�uqc=m

@x
+

@p�vqc=m

@y

�
�

@p�qc _�

@�
+ �nhqcDIV

+ p�(PID + PII � PRC � PRA + PCON ) + Dqc; (5:3:1:1:2)

@p�qr

@t
= � m2

�
@p�uqr=m

@x
+

@p�vqr=m

@y

�
�

@p�qr _�

@�
+ �nhqrDIV

�
@Vf�gqr

@�
+ p�(PRE + PRC + PRA) + Dqr ; (5:3:1:1:3)

where PCON is condensation (and freezing for T < 0 �C) of water vapor into cloud (ice) at

water saturation, PRA is accretion of cloud by rain (ice by snow), PRC is conversion of cloud

to rain (ice to snow) and PRE is evaporation (sublimation) of rain (snow). Additional ice

processes are PII, the initiation of ice crystals, and PID sublimation/deposition of cloud
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ice (Fig. 5.1). The fall speed of rain or snow is Vf . The term �nh is 1 for nonhydrostatic

and 0 for hydrostatic simulations.

In all the relevant processes, Marshall-Palmer size distributions are assumed for rain

and snow and droplet fall speeds are taken to be of the form V (D) = aDb, where D is

the diameter. For rain, the Marshall-Palmer intercept parameter is N0 = 8 � 106 m�4,

a = 841:99667 and b = 0:8 for V in m s�1and D in meters, while for snow N0 = 2 � 107

m�4, a = 11:72 and b = 0:41.

The saturated vapor pressure over water (in mb) is taken to be

esw = 6:112exp

�
17:67

�
T � 273:15

T � 29:65

��
; (5:3:1:1:4)

and for ice

esi = 6:11exp

�
22:514 �

6150

T

�
: (5:3:1:1:5)

The saturated water vapor mixing ratio is then given by

qs =
0:622es

p � es
:

PRC, the autoconversion term is represented by

PRC = max[k1(qc � qcrit); 0]; (5:3:1:1:6a)

for cloud to rain and by

PRC = max[(qc � Mmaxnc)=�t; 0]; (5:3:1:1:6b)

for ice to snow, where k1 = 10�3 s�1, qcrit = 0:5 g kg�1, Mmax = 9:4� 10�10 kg and nc

is given by Fletcher's (1962) formula for the number concentration of ice nuclei (kg�1),

nc = 10�2exp[0:6(273:15 � T )]=�:

PII, the initiation of ice crystals is given by

PII = max[(M0nc � qc)=�t; 0]; (5:3:1:1:7)

as long as su�cient supersaturation over ice exists, where M0 = 10�12 kg.
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Figure 5.1 Box diagram illustrating the processes in the moisture scheme for ice
(crystals), cloud(liquid), snow and rain. PCON, condensation/evaporation of
cloud; PRA, accretion; PRC, conversion; PID, deposition onto ice crystals; PRE,
evaporation for rain and deposition/sublimation for snow; PMF, melting/freezing
due to advection; PII, initiation of ice crystals; and PRM, melting of snow due to
fall.
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PRA, the accretion rate is given by

PRA =
1

4
��aqcEN0

�(3 + b)

�3+b
; (5:3:1:1:8)

where � is the gamma-function, E is the collection e�ciency (1 for rain and 0.1 for snow)

and � is given by

� =

�
�N0�w

�qr

�1=4
:

Here �w is the mean density of rain or snow particles (1000 and 100 kg m�3, respectively.)

PID, the deposition onto or sublimation of ice particles is found from

PID =
4Di(Si � 1)�nc

A + B
; (5:3:1:1:9)

where

Si = qv=qsi;

A =
L2s�

KaRvT 2
; B =

1

qsi�
:

Ls is the latent heat of sublimation, Ka is the thermal conductivity of air, Rv is the gas

constant for water vapor, and � is the di�usivity of vapor in air. The mean diameter of ice

crystals, Di, is found from the mean mass, Mi = qc=nc, and the mass-diameter relation

for hexagonal plates from Rutledge and Hobbs (1983), Di = 16:3M
1=2
i meters.

PRE, the evaporation of rain and sublimation/deposition of snow can be determined

from

PRE =
2�N0(S � 1)

A + B

"
f1

�2
+ f2

�
a�

�

�1=2
S1=3c

�(5=2 + b=2)

�5=2+b=2

#
; (5:3:1:1:10)

with the relevant N0, a, and b chosen for rain or snow, and S = Sw or Si. The de�nition

of A and B also change from the above for rain, substituting Lv for Ls and qsw for qsi. For

snow, 2� is replaced by 4. The values of f1 and f2 are 0.78 and 0.32 for rain and 0.65 and

0.44 for snow. The term in brackets represents a distribution-integrated ventilation factor,

F = f1 + f2S
1=3
c Re1=2, with Sc = �=��, the Schmidt number, and Re = V (D)D�=�, the

Reynolds number, and � is the dynamic viscosity of air.
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PCON , the condensation is determined as follows. Temperature, water vapor mixing

ratio and cloud water are forecast �rst: these preliminary forecast values are designated

by T �, q�v and q�c . We de�ne

�M = q�v � q�vs;

where q�vs is the saturated mixing ratio at temperature T �,

(1) if �M > 0 (supersaturation),

PCON =
r1�M

�t
; (5:3:1:1:11a)

where

r1 =
1

1 +
L2vq

�

vs

RvcpmT�2

;

(2) if �M < 0 and qc > 0 (evaporation),

PCON = �min

�
�
r1�M

�t
;
q�c
�t

�
; (5:3:1:1:11b)

(3) if �M < 0 and qc = 0 ,

PCON = 0: (5:3:1:1:11c)

The PCON term is computed diagnostically so no iteration is needed.

Additionally, as snow falls through the 0 �C level, it immediately melts to rain. This

process is given by

PRM = �
�gVfqr

�p
: (5:3:1:1:12)

Advection of ice or snow downwards or of rain or cloud upwards through this level also

melts or freezes the particles, where

PMF = �
!(qc + qr)

�p
: (5:3:1:1:13)

In both cases, the 0 �C isotherm is taken to be at a full model level boundary. Melting

occurs at the level immediately below this boundary and freezing above it.

The latent heating is thus

_Q = L(PRE + PID + PII + PCON ) + Lm(PRM + PMF ); (5:3:1:1:14)
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where L = Lv for T > 0 �C and L = Ls for T < 0 �C, and Lm = Ls �Lv.

The fall speed is mass-weighted and so is determined from

Vf = a
�(4 + b)

6
��b: (5:3:1:1:15)

The fall term in (5.3.1.1.3), the rain and snow prediction equation, may be calculated on

split time-steps, �t0, in the explicit moisture routine. This ensures that Vf�t
0=�z < 1,

which is required for numerical stability. The size of �t0 is determined independently in

each model column based on the maximum value of Vf�t=�z in the column, where �t is

the model time step.
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5.3.1.2 Mixed-Phase Ice Scheme

This scheme is based on the simple ice phase scheme described in the previous

subsection, but it does not immediately freeze or melt water and ice. Supercooled water

can exist below 0�C in this scheme, as can unmelted snow exist above 0�C. Separate arrays

are used to store vapor, cloud, rain, cloud ice and snow.

Homogeneous freezing of cloud water to cloud ice occurs immediately below -40�C

and cloud ice melts immediately above 0�C. Snow melts according to

PSM = �
2�N0s

Lf
Ka(T � T0)

"
f1

�2
+ f2

�
a�

�

�1=2
S1=3c

�(5=2 + b=2)

�5=2+b=2

#
; (5:3:1:2:1)

where f1 = 0:78 and f2 = 0:31 (Rutledge and Hobbs 1984), and the other constants are

the ones relevant to snow in subsection (a). Evaporation of melting snow is modi�ed to

use the values of A and B for rain as in (5.3.1.1.10).

Heterogeneous freezing of cloud water to cloud ice is also included following Bigg

(1953),

PCI = B0fexp[A0(T0 � T )]� 1g
�q2c
�wNc

(5:3:1:2:2)

where A0 = 0:66K�1, B0 = 100m�3s�1 and the number concentration of cloud droplets

per unit volume of air, Nc = 1010m�3.

Sekhon and Srivastava (1970) determined that better comparison against observed

snow distributions can be obtained in theoretical studies if the slope intercept value for

the size distribution is expressed as

N0s(m
�4) = 1:05R�0:94 (5:3:1:2:3)

where, N0s is the slope intercept and R (m s�1) is the snow fall rate. Thus a variable

intercept parameter replaces the constant N0s used in the simple ice scheme.

This can be expressed in terms of snow mixing ratio, qS , as

N0s =

8<
:1:05

"
1

�qS�

�
��S

�qS

� b
4

#0:949=
;

4
0:94b+4

(5:3:1:2:4)

where, ��1 = 6�w
a�(4+b)

.
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5.3.2 Implicit cumulus parameterization schemes

5.3.2.1 The Kuo scheme

In this scheme, the amount of convection is determined by the vertically integrated

moisture convergence. The feedback to the larger scale (the vertical distribution of

heating and moistening), is determined with the help of the normalized vertical pro�les of

convective heating (Nh(�)) and moistening (Nm(�)), and a vertical eddy-
ux divergence

of water vapor associated with cumulus convection Vqf (�). Therefore, equations (2.1.3),

(2.2.5) and (5.3.1.1.1) can be rewritten to include the convective-scale 
uxes as

@p�T

@t
= � m2

�
@p�uT=m

@x
+

@p�vT=m

@y

�
�

@p�T _�

@�

+ p�
!

�cp
+ p�

Lv

cpm
Nh(�)(1 � b)gMt + DT ; (5:3:2:1:1)

@p�T

@t
= � m2

�
@p�uT=m

@x
+

@p�vT=m

@y

�
�

@p�T _�

@�
+ T:DIV

+
1

�cp

�
p�
Dp0

Dt
� �0gp

�w � Dp0

�
+ p�

Lv

cpm
Nh(�)(1� b)gMt + DT ; (5:3:2:1:2)

@p�qv

@t
= � m2

�
@p�uqv=m

@x
+

@p�vqv=m

@y

�
+ �nhqvDIV

+ p�( � PRE � PCON � PII � PID) +p
� bgMtNm(�)+p

�Vqf (�) + Dqv ; (5:3:2:1:3)

where the vertically integrated moisture convergence Mt is

Mt =

�
m2

g

�Z 1

0

r _p�V qv

m
d�: (5:3:2:1:4)

A portion (1 � b) of Mt is assumed to condense and precipitate, where the remaining

fraction b is assumed to moisten the grid column. Following Anthes(1977), b is a function

of the mean relative humidity RH of the column, where

b = 2(1 �RH) (5:3:2:1:5)

for RH � 0:5, and b = 1 otherwise.

The vertical pro�les of heating and moistening
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The normalized, nondimensional functions for the vertical pro�les of heating and

moistening and the divergence of the vertical eddy 
ux of water vapor are subject to the

constraints Z 1

0

Nh(�)d� = 1; (5:3:2:1:6)

Z 1

0

Nm(�)d� = 1; (5:3:2:1:7)

Z 1

0

Vqf (�)d� = 0: (5:3:2:1:8)

Anthes et al. (1987) assume simple relationships for these functions, which are

derived from budget studies. For the convective heating pro�le, Nh, they observe that

the convective heating often has a parabolic shape with a maximum in the upper half of

the cloud. Hence

Nh(�) = a1x
2 + a2x + a3; (5:3:2:1:9)

where

x = ln� (5:3:2:1:10)

with the boundary conditions:

Nh(�) = 0; at xb = ln�b; and xu = ln�u (5:3:2:1:11)

at cloudbase (�b) and cloud top (�u), and

N 0

h(�) =
@Nh(�)

@�
= 0 (5:3:2:1:12)

at �x, which is de�ned as

�x =
xu + xb

2
; (5:3:2:1:13)

where subscripts u and b stand for the top and the base of the cloud. Using (5.3.2.1.6), a1

can be shown to be

a1 =
2

x3u � x3b + x2uxb � xux
2
b

: (5:3:2:1:14)

The vertical moistening pro�le, Nm(�), is simply given following Anthes (1977) as

Nm(�) =
(1�RH(�))qvs(�)R 1

�ktop
(1�RH(�0))qvs(�0)d�0

: (5:3:2:1:15)
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Divergence of the Vertical Eddy Flux of Water Vapor Vqf (�)

The divergence of the vertical eddy 
ux of water vapor is de�ned as

Vqf (�) =
@ _�0q0v
@�

: (5:3:2:1:16)

If one assumes a small fraction of convective cloud cover, and the cloud vertical motion _�c

is much larger than the larger-scale vertical motion, _� (5.3.2.1.16) can be rewritten as

Vqf (�) =
a

1� a

@

@�
[ _�c(qvc � qv)]; (5:3:2:1:17)

where qvc is the mixing ratio in the cloud.

According to Anthes (1977), the fractional coverage a is calculate using

a =
(1� b)gMtR p�

0

�
�!c

@qvc
@p

+ @qvc
@te

�
dp
; (5:3:2:1:18)

which is the ratio between the grid-average condensation rate and that of a single cloud.

The term @qvc
@te

represents the contribution to the rate of change of cloud-mixing ratio

by entrainment (Anthes 1977). Anthes et al. (1987) assume a typical value for the

denominator of approximately 4:3� 10�3cb s�1 and then rewrite (5.3.2.1.17) as

Vqf (�) =
(1� b)gMt

4:3� 10�3
@

@�
[ _�c(qvc � qv)]: (5:3:2:1:19)

For further simpli�cation, Anthes et al. (1987) next assume that _�c also has a parabolic

shape and can be expressed as

_�c = c1x
2 + c2x+ c3; (5:3:2:1:20)

where x = lnp, and _�c = 0 at cloud-top and base. Furthermore, qvc � qv is assumed to

have a parabolic pro�le with pressure

qvc � qv = b1x
2 + b2x + b3 (5:3:2:1:21)

with

x = ln[(1� �)(100 � pt) + pt]: (5:3:2:1:22)
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The procedure

The simple procedure can be summarized as follows:

1. ComputeMt from (5.3.2.1.4)

2. Check whether Mt � 3:� 10�5kg m�2 s�1, a critical threshold value.

3. Check the model sounding for convective instability to see if convection is possible.

4. Determine cloud top and base from sounding.

5. Check whether cloud-depth is larger than a critical value (�� � :3)

6. Calculate the normalized vertical pro�le functions

7. Calculate _�c on the full � levels from (5.3.2.1.20)

8. Compute qvc � qv from (5.3.2.1.21)

9. Calculate Vqf from (5.3.2.1.19)
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5.3.2.2 A modi�ed Arakawa-Schubert scheme

The version of the Arakawa-Schubert scheme used here was developed by Grell (1993).

In contrast to the original scheme (Arakawa and Schubert 1974, AS), it includes moist

convective-scale downdrafts. Other changes have been implemented to also allow the

scheme to be used successfully in mesoscale models in mid-latitudes (Grell et al. 1991).

To simplify the description we have adapted a terminology originally introduced by Betts

(1974), which splits the parameterization problem from the modeling view in three parts:

static control, dynamic control, and feedback. The static control includes usually a

cloud-model and calculates cloud thermodynamic properties, the dynamic control is what

determines the amount and location of the convection, and the feedback determines the

vertical distribution of the integrated heating and moistening.

Static control

As with all commonly used one dimensional steady state cloud models (plumes,

bubbles, or jets), our AS scheme makes use of the assumption that entrainment occurs

over the depth of the buoyant element according to the entrainment hypothesis

� =
1

m(z)

@m(z)

@z
�
:2

r
; (5:3:2:2:1)

where � is the total net fractional entrainment rate of the buoyant element,m its mass 
ux

(mu for updraft,md for downdraft), and r its radius. Following AS, the dependence on the

radius is not explicitly used. However, implicitly, the radius of the cloud is assumed to be

constant. Detrainment was originally only assumed to happen at the cloud top, but this

assumption may easily be varied (Houze et al. 1979, Lord 1978) by de�ning a fractional

detrainment rate, �ud, and rewriting (5.3.2.2.1) for the updraft of cloud type � as

�u = �ue � �ud =
1

mu(z)

@mu(z)

@z

=
1

mu(�; z)

��
@mu(�; z)

@z

�
ent

�

�
@mu(�; z)

@z

�
det

� (5:3:2:2:2)

where �ue is the gross fractional entrainment rate, and �u is the total net fractional

entrainment rate of the updraft. Subscripts ent and det indicate changes due to

entrainment and detrainment, respectively. Looking at the budget of a thermodynamic
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variable in an in�nitesimal layer of the updraft we get

@mu�u

@z
=

�
@mu

@z

�
e

~��

�
@mu

@z

�
d

�u + Su: (5:3:2:2:3)

Together with (5.3.2.2.2) this leads to the steady state plume equation

@�u(�; z)

@z
= �ue(~�(z) � �u(�; z)) + Su (5:3:2:2:4)

where � is a thermodynamic variable, the tilde denotes an environmental value, and

subscript u denotes an updraft property. S stands for sources or sinks. Similarly, for

the downdraft, we can rewrite equations (5.3.2.2.2) and (5.3.2.2.4) as

�d = �de � �dd = �
1

md(z)

@md(z)

@z

= �
1

md(z)

��
@md(z)

@z

�
ent

�

�
@md(z)

@z

�
det

� (5:3:2:2:5)

and
@�d(z)

@z
= ��de(~�(z) � �d(z)) + S; (5:3:2:2:6)

where subscript d denotes a downdraft property. For moist static energy

~h(z) = Cp ~T (z) + gz +L~q(z); (5:3:2:2:7)

equations (5.3.2.2.4) and (5.3.2.2.6) simply become

@hu(�; z)

@z
= �ue(~h(z) � hu(�; z)) (5:3:2:2:8)

and
@hd(z)

@z
= ��de[~h(z) � hd(z)]: (5:3:2:2:9)

Next, for the moisture budget of the updraft, we use

�u = qu(�; z) + ql(�; z) (5:3:2:2:10)

and

Su = �c0mu(�; z)ql(�; z): (5:3:2:2:11)
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Here Su is the total water that is rained out, c0 is a rainfall conversion parameter and

could be a function of cloud size or wind shear, ql is the suspended liquid water content of

the cloud, and qu is the water vapor mixing ratio inside the updraft. Equation (5.3.2.2.4)

can then be rewritten as

@(qu(�; z) + ql(�; z))

@z
= �ue(~q(z) � qu(�; z) � ql(�; z)) + Su: (5:3:2:2:12)

For the downdraft, the equation for the water vapor reads

@qd(z)

@z
= ��de[~q(z) � qd(z)] + Sd: (5:3:2:2:13)

Sd here is a source; namely the evaporation of rain. Assuming saturation in the updraft

and downdraft, we can make use of the approximate equation

qc(�; z) = ~q� +



1 + 


1

L
[hc(�; z) � ~h�(z)]; (5:3:2:2:14)

where


 =
L

cp

�
@~q�

@T

�
P

(5:3:2:2:15)

the asterisk denotes a saturated value, and hc here stands for the moist static energy in the

cloud (updraft or downdraft), if saturation is assumed. Next, to arrive at a usable closure,

the up- and down-draft mass 
uxes are normalized by the updraft base (mb(�)) mass 
ux,

and the downdraft base m0(�) mass 
ux of a subensemble. Hence, for the updraft,

mu(�; z) = mb(�)�u(�; z) (5:3:2:2:16)

and

�ue � �ud =
1

�u(z)

@�u(z)

@z
: (5:3:2:2:17)

Equivalently, for the downdraft we may write

md(z) =m0(�)�d(�; z) (5:3:2:2:18)

and

�de � �dd =
1

�d(z)

@�d(z)

@z
: (5:3:2:2:19)

52



Here, m0 is the mass 
ux at the originating level and �d, as �u in equation (5.3.2.2.16), is

the normalized mass 
ux pro�le.

To leave only one unknown variable, we follow Houze et al. (1979) and make the

originating mass 
ux of the downdraft a function of the updraft mass 
ux and reevaporation

of convective condensate. Therefore, the condensate in the updraft

Cu(�)d� = mbd�

�Z zT

zB

�u(�; z)Sudz)

�
� I1mbd� (5:3:2:2:20)

is apportioned according to

Cu(�)d� = (Rc(�) +Ed(�))d� = (�(�) + �(�))Cu(�)d�; (5:3:2:2:21)

where � + � = 1 and Ed, the evaporation of condensate in the downdraft for cloud type

�, can be written as

Edd� =m0(�)d�

�Z z0

0

�d(�; z)Sddz

�
� I2m0d�: (5:3:2:2:22)

From equations (5.3.2.2.20-5.3.2.2.22) we see that

Edd� = �Cud� = �I1mbd� = I2m0d� (5:3:2:2:23)

and hence

m0(�) =
�(�)I1mb(�)

I2(�)
= �(�)mb(�): (5:3:2:2:24)

Here 1�� is the precipitation e�ciency. Following Fritsch and Chappell (1980), it is made

dependent on the windshear.

To solve the above equations we need to specify boundary conditions as well as make

some arbitrary assumptions. For the updraft we assume

hu(zb) =MAX(~h(z)) (5:3:2:2:25)

with

z � zb

and

hu(�; zT ) = ~h�(zT ); (5:3:2:2:26)
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where the asterisk denotes a saturation value. Similarly, for the downdraft,

hd(z0) =MIN(~h(z)): (5:3:2:2:27)

Physically, for both updraft and downdraft, we allow for maximum buoyancy. The

boundary conditions for the updraft are di�erent than in the original scheme, which had

a rigid dependence on the planetary boundary layer height. In the original scheme, the

mixed layer was assumed to be well mixed, and the cloud base was located on top of the

mixed layer. In semi-prognostic tests (Grell et al. 1991) large variations of moist static

energy pro�les were found in very low levels of the troposphere. This was caused by cold

downdraft out
ow. Naturally, the in
ow to an updraft will not be a mixture of downdraft

air and the more buoyant air; it is more likely the air with high moist static energy from

the layer above the downdraft out
ow. Furthermore, compensatory subsidence should only

continue to the level from which the updraft draws its air. Compensatory uplifting may

be required in very low layers of the troposphere because of the downdraft mass 
ux.

Feedback

The feedback to the larger-scale environment is expressed in a convenient form as�
@s

@t

�
cu

=
1:

�

@

@z
Fs�Ll; (5:3:2:2:28)

�
@q

@t

�
cu

= �
1:

�

@

@z
Fq+l �R; (5:3:2:2:29)

where s is the dry static energy (s = cpT + gz). The convective-scale 
uxes within a grid

box are de�ned as

Fs�Ll � Fs � LFl (5:3:2:2:30)

Fq+l � Fq + Fl (5:3:2:2:31)

where Fs is the 
ux of dry static energy, Fq is the 
ux of water vapor, and Fl is the 
ux

of suspended cloud liquid water. These are de�ned as

Fs(z) �+

Z
�

�u(�; z)[su(�; z) � �s(z)]mb(�)d�

�

Z
�

�d(�; z)[sd(�; z) � �s(z)]m0(�)d�

(5:3:2:2:32)
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Fq(z) �+

Z
�

�u(�; z)[qu(�; z) � �q(z)]mb(�)d�

�

Z
�

�d(�; z)[qd(�; z) � �q(z)]m0(�)d�

(5:3:2:2:33)

Fl(z) �

Z
�

�u(�; z)l(�; z)mb(�)d� (5:3:2:2:34)

The rainfall (convective-scale sink of cloud water) is de�ned as

R(z) �+

Z
�

�u(�; z)c0(�)l(�; z)mb(�)d�

�

Z
�

�d(�; z)qe(�; z)m0(�)d�

(5:3:2:2:35)

Here qe is the amount of moisture that is necessary to keep the downdraft saturated. The

second term on the righthand sides is due to downdrafts and is zero above the downdraft-

originating level. Below the updraft-air originating level, the �rst term on the right-hand

sides is zero and only downdrafts a�ect the larger-scale environment. Below the updraft-air

originating level, the convective-scale 
uxes due to updrafts are zero. Between the updraft-

air-originating level and the level of free convection (the LFC), Fl and R are set to zero.

Since no liquid water is assumed to be in the environment as the downdraft, the downward


ux due to updrafts as well as downdraft 
uxes in equation (5.3.2.2.33) are zero. Schubert

(1974) showed that convection will not increase the total moist static energy per unit area

in a column. In essence, only precipitation can change the dry static energy budget and

the total mass of water vapor. All variables in the 
ux terms can be determined from the

equations for the static control, except mb(�). This is determined in the dynamic control,

which incorporates the closure assumption of the scheme and is described next.

Dynamic control

Arakawa-Schubert �rst introduced the cloud work function, which is an integral

measure of the buoyancy force associated with a subensemble. Starting with

dwu

dt
= Bu � Fr =

dwu

dz

dz

dt
=

d

dt

d

dz

w2
u

2
=

1

wu

d

dt

w2
u

2
; (5:3:2:2:36)
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where Bu is the acceleration due to buoyancy and Fr the deceleration due to friction, and

multiplying equation (5.3.2.2.36) by �u(�; z)wu(�; z), gives

d

dt
�u
w2
u

2
= �uwu(Bu � Fr): (5:3:2:2:37)

Integrating over the depth of the updraft and using mu = �uwu = mb�u yields

d

dt

Z zT

zb

�u
w2
u

2
dz = mb(�)

Z zT

zb

�uBudz �Du; (5:3:2:2:38)

where D is the updraft-scale kinetic energy dissipation. Equation (5.3.2.2.38) can be

written in the symbolic form

d

dt
KEu = Au(�)mb(�)�Du(�); (5:3:2:2:39)

where Au(�) is a measure of the e�ciency of kinetic energy generation inside the cloud

and is called the cloud work function. It can also be written as

Au(�) =

Z zT

zB

g

CpT (z)

�u(�; z)

1 + 

(hu(�; z) � ~h�(z))dz; (5:3:2:2:40)

where 
 is de�ned as in equation (5.3.2.2.15). As with equations (5.3.2.2.36-5.3.2.2.38),

de�ning a kinetic energy generation inside the downdraft leads to

d

dt
KEd = Ad(�)m0(�) �Dd(�); (5:3:2:2:41)

where Ad, the measure of the e�ciency of kinetic energy generation inside the downdraft,

can be written as

Ad(�) =

Z zsur

z0

g

CpT (z)

�d(�; z)

1 + 

(~h�(z) � hd(�; z))dz: (5:3:2:2:42)

Note that dry static energy instead of moist static energy would have to be used if

subsaturation is assumed. We can combine equation (5.3.2.2.39) and (5.3.2.2.41) and

then make use of (5.3.2.2.24) to yield

d

dt
KEtot = Atot(�)mb(�) �Dtot(�); (5:3:2:2:43)

56



where

Atot(�) = Au(�) + �(�)Ad(�) (5:3:2:2:44)

is the total cloud work function which was rede�ned as a measure of the e�ciency of kinetic

energy generation in updrafts as well as downdrafts. Next, AS separated the change of the

cloud work function into two parts: One is due to the change in the larger-scale variables

�
dAtot

dt

�
LS

� F (�); (5:3:2:2:45)

and one is due to the modi�cation of the environment by the clouds. Since the cumulus

feedback on the larger-scale �elds is a linear function of mb, this term can be written in

the symbolic form �
dAtot

dt

�
CU

�

Z
�

K(�; �0)mb(�
0)d�: (5:3:2:2:46)

Therefore
dAtot

dt
= F (�) +

Z
�

K(�; �0)mb(�
0)d�; (5:3:2:2:47)

where K(�; �0) are the kernels. The kernels are an expression for the interaction

between clouds (updrafts and downdrafts). Equation (5.3.2.2.47) is solved with a linear

programming method (Lord 1978).

In the original version of the Arakawa-Schubert scheme, the fractional entrainment

rate was the parameter which characterized the cloud. In later papers, the cloud-top

detrainment level was chosen instead. If a �ne vertical resolution is assumed, the second

choice will most likely be better numerically, since no interpolation is necessary at the cloud

tops. However, in the extremely unstable environment of the mid-latitudes, it is sometimes

impossible to calculate \clouds" with cloud tops in the unstable layers. Entrainment rates

would have to be extremely large to stop cloud growth. We therefore chose the fractional

entrainment rate as the spectral parameter.

The procedure

The cloud base is a function of time and space. However, at a speci�c grid point the

cloud base will be the same for every member of the subensemble. We also distinguish

among an updraft-air originating level, zu, a downdraft-air originating level, z0, a cloud
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base level, zb (the LCL), and a level of free convection, zbc (LFC). Here, zu is determined

from condition (5.3.2.2.25) and determines the thermodynamic properties of the updraft

from cloud type i. The air becomes saturated at zb; condensation will start, but no

convection can occur yet because the buoyancy is negative. In some instances this level

could be the same as the LFC. The LFC is of great importance since this is the level at

which the static control starts the calculations of individual convective elements. Since the

air that feeds the cloud originates below the LCL, compensatory subsidence is allowed to

reach the originating level of the updraft air.

For the downdraft, the originating level is also a function of time and space. If the

downdraft exists, it will always reach the surface.

For updraft and downdraft in layer k the mass budgets are de�ned as

eu(k; i) � du(k; i) = �u(k + :5; i)� �u(k � :5; i) (5:3:2:2:48a)

and

ed(k; i) � dd(k; i) = �d(k + :5; i)� �d(k � :5; i); (5:3:2:2:48b)

where entrainment for the updraft and downdraft is de�ned as

eu(k; i) = �ue�zd �u(k + :5; i) (5:3:2:2:49a)

ed(k; i) = �de�zd �d(k � :5; i) (5:3:2:2:49b)

and detrainment is de�ned as

du(k; i) = �ud�zd �u(k + :5; i) (5:3:2:2:50a)

dd(k; i) = �dd�zd �d(k � :5; i): (5:3:2:2:50b)

Combining the above three equations for the updraft and downdraft yields

�u(k � :5; i) = �u(k + :5; i)(1: + �ue�zd � �ud�zd) (5:3:2:2:51a)

for the updraft and

�d(k + :5; i) = �d(k � :5; i)(1:+ �de�zd � �dd�zd) (5:3:2:2:51b)
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for the downdraft. Here we de�ne �zd = z(k + :5) � z(k � :5). The discretized form for

the downdraft moist static energy budget reads

ed(k; i)~h(k)� dd(k; i)
hd(k + :5; i)� hd(k � :5; i)

2

= �d(k + :5; i)hd(k + :5; i)� �d(k � :5; i)hd(k � :5; i)

: (5:3:2:2:52)

Using equations (5.3.2.2.48)-(5.3.2.2.51) in equation (5.3.2.2.52) leads to

hd(k + :5; i) =
hd(k � :5; i)(1: � :5�dd�zd) + �de�zd ~h(k)

1:+ �de�zd � �dd�zd + :5�dd�zd
: (5:3:2:2:53)

The moisture budget for the downdraft is developed in several steps. First, the downdraft

water vapor mixing ratio before evaporation, but after entrainment, is calculated. This is

done using

qd(k; i) =
qd(k � :5; i)(1: � :5�dd�zd) + �de�zd ~q(k)

1:+ �de�zd � �dd�zd + :5�dd�zd
: (5:3:2:2:54)

Next, equations (5.3.2.2.14) and (5.3.2.2.15) give the mixing ratio, qvd, that the updraft

or downdraft would have if saturated. Hence, the amount of moisture that is necessary to

keep the downdraft from cloud type i saturated in layer k is

qe(k; i) = �[qd(k; i)� qvd(k; i)]: (5:3:2:2:55)

Next we check whether the updraft produces enough rain to sustain saturation in the

downdraft by requiring that

X
c0�z(k) �u(k � :5; i)ql(k � :5; i)�

X
�(i)�z(k) �d(k + :5; i)qe(k; i) > 0: (5:3:2:2:56)

If this is not the case, a downdraft is not allowed to exist.

Having de�ned the discretized versions of the equations from the static control, we

now can describe the procedure.

Using the larger-scale temperature and moisture �elds (T0; q0) at time t0, and given

a functional or empirical relationship for �d, �de, and �dd, the equations from the static

control are used to calculate �ue; hu(z; i); hd(z; i); qu(z; i); qd(z; i); �u(z; i), and �d(z; i) for

cloud type i. These are needed to determine the total cloud work function Atot using

Atot(i) = Au(i) + �Ad(i): (5:3:2:2:57)
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The discretized versions of equations (5.3.2.2.40) and (5.3.2.2.42) that are used to

determine the cloud work functions for updrafts and downdrafts are

Au(i) =

k=ktopX
k=LFC

"
g

cp T (k � :5)
�u(k � :5; i)

�

 
hu(k � :5; i)� ~h�(k � :5)

1 + 
(k � :5)

!

� (z(k � 1) � z(k))

#
(5:3:2:2:58)

and

Ad(i) =

k=surX
k=z0

"
g

cp T (k � :5)
�d(k � :5; i)

�

 
hd(k � :5; i) � ~h�(k � :5)

1 + 
(k � :5)

!

� (z(k) � z(k � 1))

#
: (5:3:2:2:59)

The kernels of cloud type i are by de�nition the changes of the cloud work functions due

to another subensemble, i0. Thus, following Lord (1978), T0 and q0 are modi�ed by an

arbitrary amount of mass 
ux, m0

b�t
0, from the i0 subensemble. This is done for every

possible subensemble and can be written in the symbolic form

�T 0(k; i) = �T (k) + �i0 ( �T (k))m
0

b�t
0; (5:3:2:2:60)

�q0(k; i) = �q(k) + �i0 (�q(k))m
0

b�t
0: (5:3:2:2:61)

The � terms, which are changes per unit mb(i), are easily calculated from budget

considerations as in Lord (1978). With the downdraft terms, the moist static energy

budget of layer k and cloud type i becomes

�p(k)

g
�i0(~h(k; i)) = + (�u(k � :5; i) � �(i)�d(k � :5; i))~h(k � :5)

� (�u(k + :5; i) � �(i)�d(k + :5; i))~h(k + :5)

� (eu(k; i) + �(i)ed(k; i))~h(k)

+ du(k; i)
hu(k + :5; i) + hu(k � :5; i)

2

+ �(i)dd(k; i)
hd(k + :5; i) + hd(k � :5; i)

2

; (5:3:2:2:62)
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where eu(k; i)anddu(k; i) are the entrainment and detrainment for the updraft, and �p(k)

is de�ned by �p(k) = p(k + :5)� p(k � :5). A simple physical interpretation of the terms

on the righthand side can be understood by looking at Fig. 5.2. The �rst term is the

subsidence on top of the layer, the second is the subsidence on the bottom of the layer. This

subsidence is an environmental compensatory mass 
ux due to the updraft and downdraft

mass 
uxes inside the cloud. Note that below zu the \compensatory subsidence" may be

compensatory uplifting, since in that case only downdrafts exist. The third term represents

entrainment into the updraft and downdraft; the fourth term represents detrainment from

the edges of the updraft; the �fth term represents detrainment from the edges of the

downdraft.

For the moisture budget,

�p(k)

g
�i0(~q(k; i)) = + (�u(k � :5; i) � �(i)�d(k � :5; i))~q(k � :5)

� (�u(k + :5; i) � �(i)�d(k + :5; i))~q(k + :5)

� (eu(k; i) + �(i)ed(k; i))~q(k)

+ du(k; i)
qu(k + :5; i) + qu(k � :5; i)

2

+ �(i)dd(k; i)
qd(k + :5; i) + qd(k � :5; i)

2

: (5:3:2:2:63)

At the cloud top, downdrafts have no e�ects and updrafts detrain all their mass.

�p(ktop)

g
�i0(~h(ktop; i)) =� �u(ktop+ :5; i)~h(ktop+ :5)

� eu(ktop; i)~h(ktop)

+ du(ktop; i)
hu(ktop+ :5; i) + hu(ktop; i)

2
+ �u(ktop; i)hu(ktop; i)

(5:3:2:2:64)

and

�p(ktop)

g
�i0(~q(ktop; i)) =� �u(ktop+ :5; i)~q(ktop+ :5)

� eu(ktop; i)~q(ktop)

+ du(ktop; i)
qu(ktop + :5; i) + qu(ktop; i)

2
+ �u(ktop; i)qu(ktop; i)

:

(5:3:2:2:65)
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[η(k - .5, i) -ε(i)ηdo (k - .5, i)] ψ (k - .5)

[e(k,i) + ε (i)edo(k,i)]ψ(k)

[η(k + .5,i) - ε(i)hdo(k+ .5,i)]ψ(k + .5)

+ε(i)ddo(k,i)
ψdo(k - 5,i) + ψdo(k + 5,i)

2

+d(k,i)
ψc(k - .5,i) + ψc(k + .5,i)

2

Figure 5.2 Illustration of budget for thermodynamic variableψ in layer k.

k - .5

k

k + .5

Cloud

Updraft
Originating
Level

Downdraft
Originating
Level

Figure 5.3 Conceptual picture of convection parameterized in Grell scheme.
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Here �p(ktop) = p(ktop+ :5)�p(ktop� :5). Note that in the fourth term we have included

the detrainment of all the cloud mass at the cloud top. Finally, at the surface

�p(ksur)

g
�i0(~h(ksur; i)) =� �(i)�d(ksur � :5; i))~h(ksur � :5)

+ �(i)�d(ksur; i)hd(ksur; i)

� �(i)ed(ksur � :5; i)~h(ksur � :5)

+ �(i)dd(ksur; i)
hd(ksur; i) + hd(ksur � :5; i)

2

(5:3:2:2:66)

and

�p(ksur)

g
�i0(~q(ksur; i)) =� �(i)�d(ksur � :5; i))~q(ksur � :5)

+ �(i)�d(ksur; i)qd(ksur; i)

� �(i)ed(ksur � :5; i)~q(ksur � :5)

+ �(i)dd(ksur; i)
qd(ksur; i) + qd(ksur � :5; i)

2

; (5:3:2:2:67)

with �p(ksur) = p(ksur + :5) � p(ksur � :5). Here, the �rst term is the compensatory

environmental mass 
ux, the second term is the detrainment of all downdraft air at the

bottom, the third term is entrainment into the downdraft, and the fourth term is the

detrainment of air around the downdraft edges.

The new thermodynamic �elds, T0
0(k; i0) and q0

0(k; i0), are then used again from the

static control to calculate new cloud properties and a new cloud work function, A0

tot(i
0; i).

Note that T 0

0 and q00 are now functions of the subensemble i0. From the de�nition of the

kernel we then can calculate the kernels simply as

K(i; i0) =
A0

tot(i
0; i) �Atot(i)

mb\�t\
: (5:3:2:2:68)

Next, we go back to the original �elds and modify those with the large-scale advective

changes to get

T\(k) = T0 +

�
@T

@t

�
ADV

�t (5:3:2:2:69)

and

q\(k) = q0 +

�
@q

@t

�
ADV

�t; (5:3:2:2:70)
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where (5.3.2.2.69) and (5.3.2.2.70) are applied over �t= 30 min. The double prime

quantities are then used again by the static control, which will calculate new cloud

properties, and so new cloud work functions, Atot\(i), will be determined. Next, the

large-scale forcing (by de�nition the change of the cloud work function due to large-scale

e�ects only) is calculated using

F (i) =
Atot\(i) �Atot(i)

�t
: (5:3:2:2:71)

The large-scale forcing and the kernels are then both used by the dynamic control to

estimate the cloud base mass 
ux distribution function, mb, using an IMSL subroutine

to solve the linear programming problem. Finally, the feedback to the larger-scale

environment is simply given by

�
@T (k)

@t

�
CU

=

i0MAXX
i0=1

�0i(T (k))mb(i
0) (5:3:2:2:72)

and �
@q(k)

@t

�
CU

=

i0MAXX
i0=1

�0i(q(k))mb(i
0); (5:3:2:2:73)

where the precipitation can be calculated using

P =

i0MAXX
i0=1

k=ktopX
k=1

c0�z(k)ql(k + :5; i)mu(k + :5; i)

�

i0MAXX
i0=1

k=ktopX
k=1

�z(k)qev(k + :5; i)md(k + :5; i)

: (5:3:2:2:74)

5.3.2.3 The Grell scheme

This is a very simple scheme that was constructed to avoid �rst-order sources of

errors (Grell 1993). The very simplistic conceptual picture of how this parameterization

is envisioned to function is shown in Fig. 5.3. Clouds are pictured as two steady-state

circulations, caused by an updraft and a downdraft. There is no direct mixing between

cloudy air and environmental air, except at the top and the bottom of the circulations.

The cloud model that is used to calculate cloud properties in this scheme is formulated
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with only a few equations. Mass 
ux is constant with height, and there is no entrainment

or detrainment along the cloud edges. We can simply write

mu(z) = mu(zb) = mb (5:3:2:3:1)

and

md(z) = md(z0) = m0 (5:3:2:3:2)

for the mass 
ux of the updraft (mu) and the downdraft (md). Heremb andm0 are simply

the mass 
uxes of the updraft and downdraft at their originating level. If it is assumed that

the conditions at originating levels are given by the environment, for any thermodynamic

variable , the budget inside the cloud simply becomes

�u(z) = ~�(zb) + Su(z) ; (5:3:2:3:3)

and

�d(z) = ~�(z0) + Sd(z); (5:3:2:3:4)

where � is a thermodynamic variable, the tilde denotes an environmental value, and S

stands for sources or sinks. For moist static energy

~h(z) = Cp ~T (z) + gz +L~q(z); (5:3:2:3:5)

equations (3) and (4) simply become

hu(z) = ~h(zb) (5:3:2:3:6)

and

hd(z) = ~h(z0): (5:3:2:3:7)

For the moisture budget of the updraft we can make use of the approximate equations

(5.3.2.2.14) and (5.3.2.2.15) to calculate the mixing ratio inside the cloud if saturation is

assumed. Together with equations (5.3.2.3.3) and (5.3.2.3.4), this will give us Su and Sd,

the condensation and evaporation. Note also that no cloud water is assumed to exist; all

water is converted to rain.
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Given boundary conditions, equations (5.3.2.3.1)-(5.3.2.3.7) have two unknowns, mb,

and m0. In order to leave only one unknown variable, the originating mass 
ux of the

downdraft is made a function of the updraft mass 
ux and the reevaporation of convective

condensate, as in the previous section (see equations (5.3.2.2.20)-(5.3.2.2.24)). Therefore,

m0 =
�I1mb

I2
= �mb: (5:3:2:3:8)

Here, 1� � is the precipitation e�ciency. To specify boundary conditions, we assume

hu(z) = hu(zb) =MAX(~h(z)); (5:3:2:3:9)

with z � zb; and

hu(zT ) = ~h�(zT ); (5:3:2:3:10)

where the asterisk denotes a saturation value. Similarly, for the downdraft,

hd(z) = hd(z0) =MIN(~h(z)): (5:3:2:3:11)

Physically, for both, updraft and downdraft, we allow for maximum buoyancy. For this

deep convection scheme, the cloud base for the updraft is not restricted to the boundary

layer, but can be anywhere in the troposphere.

Feedback to the larger-scale equations

To avoid zero-order sources of errors, the feedback must include the cooling e�ects

of moist convective downdrafts. Furthermore, lateral mixing should never be excessive,

especially if the cloud properties have been calculated with a steady-state cloud model.

Keeping in mind the conceptual picture in Fig. 5.3, the feedback for this scheme is entirely

determined by compensating mass 
uxes and detrainment at cloud top and bottom.

Conceptually, no averaging (such as the normally used top-hat or Reynolds averaging

methods) is necessary. This does not mean that scale-separation is not required, but for

this parameterization it is not necessary to assume that the fractional area coverage is

very small. Note, however, that any parameterization can only make sense if a clear scale

separation exists. None of the parameterized e�ects may be resolved by the larger-scale.
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Assuming that the conceptual picture in Fig. 5.3 happens in only one grid box, we can

express the changes caused by the convection as

 
@~h(k)

@t

!
CU

=
@hu(z)mb

@z
�
@~h(z)mb

@z
�
@hd(z)m0

@z
+
@~h(z)m0

@z
(5:3:2:3:12)

and

�
@q(k)

@t

�
CU

=
@qu(z)mb

@z
�
@~q(z)mb

@z
�
@qd(z)m0

@z
+
@~q(z)m0

@z
: (5:3:2:3:13)

Because of the simplicity of the static control, these equations can be further simpli�ed to

give  
@~h(k)

@t

!
CU

= mb
@~h(z)

@z
(1� �) +mb(

@hu(z)

@z
� �

@hd(z)

@z
) (5:3:2:3:14)

�
@q(k)

@t

�
CU

= mb
@~q(z)

@z
(1� �) +mb(

@qu(z)

@z
� �

@qd(z)

@z
): (5:3:2:3:15)

The rainfall is de�ned as

R � I1mb(1� �): (5:3:2:3:16)

The second term on the righthand sides of equations (5.2.2.3.14) and (5.2.2.3.15) are due

to downdrafts and are zero above the downdraft originating level. Below the updraft-air

originating level, the �rst term of the right-hand sides are zero and only downdrafts a�ect

the larger-scale environment. All variables in the 
ux terms can be determined from the

equations of the static control, except mb.

Dynamic control

Because of the simplicity of the above equations, many closure assumptions can be

used. The most simple closure is a Kuo-type assumption, which relates the rainfall rate

to the moisture convergence. However, more applicable seems to be a stability closure.

Again we have two choices. We could assume that the clouds will remove the available

buoyant energy as in other mesoscale parameterizations, or that the clouds will stabilize

the environment as fast as the larger-scale (or also sub-grid scale) destabilizes it, or even a

mixture of both. Although both assumptions are easily implemented, we chose the closure

which depends on the rate of destabilization. In this closure the change of the available
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buoyant energy due to convection o�sets the changes due to other e�ects (larger-scale

destabilization as well as sub-grid scale destabilization), yielding

�
dABE

dt

�
OTH

= �

�
dABE

dt

�
CU

: (5:3:2:3:17)

Next, the change due to the convection is normalized in terms of the mass 
ux to read

�
dABE

dt

�
CU

� mb

�
dABE

dt

�
NCU

; (5:3:2:3:18)

where subscript NCU denotes the change of the available buoyant energy due to a cloud

normalized by the cloud-base mass 
ux. Equations (5.3.2.3.17) and (5.3.2.3.18) are used

to calculate mb.

The Procedure

This section describes in detail the procedure necessary to calculate the convective

feedback. First, we will explain the very simplistic approach to calculate a normalized

feedback, then we will describe how the closure assumption determines the mass 
ux.

Using the larger-scale temperature and moisture �elds (T0; q0) at time t0,

hu(z); hd(z); qu(z); qd(z) are simply arrived at (see equations (5.3.2.3.6)-(5.3.2.3.10). The

�rst calculation is the determination of the integrals I1 and I2 (calculated as residuals

using equations (5.3.2.3.8) and (5.3.2.3.9). The next step is then to estimate the convective

changes per unit mass 
ux (before knowing the actual mb's). This is done by estimating

the net change of a thermodynamic variable � in a layer k by using

�p(k)

g
�(~�(k)) = (1 � �)(~�(k � :5)� ~�(k + :5)); (5:3:2:3:19)

where �p(k) is de�ned by �p(k) = p(k+:5)�p(k�:5). This subsidence is an environmental

compensatory mass 
ux due to the updraft and downdraft mass 
uxes inside the cloud.

Note that below zu the \compensatory subsidence" may be compensatory uplifting, since

in that case only downdrafts exist.

At the cloud top,

�p(ktop)

g
�(~�(ktop)) = �~�(ktop � :5) + �u(ktop): (5:3:2:3:20)
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Here �p(ktop) = p(ktop+ :5)� p(ktop� :5). Finally, at the surface (the downdraft tops)

�p(ksur)

g
�(~�(ksur)) = ��(�~�(ksur � :5) + �d(ksur)); (5:3:2:3:21)

with �p(ksur) = p(ksur + :5) � p(ksur � :5). Here, the �rst term is the compensatory

environmental mass 
ux, and the second term is the detrainment of all downdraft air at

the bottom. These normalized changes are also used in the calculation of the �nal feedback

(after mb is determined), which is simply given by�
@�(k)

@t

�
CU

= �(�(k))mb: (5:3:2:3:22)

To calculate the mass 
ux mb, we de�ne the buoyant energy which is available to a

cloud (updraft and downdraft) as

ABE =

k=ktopX
k=LFC

"
g

cp T (k � :5)
�

 
~h(kb) � ~h�(k � :5)

1 + 
(k � :5)

!
� (z(k � 1) � z(k))

#

+

k=surX
k=z0

"
g

cp T (k � :5)
�

 
~h(k0)� ~h�(k � :5)

1 + 
(k � :5)

!
� (z(k) � z(k � 1))

# : (5:3:2:3:23)

where 
 is de�ned in equation (5.3.2.2.15). We can calculate ABE (similar to Lord 1982)

for the unchanged environment as well as for the environment which has been modi�ed by

some arbitrary mass 
ux m0

b�t
0. Hence, we can write

NA =

�
dABE

dt

�
NCU

=
ABE0 �ABE

m0

b�t
0

: (5:3:2:3:24)

ABE are calculated using T0 and q0, while ABE
0 are calculated after modi�cation of

the thermodynamic variables by an arbitrary amount of mass 
ux, m0

b�t
0, where

�0(k) = �(k) + �(�(k))m0

b�t
0: (5:3:2:3:25)

For a closure which depends on the rate of destabilization, we have to calculate the change

in the available buoyant energy due to large-scale or other subgrid-scale e�ects. We modify

the thermodynamic �elds with

�\(k) = �0 +

�
@�

@t

�
LS+SUBG

�t; (5:3:2:3:26)
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where (5.3.2.3.26) is applied at every timestep �t. These double prime quantities are then

used to calculate the changes in the available buoyant energy due to \non-convective"

e�ects. As a result, the equation for the mass 
ux becomes

mb =
ABE\�ABE

(ABE0 �ABE)m0

b

: (5:3:2:3:27)

5.3.3 Parameterization of shallow convection

The shallow convection scheme is constructed to be able to serve two tasks. It

parameterizes planetary boundary layer (PBL) forced shallow non-precipitating convection

as well as mid-tropospheric shallow convection caused by other sub-grid scale e�ects

(such as cloud top radiational cooling). The �rst might not be necessary when the

parameterization is coupled to a higher order closure PBL scheme. It will transport

moisture from inside the boundary layer into the layers just above the boundary layer.

This is accomplished by emulating bubbles (forced by surface heat and moisture 
uxes

only, with strong lateral mixing) which rise without precipitation formation through the

top of the boundary layer into the free atmosphere, where they then lose their buoyancy.

Because of the strong lateral mixing, they usually do not rise more than 50-75 mb. The

physics involved in describing the second kind of shallow convection is the same, except

for the forcing.

To parameterize this type of convection we assume that a \convective element" can

be characterized by a bubble which rises through several model layers. It is assumed

to be forced by planetary boundary layer 
uxes or radiational cooling tendencies. Some

of the elements of this parameterization are based on an Arakawa-Schubert type scheme

(section 5.3.2.2) and some are based on the simple one-cloud scheme described in section

5.3.2.3. However, the clouds (shallow \convective elements\) are characterized by di�erent

properties. They usually have large mixing, are non-precipitating, and have no convective-

scale downdrafts. They are forced by subgrid-scale processes only. The following

description will be focused on di�erences from the previously described models. Since

the sole purpose of this scheme is to represent \very" shallow convection, it is also

constructed as a one-cloud scheme. Although it implicitly uses equations (5.3.2.2.1)-

(5.3.2.2.4), considerable simpli�cations can be made by assuming strong lateral mixing
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(detrainment being equally as strong as entrainment). Equations (5.3.2.2.1) through

(5.3.2.2.4) then read

� = 0; (5:3:3:1)

�e = �d =
:2

r
; (5:3:3:2)

and
@�c

@z
=
:2

r
(~�� �c) + Sc; (5:3:3:3)

where r in equation (5.3.3.2) is the radius of the element. The parameterization will be

sensitive to the choice of r. For this type of convection we assume r = 50m. When assuming

that no precipitation forms or evaporates, equations (5.3.3.1)-(5.3.3.3), together with initial

conditions (5.3.2.2.25) and (5.3.2.2.26), form a simple set of equations to determine the

properties of the convective element, if r is given. Without precipitation formation, Sc

in equation (5.3.3.3) is zero. For the feedback, equations (5.3.2.2.32)-(5.3.2.2.34) simply

become

FSs(z) � [sc(z) � �s(z)]mc; (5:3:3:4)

FSq(z) � [qc(z) � �q(z)]mc; (5:3:3:5)

FSl(z) � l(z)mc = 0: (5:3:3:6)

The only unknown in these equations is the mass 
ux. It is determined in the dynamic

control, where we make use of the de�nition of the cloud work function (5.3.2.2.40) and

simply impose �
dA(scl)

dt

�
CU

= �

�
dA(scl)

dt

�
SUBG

: (5:3:3:7)

Note that since the cloud work function is independent of mass 
ux (mass 
ux is constant

with height), equation (5.3.2.2.40) for cloud-type scl simpli�es to

A(scl) =

Z zT

zB

g

CpT (z)

1

1 + 

(hc(z) � ~h�(z))dz: (5:3:3:8)

Subscript CU refers to the e�ects due to convection, and SUBG to e�ects due to sub-grid

scale forcing. A(scl) becomes simply the buoyancy which is available for that particular
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cloud scl. Therefore, physically, the change of the e�ciency of kinetic energy generation

due to cloud scl is directly proportional to the buoyancy generation by sub-grid scale

forcing. To arrive at a useful closure, the term on the left hand side of equation (5.3.3.7)

is normalized by the mass
ux to yield

mc

�
dA(scl)

dt

�
NCU

= �

�
dA(scl)

dt

�
SUBG

: (5:3:3:10)

Here, the subscript NCU now stands for the change of A due to a unit mass of cloud scl.

The variables in equation (5.3.3.10) are known, except for mc. After using (5.3.3.10) to

calculate mc, we can then calculate the feedback. Note that in equation (5.3.3.2), mc is not

dependent on height, and is simply the cloud base mass 
ux. It should be noted here that

the above described parameterization will greatly bene�t from a high vertical resolution.

In some instances it may be of use to allow the shallow convection scheme to be called

several times in a column (stacked on top of each other), since di�erent sub-grid-scale

forcing mechanisms may act at the same time in one column, but at di�erent levels.
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5.4 Planetary boundary layer parameterizations

5.4.1 Surface-Energy equation

Over land, the surface temperature Tg is computed from a surface energy budget that

is base on the \force-restore" method developed by Blackadar (Zhang and Anthes 1982).

The budget equation is

Cg
@Tg

@t
= Rn �Hm �Hs �LvEs; (5:4:1:1)

where Cg is the thermal capacity of the slab per unit area, Rn is the net radiation, Hm is

the heat 
ow into the substrate, Hs is the sensible heat 
ux into the atmosphere, Lv is the

latent heat of vaporization, and Es is the surface moisture 
ux. Blackadar (1979) shows

that the following formulation enables the amplitude and phase of the slab temperature to

be identical to the surface temperature of a real soil layer of uniform thermal conductivity

� and heat capacity per unit volume Cs, with Cg related to these parameters and the

angular velocity of the earth 
 by

Cg = :95

�
�Cs

2


�1=2
: (5:4:1:2)

The thermal capacity, Cg, is related to a parameter called the thermal inertia, �, where �

is

� = (�Cs)
1=2
: (5:4:1:3)

From (5.4.1.2) and (5.4.1.3),

Cg = 3:293� 106�; (5:4:1:4)

where � (cal cm�2K�1s
1
2 ; 1 cal = 4:18 J) is speci�ed in the model as a function of land-use

characteristic (Appendix 4). The terms on the right hand side of (5.4.1.1) are described

as follows:
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5.4.1.1 Net radiative 
ux Rn

Radiation is the driving force of the diabatic planetary boundary layer (PBL) and is

the most important component of the slab-energy budget.

Rn = Qs + Is (5:4:1:5)

where Qs and Is are the net surface shortwave and longwave irradiances.

a. Clear Sky

For clear sky, the amount of solar radiation absorbed by the slab, including multiple

re
ection of short waves, is approximated as

Qs = S0(1�A)�cos ; (5:4:1:6)

where S0 is the solar constant (1395.6 W m�2), A is the albedo.  is the zenith angle,

and � is the short-wave transmissivity. The term cos is given by

cos = sin�sin� + cos�cos�cosh0; (5:4:1:7)

where � represents the latitude of the location, � the solar declination, and h0 the local

hour angle of the sun (Sellers. 1974).

The short-wave transmissivity for multiple re
ection (Benjamin 1983) is

� =
�a[�s + (1� �s)(1 � b)]

(1�XRA)
; (5:4:1:8)

where �a is the absorption transmissivity, �s is the scattering transmissivity, b is the

backscattering coe�cient, and XR is the multiple re
ection factor

XR = �ad(1� �sd)bd; (5:4:1:9)

where the subscript d denotes di�use.

All the clear-air transmissivities (�a; �s; �ad; �sd) and backscattering coe�cients (b and

bd) are determined as a function of path length and precipitable water from a look-up table

from the Carlson and Boland (1978) radiative transfer model. Transmissivities are then

adjusted for surface pressure as follows:

� =
1 + (� 0 � 1)ps

1013:25
; (5:4:1:10)
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where � 0 is the transmissivity from the look-up table (appendix 2) obtained by assuming

the surface pressure is 1013.25mb, and ps is the surface pressure at the location. The net

longwave radiation, Is, is equal to the sum of the outgoing (I ") and downward (I #)

longwave radiation. The outgoing longwave radiation is

I "= �g�SBT
4
g ; (5:4:1:11)

where �g is the slab emissivity, Tg is the ground temperature, and �SB the Stefan-

Boltzmann constant. The downward longwave radiation absorbed at the surface is

I #= �g�a�SBT
4
a ; (5:4:1:12)

where Ta is the atmospheric temperature in the layer above the surface, and �a, the

atmospheric longwave emissivity, is given by

�a = :725 + :17log10wp; (5:4:1:13)

in which wp is the precipitable water in centimeters

b. Cloudy skies

For cloudy skies, a cloud parameterization scheme (Benjamin 1983) is used to simulate

the e�ects of clouds on short-wave and downward longwave radiation. Groups of sigma

levels are chosen to correspond to low-, middle-, and upper-cloud layers based upon an

assumed surface pressure of 1000mb. The clouds below 800mb are designated as low

clouds, middle clouds are those between 800mb and 450mb, and upper clouds are those

above 450mb.

The attenuation of short-wave radiation by cloud is parameterized with absorption

(�ac) and scattering (�sc) transmissivities. The transmissivities through the three cloud

layers are given by

�ac =

3Y
i=1

[1� (1� �ai)]ni (5:4:1:14)

and

�sc =

3Y
i=1

[1� (1� �si)]ni; (5:4:1:15)
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where i = 1; 2; 3 represents low, middle, and high clouds, respectively, ni is the cloud

fraction, and �ai and �si are given in table 5.1. The minimum short-wave absorption

transmissivity is set at 0.7, and the minimum scattering transmissivity is set at 0.44.

The cloud fraction is based on relative humidity. Cloud fraction at low and middle

levels is

n = 4:0RH � 3:0; (5:4:1:16)

and in the upper atmosphere

n = 42:5RH � 1:5; (5:4:1:17)

where RH is the maximum relative humidity found in the model layers within the low,

middle, or upper cloud layers. The expression for e�ective short-wave transmissivity under

cloudy skies is

� =
�ac�sc�a[�s + (1 � �s)(1� b)]

(1 �XcA)
; (5:4:1:18)

where the multiple re
ection factor for cloudy skies (Xc) is de�ned as

Xc = �ad�ac(1 � �sd�sc)�bd (5:4:1:19)

in which �bd, the mean backscattering coe�cient, is

�bd =
bd(1� �sd) + (1� �sc)

(1 � �sd) + (1 � �sc)
: (5:4:1:20)

The cloud enhancement of long-wave radiation incident on the ground is expressed as

I #0= I #

 
1 +

3X
i=1

cini

!
; (5:4:1:21)

where ci are the enhancement coe�cients at di�erent levels (table 5.2).
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Table 5.1 Cloud absorption and scattering transmissivities.

Cloud Level Absorption
(τai)

Scattering
(τsi)

Low 0.80 0.48

Middle 0.85 0.60

High 0.98 0.80

Table 5.2 Enhancement coefficientsci on longwave radiation due to clouds.

Cloud Level Coefficient

Low 0.26

Middle 0.22

High 0.06
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5.4.1.2 Heat Flow into the Substrate Hm

The transfer of heat due to molecular conduction is calculated from the equation

Hm = KmCg(Tg � Tm); (5:4:1:22)

where Km is the heat transfer coe�cient expressed as Km = 1:18
, 
 is the angular

velocity of the earth, and Tm is the temperature of the substrate, which is presently

taken to be a constant value equal to the mean surface-air temperature over the period of

simulation. If the model is used in a forecast mode rather than a research mode, Tm may

be set equal to the mean surface temperature of the previous day.

5.4.1.3 Sensible-Heat Flux Hs and Surface Moisture Flux Es

These 
uxes are computed in di�erent ways, depending upon what PBL parameteri-

zation is used. Details will be described in the next sections.

5.4.2 Bulk-aerodynamic parameterization

The bulk-aerodynamic option of the PBL physics follows Deardor� (1972). It is a

very inexpensive choice. The surface-heat 
uxes are given by

Hs = �acpmC�Cu(�g � �a)V; (5:4:2:1)

where �a and �a are density and potential temperature at the lowest model layer, C� and

Cu are exchange coe�cients (Deardor� 1972) de�ned as

Cu = CuN

�
1�RiB

RiC

�
(5:4:2:2)

and

C� = C�N

�
1�RiB

RiC

�
(5:4:2:3)

for stable conditions (0 � RiB � :9Ric), and

Cu =
1

1
CuN

� 25exp(:26 � :03 2)
(5:4:2:4)

and

C� =
1

1
C�N

+ 1
Cu

� 1
CuN

(5:4:2:5)
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for the unstable case (RiB � 0). Here CuN and C�N are the neutral values for Cu and C�,

and are given by

CuN =

�
k�1ln

�
:025h

z0

�
+ 8:4

�
�1

(5:4:2:6)

and

C�N =

�
0:74k�1ln

�
:025h

z0

�
+ 7:3

�
�1

; (5:4:2:7)

where Ric = 3:05, h is the depth of the lowest model layer,  is de�ned as

 = log10(�RiB)� 3:5; (5:4:2:8)

and the velocity V is given by

V = (V 2
a + V 2

c )
1=2: (5:4:2:9)

Va is the wind-speed at the lowest model layer, and Vc is a convective velocity, which is

important under conditions of low mean wind-speed and is de�ned under unstable and

neutral conditions as

Vc = 2(�g � �a)
1=2; (5:4:2:10)

while it is zero under stable conditions.

The surface moisture 
ux is

Es = �aC�CuM(qvs(Tg) � qva)V; (5:4:2:11)

where M is the moisture availability parameter which varies from 1.0 for a wet surface to

0.0 for a surface with no potential for evaporation. The moisture availability is speci�ed as

a function of land-use category (Appendix 4). The model results are often quite sensitive

to the value used for M .

The surface momentum 
ux is given by

�s = �aCDV
2; (5:4:2:12)

where the drag coe�cient CD is de�ned as

CD = C 0

D + 3� 10�3
�

�s

�s + 9800

�
: (5:4:2:13)
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The second term in (5.4.2.13), involving the surface geopotential �s, is a correction for

elevated terrain (Bleck,1977). The expression for C 0

D follows Deardor� (1972), where

C 0

D = C2
u (5:4:2:14)

5.4.3 Blackadar High-resolution model

A revised version of Blackadar's PBL model (Blackadar, 1976, 1979; Zhang and

Anthes, 1982) is used to forecast the vertical mixing of horizontal wind (u and v), potential

temperature (�), mixing ratio (qv), cloud water (qc), and ice (qi). The surface heat and

moisture 
uxes are computed from similarity theory. First the friction velocity, u�, is

computed based on

u� =MAX

 
kV

ln za
z0
�  m

; u�0

!
; (5:4:3:1)

where u�0 is a background value (0.1ms�1 over land and zero over water) and V is given

by (5.4.2.9). The surface-heat 
ux is computed from

Hs = �Cpm�aku�T�; (5:4:3:2)

where

T� =
�a � �g

ln za
z0
�  h

; (5:4:3:3)

where z0 is the roughness parameter, za is the height of the lowest �-level, and  m and

 h are nondimensional stability parameters that are a function of the bulk Richardson

number RiB , which is given by

RiB =
gza

�a

�va � �vg

V 2
; (5:4:3:4)

where the subscript v represents virtual potential temperature. There are four cases

possible:

a. Stable case

For the stable case, RiB > Ric, where the critical Richardson number Ric is de�ned

as

Ric = :2: (5:4:3:5)
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In this case,

u� = u�0; (5:4:3:6)

 m =  h = �10ln
za

z0
; (5:4:3:7)

and

Hs =Max(�250 W m�2;�cpm�aku�T�): (5:4:3:8)

b. Mechanically driven turbulence

For this case 0 � RiB � Ric, and we get

 m =  h = �5

�
RiB

1:1� 5RiB

�
ln
za

z0
: (5:4:3:9)

c. Unstable (forced convection)

Here RiB < 0 and j h=L j � 1:5, where the Monin-Obukhov length, L, is de�ned as

L = �
cpm�a�au

3
�

kgHs
(5:4:3:10)

and h is the height of the PBL. In this case,  m =  h = 0, and za=L = RiBln
za
z0
.

d. Unstable (free convection)

Here RiB < 0 and j h=L j > 1:5. In this case

 h = �3:23
�za
L

�
� 1:99

�za
L

�2
� 0:474

�za
L

�3
; (5:4:3:11)

and

 m = �1:86
�za
L

�
� 1:07

�za
L

�2
� 0:249

�za
L

�3
: (5:4:3:12)

where za=L is restricted to be no less than -2.0 in this approximation. For za=L equal to

-2.0,  h = 2:29, and  m = 1:43.

In the general case, za=L is a function of  m and (5.4.3.12) is an implicit equation

requiring an iterative solution. To save time, we approximate za=L as an explicit function

of RiB, such that

za

L
= RiB ln

za

z0
: (5:4:3:13)
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The above scheme ensures continuity of  m for all values of RiB. The formulation for the

surface moisture 
ux in the multi-layer case was derived from Carlson and Boland (1978),

where

Es =M�aI
�1(qvs(Tg) � qva); (5:4:3:14)

and

I�1 = ku�

�
ln

�
ku�za

Ka
+
za

zl

�
�  h

�
�1

: (5:4:3:15)

The quantity zl is the depth of the molecular layer (0.01 m over land and z0 over water)

and Ka is a background molecular di�usivity equal to 2:4� 10�5m2s�1.

Over land, the roughness length z0 is speci�ed as a function of land-use category

(Appendix 4). Over water, z0 is calculated as a function of friction velocity (Delsol et al.

, 1971) such that

z0 = 0:032u2
�
=g + z0c; (5:4:3:16)

where z0c is a background value of 10�4m.

The Blackadar scheme considers two di�erent PBL regimes, the nocturnal regime and

the free-convection regime. The �rst three cases (stable, mechanically driven turbulence,

and forced convection) are in the nocturnal regime, which is usually stable or at most

marginally unstable.

Nocturnal Regime

The �rst-order closure approach is used to predict model variables. The ground stress

is calculated from

�s = �u2
�
; (5:4:3:17)

where u� is computed from (5.4.3.1). The components of �s in the x and y directions are

�sx =
u

Va
�s (5:4:3:18)

and

�sy =
v

Va
�s; (5:4:3:19)

where Va is the wind speed at the lowest model level. For surface layer variables, the

prognostic equations are
@�a

@t
=
� (H1 �Hs)

(�acpmz1)
; (5:4:3:20)
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@qva

@t
=
� (E1 �Es)

(�az1)
; (5:4:3:21)

@ua

@t
=

(�1x � �sx)

(�az1)
; (5:4:3:22)

@va

@t
=

(�1y � �sy)

(�az1)
; (5:4:3:23)

and
@qca

@t
=

�F1

(�az1)
; (5:4:3:24)

where Hs is the surface heat 
ux computed from (5.4.3.2), ES is the surface moisture 
ux

computed from (5.4.3.14), subscript a refers to surface layer variables, subscript 1 refers to

the 
uxes at the top of the surface layer (Fig. 5.4), and z1 is the height of the lowest model

layer. The 
uxes at the full � levels are computed from K-theory, as described in section

(5.4.4). The prognostic variables above the surface layer are computed from K-theory and

an implicit di�usion scheme (Richtmeyer, 1957; Zhang and Anthes, 1982).

Free-Convection Regime

During strong heating from below, large surface heat 
uxes and a super- adiabatic

layer occur in the lower troposphere. As the buoyant plumes of hot air rise under such

unstable conditions, mixing of heat, momentum, and moisture take place at each level. The

vertical mixing in this scheme is not determined by local gradients, but by the thermal

structure of the whole mixed layer. In the Blackadar PBL model, the vertical mixing

is visualized as taking place between the lowest layer and each layer in the mixed layer,

instead of between adjacent layers as in K-theory.

In the surface layer, the prognostic variables are solved by the analytic solution

��+1a = ���1a +

�
Fsz1

�mh2
�

Fs

�mh
+

F1

�mh

�
�

�
exp

�
�
�mh�t

z1

�
� 1

�
+
Fs�t

h
; (5:4:3:25)

where � represents any prognostic variable, Fs is the surface 
ux, F1 is the 
ux at the

top of the surface layer, h is the height of the PBL, �t is the time-step, and the mixing

coe�cient is

�m = H1

"
�acpm(1� �)

Z h

z1

[�va � �v(z
0)] dz0

#
�1

: (5:4:3:26)
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Here � is the entrainment coe�cient (0.2) and H1 is the heat 
ux at the top of the surface

layer computed by the Priestly equation

H1 = �acpmz1(�va � �v
1 1
2

)
3
2

�
2g

27�va

� 1
2 1

z1

h
z
�

1
3

1 � (2z1 1
2
)�

1
3

i
�

3
2

; (5:4:3:27)

where z1 is the depth of the surface layer and the subscript 1 1
2
refers to the second

prediction layer above the surface (Fig. 5.4).

For the variables above the surface layer, the prognostic equation is

@�i

@t
= �m(�a � �i); � = �; qv ; or qc (5:4:3:28)

@�i

@t
= w �m(�a � �i); � = u; v: (5:4:3:29)

The variable w is a weighting function for reducing mixing near the top of the mixed layer,

where

w = 1�
z

h
: (5:4:3:30)

Care must be taken at the layer where the top of the mixed layer is located because the

top of the mixed layer does not necessarily coincide with a model level.

5.4.4 Vertical di�usion

Above the mixed layer, K-theory is used to predict the vertical di�usion of the

prognostic variables, such that

FV � = p�
@

@z
Kz

@�

@z
; (5:4:4:1)

where the eddy di�usivity, Kz, is a function of the local Richardson numberRi. Speci�cally,

Kz = Kz0 + l2 S
1
2
Ric �Ri

Ric
for Ri < Ric (5:4:4:2)

Kz = Kz0; for Ri � Ric (5:4:4:3)

where Kz0 = 1 m2 s�1 ; l = 40 m ;andRic is a critical Richardson number which is a

function of layer thickness (m) and is de�ned as

Ric = :257 �z:175: (5:4:4:4)
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Figure 5.4 Illustration of vertical grid structure for high-resolution (Blackadar) model. The top of
the surface layer isz1; θvg andθva are the virtual potential temperatures of the ground surface and
lowest model level, respectively;P andN denote the positive and negative areas associated with a
parcel of air originating at za and rising toh, the top of the PBL.
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According to (5.4.4.4), Ric varies from 0.58 for �z = 100m to 0.86 for �z = 1000m.

The Richardson number is

Ri =
g

�S

@�

@z
(5:4:4:5)

and S is

S =

�
@u

@z

�2
+

�
@v

@z

�2
+ 10�9: (5:4:4:6)

5.4.5 Moist vertical di�usion

There is an option with explicit moisture of including the e�ects of moisture on vertical

di�usion. Taking into account moist-adiabatic processes in cloudy air (Durran and Klemp

1982), (5.4.4.5) is modi�ed to

Ri = (1 + �)

"
g

�S

@�

@z
�

g2 ���
1+�

ScpT

#
(5:4:5:1)

where

� =
L2vqvs

cpRvT 2
(5:4:5:2)

and

� =
Lvqvs

RdT
; (5:4:5:3)

and this modi�ed value is used in (5.4.4.2) where the cloud amount exceeds 0.01 g

kg�1.
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5.5 Atmospheric radiation parameterization

The atmospheric radiation option in the model provides a longwave (infra-red) and

shortwave (visible) scheme that interact with the atmosphere, cloud and precipitation

�elds, and with the surface (Dudhia 1989).

5.5.1 Longwave radiative scheme

Longwave absorption by water vapor, the primary clear-air absorber, is strongly

spectral in character, and the method employed is the commonly used broadband emissivity

method (see Stephens 1984). This involves using a precalculated emissivity function, �,

which represents the frequency-integrated absorption spectrum of water vapor, weighted

by a suitable envelope function. Rodgers (1967) gives an upward and downward emissivity

as a function of water vapor path, u, with a temperature correction term, where u includes

a pressure correction factor proportional to p0:86. The form of the �tted function is

�(u) =

i=4X
i=0

(ai + Tbi)x
i; (5:5:1:1)

where x = ln u and T is a u-weighted T - 250K. For u less than 10 g m�2, the form is

�(u) =

i=4X
i=1

(ci + Tdi)y
i; (5:5:1:2)

where y = u1=2 and ai, bi, ci and di are constants. In the tropics, e-type absorption is

an important additional component of the longwave absorption spectrum and is included

with a similar fourth-order polynomial in ln (ue) to (5.5.1.1) from Stephens and Webster

(1979), where e is the partial pressure due to water vapor. Given the emissivity functions

from (5.5.1.1-2) (�u for upward 
ux and �d for downward 
ux), the upward and downward


uxes at any model level are given by

Fu =

Z 1

0

B(T )d�u; (5:5:1:3a)

Fd =

Z 1

0

B(T )d�d; (5:5:1:4a)

In (5.4.1.3a) the integration is performed downwards through the model layers. The

quantity d� is calculated for each layer using the temperature (T ) of the layer and the
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frequency-integrated Planck function B = �SBT
4, where �SB is the Stefan-Boltzmann

constant. When the surface is encountered, the ground emission Fbot is multiplied by

1 � � and added to the integration. In (5.5.1.4a), the integration is performed upwards;

the downward longwave 
ux at the model top, Ftop, is assumed to result only from CO2

emission in the stratosphere. Thus (5.5.1.3a-4a) can be expressed as

Fu(z) =

Z z0=zsfc

z0=z

B(T )
d�u

dz0
dz0 + Fbot[1� �u(z; zsfc)]; (5:5:1:3b)

and

Fd(z) =

Z z0=ztop

z0=z

B(T )
d�d

dz0
dz0 + Ftop[(1� �d(z; ztop)]; (5:5:1:4b)

where

�(z; z1) =

Z z1

z

d�

dz0
dz0: (5:5:1:5)

It can be seen from the formulas that if the emissivity reaches 1 during the integration, the

remaining atmosphere makes no contribution to the 
ux. This is consistent with the idea

that an emissivity of 1 corresponds to a \black" layer with respect to longwave radiation.

Following Stephens (1978), the cloud water is assumed to have a constant absorption

coe�cient which is slightly di�erent for upward and downward radiation. The absorption

coe�cients are �cu = 0:130 m2 g�1 and �cd = 0:158 m2 g�1. To combine these with water

vapor absorption, the transmissivities are multiplied since clouds are assumed to be \grey

bodies." The net emissivity is then

�tot = 1 � TvTc; (5:5:1:6)

with

Tv = 1 � �vaporand (5:5:1:7)

Tc = exp(��cuc); (5:5:1:8)

where uc is the cloud water path (liquid mass per unit area).

Ice cloud is assumed to be composed of hexagonal plate-like crystals with the diameter-

mass relation given in section (5.3.1.1). If the assumption is made that the crystals do not

re
ect longwave radiation and are su�ciently thick to be \black", it is possible to estimate
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an absorption coe�cient as an integrated cross-sectional area. Allowing for the random

orientation of these crystals and a hemispheric integration factor of 1.66, the absorption

coe�cient takes a value of �i = 0:0735 m2 g�1, or about half that of cloud water. Since

this value agrees with some observations, it was applied in the model.

For rain and snow, the size distribution is necessary since the cross section is not

proportional to the mass of a particle. The size spectrum changes with precipitation

intensity so the absorption coe�cient varies with precipitation amount. The e�ective

absorption coe�cient is given by

�p =
1:66

2000

�
�N0

�3r

�1=4
m2g�1; (5:5:1:9)

where �r is the particle density. For the constants used in the explicit moisture scheme

described earlier, the absorption coe�cients take values of 2:34�10�3m2g�1 for snow and

0:330� 10�3m2g�1 for rain. The e�ective water path for a layer of �z meters thickness is

given by

up = (�qr)
3=4�z � 1000gm�2; (5:5:1:10)

so that the transmissivity is given by

Tp = exp(��pup): (5:5:1:11)

This transmissivity is multiplied with the others in (5.5.1.6) to give �tot. This is known as

an overlap approximation. Rain and snow have less e�ect on the longwave 
ux by 2 to 3

orders of magnitude, but still are not insigni�cant.

Carbon dioxide is less easily treated since it cannot be assumed \grey". That is,

its absorption is concentrated in a band of infrared wavelengths. To include its e�ect,

an overlap method is used as discussed by Stephens (1984). In e�ect, the spectrum is

divided into a carbon-dioxide band and a non-carbon-dioxide region. The former requires

overlapping of the carbon dioxide transmissivity function while the latter does not. The

relative weights of these two regions is slightly temperature dependent, but they add to

give the total absorption. A pressure correction factor proportional to p1:75 is applied to

the carbon dioxide path calculation.
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Having obtained the 
ux pro�les, Fu(z) and Fd(z), the radiative heating rate is

calculated from

_QR = cp
@T

@t
=

1

�

@

@z
(Fd � Fu) = �g

@

@p
(Fd � Fu): (5:5:1:12)

In the model, the values of F are de�ned on the model full sigma-levels. This makes

the various integrals and derivatives easier to represent numerically.

5.5.2 Shortwave Radiative Scheme

The downward component of shortwave 
ux is evaluated taking into account 1) the

e�ects of solar zenith angle, which in
uences the downward component and the path length;

2) clouds, which have an albedo and absorption; 3) and clear air, where there is scattering

and water-vapor absorption. Thus,

Sd(z) = �S0 �

Z top

z

(dScs + dSca + dSs + dSa); (5:5:2:13)

where � is the cosine of the zenith angle and S0 is the solar constant.

As with the longwave scheme, cloud fraction in a grid box is either 0 or 1 because of

the assumed stratiform nature of the clouds. The cloud back-scattering (or albedo) and

absorption are bilinearly interpolated from tabulated functions of � and ln(w=�) (where

w is the vertically integrated cloud water path) derived from Stephens' (1978) theoretical

results. The total e�ect of a cloud or multiple layers of cloud above a height z is found

from the above function as a percentage of the downward solar 
ux absorbed or re
ected.

Then at a height z � �z, a new total percentage is calculated from the table allowing

the e�ect of the layer �z to be estimated. However, this percentage is only applied to

�S0 ��S(clear air); that is, the clear-air e�ect above z is removed.

Clear-air water vapor absorption is calculated as a function of water vapor path

allowing for solar zenith angle. The absorption function is from Lacis and Hansen (1974).

The method is a similar integration-di�erence scheme to that described above for cloud.

Clear-air scattering is taken to be uniform and proportional to the atmosphere's

mass path length, again allowing for the zenith angle, with a constant giving 20 percent

scattering in one atmosphere. The heating rate is then given by

RT = RT (longwave) +
1

�cp
Sabs; (5:5:2:14)
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where Sabs is de�ned from the absorption part of the Sd integral given in (5.5.2.13), since

only cloud and clear-air absorption contribute to solar heating.

The solar and infrared 
uxes at the surface, calculated from the atmospheric radiative

schemes, are use in the energy budget of the land surface.
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