
9: MAKE

MM5 Tutorial 9-1

9MAKE AND MM5

make and MM5 9-3

Logical Subdivision of code 9-3
Minimize Portability Concerns 9-3
Conditional Compilation 9-4

Configure.user File 9-4

Makefiles 9-5

Example: Top-Level Makefile 9-5
Example: Mid-Level Makefile 9-8
Example: Low-Level Makefile 9-10

CPP 9-11

CPP “inclusion” 9-12
CPP “conditionals” 9-12

9: MAKE

9-2 MM5 tutorial

9: MAKE AND MM5
9.1 make and MM5

The use of make in the MM5 project is necessitated for a number of reasons.

9.1.1 Logical Subdivision of code

MM5 is written in FORTRAN and organized with the goal of providing a logical structure for
code development and to encourage modular development of new options and subroutines. In
addition, it is desired to supply the user/developer with some “pointers” as to the location of rou-
tines of particular interest. So the hope is to create something that appeared simple to the casual
user but allowed more convenient access for the power user.

This structure is implemented implicitly by taking advantage of the Unix file system structure.
Since directories are arranged as trees, the subroutines are subdivided into conceptual groups. The
include directory contains the include files for the various subroutines. The domain, dynamics,
fdda, physics, and memory directories contain the subroutines divided by function. The Run
directory holds the main program source code. make is the glue that holds this complicated struc-
ture together. As you have seen, make executes commands by spawning shells. These shells can
in turn run make in subdirectories. This ability to nest makefiles is very powerful, since it allows
you to recursively build an entire directory.

9.1.2 Minimize Portability Concerns

Writing portable code involves not only following language standards, but creating a development
structure that is equally standard. Every time code moves to a new machine you not only need to
worry about your code but compilers, the operating system and the system environment, available
libraries, and options for all of the above.

The answer to this problem is two-fold, namely, use only standard tools and minimize use of eso-
teric options. make is such a standard tool - you will find make on every working UNIX machine
you encounter. While each vendor’s make may differ in significant way, they all support a core

9 MAKE AND MM5
MM5 Tutorial 9-3

9: MAKE AND MM5
subset of functionality. This means that a basic makefile with no bells and whistles will work on
the vast majority of machines available on the market.

“All makes are equal, but some makes are more equal than others.”

Every decent Unix box will have make and cpp. However, they may throw in non-standard
options. The quotation above reminds us to keep to standard constructions whenver possible.

9.1.3 Conditional Compilation

One of the stated goals is conditional compilation. This is done in two different ways. make keys
off the user's options to skip compilation of those directories not required. When a source file is
compiled, cpp is used to avoid including code that is not required. So make skips unnecessary
compilation while cpp is used to modify compilation.

9.2 Configure.user File

Since make needs rules and defined dependencies (sometimes not the default ones), and there are
more than 65 makefiles in the MM5 V3 directory structure (more than 70 MM5 subdirectories,
over 300 Fortran files, and more than 100 C files), it would be an enomous task to make any
change to these makefiles. A simple solution to solve this problem is to define all the rules and
dependencies in one file and pass this file to all makefiles when make is executed. These defini-
tions constitute part of the configure.user file. This section explains the rules and dependencies as
defined in the configure.user file.

SHELL Defines the shell under which the make is run.
.SUFFIXES Defines the suffixes the makefiles use.
FC Macro to define fortran compiler.
FCFLAGS Macro to define any FORTRAN compiler options.
CFLAGS Macro to define any c compiler options.
CPP Macro to define where to locate c pre-processor on the machine.
CPPFLAGS Macro to define any cpp options.
LDOPTIONS Macro to define any loader options.
LOCAL_LIBRARIES Macro to define any local libraries that the compiler may access.
MAKE Macro to define the make command.

-I$(LIBINCLUDE) to search for include files when compiling
-C cpp option: all comments (except those found on cpp directive lines) are

passed along.
-P cpp option: preprocess the input without producing the line control

information used by the next pass of the C compiler.
-i make option: ignore error codes returned by invoked commands.
-r make option: to remove any default suffix rules.
AR Macro to define archive options.
9-4 MM5 Tutorial

9: MAKE AND MM5
The following, which appears at the end of the configure.user file, defines the suffix rules a make-
file uses. For example, .F.o: defines the rules to go from .F to .o files. In this case, the make will
first remove any existing out-of-date .o file, and compile the .F files.

.F.i:
 $(RM) $@
 $(CPP) $(CPPFLAGS) $*.F > $@
 mv $*.i $(DEVTOP)/pick/$*.f
 cp $*.F $(DEVTOP)/pick
.c.o:
 $(RM) $@ && \
 $(CC) -c $(CFLAGS) $*.c
.F.o:
 $(RM) $@
 $(FC) -c $(FCFLAGS) $*.F
.F.f:
 $(RM) $@
 $(CPP) $(CPPFLAGS) $*.F > $@
.f.o:
 $(RM) $@
 $(FC) -c $(FCFLAGS) $*.f

9.3 Makefiles

make is a tool that executes "makefiles". Makefiles contain "targets" and "dependencies". A tar-
get is what you want to compile. A dependency is what needs to be done to compile the target. We
use a 3-tiered makefile structure following the directory struture.

• Top-Level
• Middle (branching) Level
• Lowest (compilation) Level

Examples of each makefile follow.

• Top Level hides everything. The casual user edits the parameters and then just types
"make". We take care of the rest.

• Middle Level is where branching occurs. These would be modified for something like the
addition of a new moist physics scheme.

• Lowest Level is where object files are made. Change this when adding files. In addition,
the power user will make in these lower directories to avoid remaking the whole structure.

9.3.1 Example: Top-Level Makefile

Makefile for top directory

DEVTOP = .
include ./configure.user

RM Macro to define remove options.
RM_CMD Macro to define what to remove when RM is executed.
GREP Macro similar to grep.
CC Macro to define c compiler.
MM5 Tutorial 9-5

9: MAKE AND MM5
all:
(cd Util; $(MAKE)); \
./parseconfig; \
(cd include; $(MAKE)); \
(cd memory; $(MAKE)); \
(cd fdda; $(MAKE)); \
(cd domain; $(MAKE));\
(cd physics; $(MAKE));\
(cd dynamics; $(MAKE));\
(cd Run; $(MAKE));

code:
find . -name *.i -exec rm {} \; ; \
(cd Util; $(MAKE)); \
./parseconfig; \
(cd include; $(MAKE)); \
(cd include; $(MAKE) code); \
(cd memory; $(MAKE) code); \
(cd fdda; $(MAKE) code); \
(cd domain; $(MAKE) code);\
(cd physics; $(MAKE) code);\
(cd dynamics; $(MAKE) code);\
(cd Run; $(MAKE) code);

little_f:
(cd Util; $(MAKE)); \
./parseconfig; \
(cd include; $(MAKE)); \
(cd memory; $(MAKE) little_f); \
(cd fdda; $(MAKE) little_f); \
(cd domain; $(MAKE) little_f); \
(cd physics; $(MAKE) little_f); \
(cd dynamics; $(MAKE) little_f); \
(cd Run; $(MAKE) little_f);

mm5.deck:
./Util/makedeck.csh $(RUNTIME_SYSTEM);

clean:
(cd Util; $(MAKE) clean); \
(cd include; $(MAKE) clean); \
(cd memory; $(MAKE) clean); \
(cd fdda; $(MAKE) clean); \
(cd physics; $(MAKE) clean);\
(cd domain; $(MAKE) clean);\
(cd dynamics; $(MAKE) clean);\
(cd Run; $(MAKE) clean); \
if [-f libutil.a]; then $(RM) libutil.a; fi;

rm_obj:
(cd Util; $(MAKE) clean); \
(cd include; $(MAKE) clean); \
(cd memory; $(MAKE) clean); \
(cd fdda; $(MAKE) clean); \
(cd physics; $(MAKE) clean);\
(cd domain; $(MAKE) clean);\
(cd dynamics; $(MAKE) clean);\
(cd Run; $(MAKE) rm_obj); \
if [-f libutil.a]; then $(RM) libutil.a; fi;

LineNumberer:
$(CC) -o ./LineNumberer Util/LineNumberer.c;

mmlif:
(cd Run; $(MAKE) mmlif);

Additions for MPP
9-6 MM5 Tutorial

9: MAKE AND MM5
#
To clean after changes to configure.user, type ‘make mpclean’.
To uninstall everything relating to MPP option, ‘make uninstall’.
To partially remake installation, remove MPP/mpp_install and ‘make mpp’.
#

mpclean: clean
(cd MPP/build ; /bin/rm -fr *.o *.f *.dm *.b)

mpp: MPP/mpp_install
(cd Util; $(MAKE))
./parseconfig
(cd include; $(MAKE))
(cd include; $(MAKE) code)
(sed ‘/t touch anything below this line/,$$d’ configure.user \

 > ./MPP/conf.mpp)
(cd MPP; $(MAKE) col_cutter)
(cd MPP/build; \
/bin/rm -f .tmpobjs ; \

 $(CPP) -I../../pick ../mpp_objects_all > .tmpobjs ; \
 $(MAKE) -f Makefile.$(MPP_LAYER))

MPP/mpp_install:
(cd include; $(MAKE) code)
(cd MPP/RSL/RSL ; $(MAKE) $(MPP_TARGET))
(cd MPP/FLIC ; $(MAKE) ; $(MAKE) clean)
(cd MPP/FLIC/FLIC ; $(MAKE) ; \
 $(MAKE) clean ; \
 /bin/rm -f flic ; \

 sed s+INSTALL_STRING_FLICDIR+`pwd`+ flic.csh > flic ; \
 chmod +x flic)
(csh MPP/Makelinks $(MPP_LAYER) $(MPP_TARGET))
touch MPP/mpp_install

uninstall:
(cd include; $(MAKE) clean)
(cd memory; $(MAKE) clean)
(cd fdda; $(MAKE) clean)
(cd physics; $(MAKE) clean)
(cd domain; $(MAKE) clean)
(cd dynamics; $(MAKE) clean)
(cd Run; $(MAKE) clean)
if [-f libutil.a]; then $(RM) libutil.a; fi
(cd MPP/FLIC/FLIC; /bin/rm -f dm ; $(MAKE) clean)
(cd MPP/FLIC; $(MAKE) clean ; /bin/rm -fr bin)
(cd MPP/RSL/RSL; $(MAKE) clean ; /bin/rm -f librsl.a)
/bin/rm -f MPP/FLIC/h/*.h
/bin/rm -fr MPP/build
/bin/rm -f parseconfig
/bin/rm -f MPP/col_cutter
/bin/rm -f Run/mm5.exe
/bin/rm -f Run/mm5.mpp
/bin/rm -f pick/*.incl *.h
/bin/rm -f MPP/mpp_install

Note: there are several targets in the top-level makefile: all, code, little_f (for IBM xlf compiler,
or any fortran compiler that does not allow the use of cpp), mm5.deck, clean, LineNumberer, and
mpclean, mpp, etc. for MPP extension. If a user does not specify a target, the makefile will use the
first one it sees. In this case, it is the ‘all’ target. For any target that is not placed first, a user must
explicitly specify the target. For example, we use ‘make mm5.deck’ to make a job deck. The com-
mand for the target ‘all’ is to cd to a particular directory and execute make (the macro $(MAKE)
is defined in configure.user file).
MM5 Tutorial 9-7

9: MAKE AND MM5
9.3.2 Example: Mid-Level Makefile

Makefile for directory physics/pbl_sfc

DEVTOP = ../..
include ../../configure.user

Makefile for directory physics/pbl_sfc

lib:
@tmpfile=’.tmpfile’; \
echo $(IBLTYP) > $$tmpfile; \
$(GREP) “0” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 0”; \
(cd dry; $(MAKE) all); \
else \
echo “IBLTYP != 0”; \
fi; \
$(GREP) “1” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 1”; \
(cd bulk; $(MAKE) all); \
(cd dry; $(MAKE) all); \
else \
echo “IBLTYP != 1”; \
fi; \
$(GREP) “2” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 2”; \
(cd hirpbl; $(MAKE) all); \
else \
echo “IBLTYP != 2”; \
fi; \
$(GREP) “3” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 3”; \
(cd btpbl; $(MAKE) all); \
else \
echo “IBLTYP != 3”; \
fi; \
$(GREP) “4” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 4”; \
(cd btpbl; $(MAKE) all); \
else \
echo “IBLTYP != 4”; \
fi; \
$(GREP) “5” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 5”; \
(cd mrfpbl; $(MAKE) all); \
else \
echo “IBLTYP != 5”; \
fi; \
$(GREP) “6” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 6”; \
(cd btpbl; $(MAKE) all); \
else \
echo “IBLTYP != 6”; \
fi; \

(cd util; $(MAKE) all);
9-8 MM5 Tutorial

9: MAKE AND MM5
code:
@tmpfile=’.tmpfile’; \
echo $(IBLTYP) > $$tmpfile; \
$(GREP) “1” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 1”; \
(cd bulk; $(MAKE) code); \
(cd dry; $(MAKE) code); \
else \
echo “IBLTYP != 1”; \
fi; \
$(GREP) “0” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 0”; \
(cd dry; $(MAKE) code); \
else \
echo “IBLTYP != 0”; \
fi; \
$(GREP) “2” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 2”; \
(cd hirpbl; $(MAKE) code); \
else \
echo “IBLTYP != 2”; \
fi; \
$(GREP) “3” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 3”; \
(cd btpbl; $(MAKE) code); \
else \
echo “IBLTYP != 3”; \
fi; \
$(GREP) “4” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 4”; \
(cd btpbl; $(MAKE) code); \
else \
echo “IBLTYP != 4”; \
fi; \
$(GREP) “5” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 5”; \
(cd mrfpbl; $(MAKE) code); \
else \
echo “IBLTYP != 5”; \
fi; \
$(GREP) “6” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 6”; \
(cd btpbl; $(MAKE) code); \
else \
echo “IBLTYP != 6”; \
fi; \
(cd util; $(MAKE) code);

little_f:
@tmpfile=’.tmpfile’; \
echo $(IBLTYP) > $$tmpfile; \
$(GREP) “0” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 0”; \
(cd dry; $(MAKE) little_f); \
else \
echo “IBLTYP != 0”; \
fi; \
$(GREP) “1” $$tmpfile; \
MM5 Tutorial 9-9

9: MAKE AND MM5
if [$$? = 0]; then \
echo “IBLTYP = 1”; \
(cd bulk; $(MAKE) little_f); \
(cd dry; $(MAKE) little_f); \
else \
echo “IBLTYP != 1”; \
fi; \
$(GREP) “2” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 2”; \
(cd hirpbl; $(MAKE) little_f); \
else \
echo “IBLTYP != 2”; \
fi; \
$(GREP) “3” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 3”; \
(cd btpbl; $(MAKE) little_f); \
else \
echo “IBLTYP != 3”; \
fi; \
$(GREP) “4” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 4”; \
(cd btpbl; $(MAKE) little_f); \
else \
echo “IBLTYP != 4”; \
fi; \
$(GREP) “5” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 5”; \
(cd mrfpbl; $(MAKE) little_f); \
else \
echo “IBLTYP != 5”; \
fi; \
$(GREP) “6” $$tmpfile; \
if [$$? = 0]; then \
echo “IBLTYP = 6”; \
(cd btpbl; $(MAKE) little_f); \
else \
echo “IBLTYP != 6”; \
fi; \
(cd util; $(MAKE) little_f);

clean:
(cd btpbl; $(MAKE) clean); \
(cd bulk; $(MAKE) clean); \
(cd dry; $(MAKE) clean); \
(cd hirpbl; $(MAKE) clean); \
(cd mrfpbl; $(MAKE) clean); \
(cd util; $(MAKE) clean);

Note: This example shows how the branching is done with the mid-level makefile. The makefile
first echos the string IBLTYP defined in configure.user file to a temporary file, .tmpfile. It then
checks, using grep, to see if any of the options exist (in this case, IBLTYP may be 0,1,2,3, or 5). If
any of them is defined, it will go to the directory that contains the subroutines for that option and
execute the make command there. Again there are several targets in this mid-level makefile: lib,
code, little_f, and clean. The default is the target lib.

9.3.3 Example: Low-Level Makefile

Makefile for directory physics/pbl_sfc/mrfpbl
9-10 MM5 Tutorial

9: MAKE AND MM5
DEVTOP = ../../..
include ../../../configure.user

CURRENT_DIR = $(DEVTOP)/physics/pbl_sfc/mrfpbl

OBJS =\
mrfpbl.o \
tridi2.o

SRC =\
mrfpbl.i \
tridi2.i

SRCF =\
mrfpbl.f \
tridi2.f

LIBTARGET = util
TARGETDIR = ../../../

all:: $(OBJS)
$(AR) $(TARGETDIR)lib$(LIBTARGET).a $(OBJS)

code:: $(SRC)

little_f:: $(SRCF) $(OBJS)
$(AR) $(TARGETDIR)lib$(LIBTARGET).a $(OBJS)

common rules for all Makefiles - do not edit

emptyrule::

clean::
$(RM_CMD) “#”*

DO NOT DELETE THIS LINE -- make depend depends on it.

mrfpbl.o: ../../../include/parame.inc ../../../include/rpstar.incl
mrfpbl.o: ../../../include/varia.incl ../../../include/dusolve1.incl
mrfpbl.o: ../../../include/param2.incl ../../../include/param3.incl
mrfpbl.o: ../../../include/pmoist.incl ../../../include/point3d.incl
mrfpbl.o: ../../../include/point2d.incl ../../../include/various.incl
mrfpbl.o: ../../../include/nonhyd.incl ../../../include/nhcnst.incl
mrfpbl.o: ../../../include/soil.incl ../../../include/soilcnst.incl
mrfpbl.o: ../../../include/addrcu.incl ../../../include/pbltb.incl
tridi2.o: ../../../include/parame.incl

Note: In this example, when make is executed (‘make -i -r’), it first looks for the target all, for
example. It finds that the target ‘all’ depends on a group of object files (defined by the macro
OBJS). The rules for making the object files are defined in configure.user file, i.e. the .F.o: rule.
The makefile checks whether any .o files are out-of-date w.r.t. the .F files, or w.r.t. any of the
include files used in the .F files. The dependencies on include files are at the end of the makefile.
After the .o files are made, the command on the following line specifies how to archive them into
libutil.a using macro AR defined in configure.user.

9.4 CPP

The cpp pre-processor is about as old as Unix itself. A pre-processor scans a file and make modi-
MM5 Tutorial 9-11

9: MAKE AND MM5
fications according to user-supplied definitions. Typically this facility is used for global substitu-
tions, conditional code inclusion, including files, and function templating. We only use the cpp
"conditional code inclusion" and "including files" features. Because we use cpp, our Fortran
codes are named .F, in contrast to .f. Many machines recognize .F files as the ones that need to be
run through cpp first before being compiled.

9.4.1 CPP “inclusion”

One cpp directive is "#include <filename>". This directive indicates that filename should be
included in the source prior to compilation.
Example:

SUBROUTINE SOLVE(IEXEC,INEST,NN)

include <parame.incl>

turns into

SUBROUTINE SOLVE(IEXEC,INEST,NN)
C PARAME
C
C--- ADDITIONAL MEMORY REQUIREMENTS FOR RUNS ,
C--- GRIDDED FDDA RUNS (IFDDAG=1) AND OBS FDDA RUNS (IFDDAO=1),
C--- NONHYDROSTATIC RUNS (INHYD=1), HIGHER ORDER PBL RUNS (INAV=1),
C--- EXPLICIT MOISTURE SCHEME (IEXMS=1), ARAKAWA-SCHUBERT
C--- CONVECTIVE PARAMETERIZATION (IARASC=1), ATMOSPHERIC
C--- RADIATION (IRDDIM=1), MIXED-PHASE ICE SCHEME (IICE=1).
C--- GRAUPEL SCHEME (IICEG=1), KAIN-FRITSCH AND FRITSCH-CHAPPELL.
C--- CONVECTIVE PARAMETERIZATIONS (IKFFC=1), AND GAYNO-SEAMAN PBL (IGSPBL=1).
C--- INTEGER IARASC,IEXMS,IFDDAG,IFDDAO,IICE,IICEG,IKFFC,ILDDIM,INAV
C--- 5-LAYER SOIL (ISLDIM=1,MLX=6), OSU LAND SFC (ILDDIM=1,MLX=4).
C
C

INTEGER IARASC,IEXMS,IFDDAG,IFDDAO,IICE,IICEG,IKFFC,ILDDIM,INAV
 INTEGER INAV2,INAV3,IGSPBL,INHYD,IRDDIM,ISLDIM,MLX
 PARAMETER (IFDDAG=1,IFDDAO=1,INHYD=1,INAV=0,INAV2=0,INAV3=0,
 1 IICE=0,IICEG=0,IEXMS=1,IKFFC=0,IARASC=0,IRDDIM=1,
 2 IGSPBL=0,ISLDIM=1,ILDDIM=0,MLX=6)

9.4.2 CPP “conditionals”

cpp also recognizes conditional directives. You define a macro in your source code using the
"define" directive - you can then use the "#ifdef" test on this macro to selectively include code.
Example: In defines.incl, there are statements such as:

#define IMPHYS4 1
#define IMPHYS1 1
#define ICUPA3 1
#define IBLT2 1

In the SOLVE, the .F file has

#ifdef ICUPA3
C
C--- ICUPA=3: GRELL
C

9-12 MM5 Tutorial

9: MAKE AND MM5
IF(ICUPA(INEST).EQ.3)THEN
 DO J=JBNES,JENES-1
 DO K=1,KL
 DO I=IBNES,IENES-1
 CLDFRA(I,K) = 0.0
 END DO
 END DO
 CALL CUPARA3(T3D,QV3D,PSB,T3DTEN,QV3DTEN,RAINC,CLDFRA,HT,U3D,
 + V3D,PP3D,INEST,J,IBNES,IENES-1)
 DO K=1,KL
 DO I=IBNES,IENES-1
 CLDFRA3D(I,J,K)=CLDFRA(I,K)
 ENDDO
 ENDDO
 ENDDO
 ENDIF
#endif
................... and so on.

In this example only ICUPA3 is defined (#define ICUPA3 1 in defines.incl), so the call to
CUPARA3 will be kept in the final source code. Other cumulus schemes are not selected, so the
calls to these schemes won’t be included in the source code to be compiled.
MM5 Tutorial 9-13

9: MAKE AND MM5
9-14 MM5 Tutorial

	9 MAKE AND MM5
	9.1 make and MM5
	9.1.1 Logical Subdivision of code
	9.1.2 Minimize Portability Concerns
	9.1.3 Conditional Compilation

	9.2 Configure.user File
	SHELL
	Defines the shell under which the make is run.
	.SUFFIXES
	Defines the suffixes the makefiles use.
	FC
	Macro to define fortran compiler.
	FCFLAGS
	Macro to define any FORTRAN compiler options.
	CFLAGS
	Macro to define any c compiler options.
	CPP
	Macro to define where to locate c pre-processor on the machine.
	CPPFLAGS
	Macro to define any cpp options.
	LDOPTIONS
	Macro to define any loader options.
	LOCAL_LIBRARIES
	Macro to define any local libraries that the compiler may access.
	MAKE
	Macro to define the make command.
	-I$(LIBINCLUDE)
	to search for include files when compiling
	-C
	cpp option: all comments (except those found on cpp directive lines) are passed along.
	-P
	cpp option: preprocess the input without producing the line control information used by the next ...
	-i
	make option: ignore error codes returned by invoked commands.
	-r
	make option: to remove any default suffix rules.
	AR
	Macro to define archive options.
	RM
	Macro to define remove options.
	RM_CMD
	Macro to define what to remove when RM is executed.
	GREP
	Macro similar to grep.
	CC
	Macro to define c compiler.
	9.3 Makefiles
	9.3.1 Example: Top-Level Makefile
	9.3.2 Example: Mid-Level Makefile
	9.3.3 Example: Low-Level Makefile

	9.4 CPP
	9.4.1 CPP “inclusion”
	9.4.2 CPP “conditionals”

