
3: MAKE UTILITY

MM5 Tutorial 3-1

3MAKE UTILITY

The UNIX make Utility 3-3

make Functionality 3-3

The Makefile 3-4

Sample make Syntax 3-5

Macros 3-5

Internal Macros 3-5

Default Suffixes and Rules 3-6

Sample Program Dependency Chart 3-7

Sample Program Components for make Example 3-8

makefile Examples for the Sample Program 3-9

Make Command Used in MM5 Preprocessing Programs 3-10

An Example of Top-level Makefile 3-10

An Example of Low-level Makefile 3-13

3: MAKE UTILITY

3-2 MM5 tutorial

3: MAKE UTILITY
3.1 The UNIX make Utility

The following chapter is designed to provide the MM5 user with both an overview of the UNIX
make command and an understanding of how make is used within the MM5 system. UNIX sup-
plies the user with a broad range of tools for maintaining and developing programs. Naturally, the
user who is unaware of their existence, doesn’t know how to use them, or thinks them unneces-
sary will probably not benefit from them. In the course of reading this chapter it is hoped that you
not only become aware of make but that you will come to understand why you need it.

In the same way you use dbx when you want to “debug” a program or sort when you need to sort
a file, so you use make when you want to “make” a program. While make is so general that it
can be used in a variety of ways, its primary purpose is the generation and maintenance of pro-
grams.
But why the bother of a separate make utility in the first place? When you wrote your first pro-
gram it probably consisted of one file which you compiled with a command such as “f77 hello.f”.
As long as the number of files is minimal you could easily track the modified files and recompile
any programs that depend on those files. If the number of files becomes larger you may have writ-
ten a script that contains the compiler commands and reduces the amount of repetitive typing. But
as the number of files increases further your script becomes complicated. Every time you run the
script every file is recompiled even though you have only modified a single file. If you modify an
include file it is your responsibility to make sure that the appropriate files are recompiled.
Wouldn’t it be nice to have something that would be smart enough to only recompile the files that
need to be recompiled? To have something that would automatically recognize that a buried
include file have been changed and recompile as necessary? To have something that would opti-
mize the regeneration procedure by executing only the build steps that are required. Well, you do
have that something. That something is make.

When you begin to work on larger projects, make ceases to be a nicety and becomes a necessity.

3.2 make Functionality

3 MAKE UTILITY
MM5 Tutorial 3-3

3: MAKE UTILITY
The most basic notion underlying make is that of dependencies between files. Consider the fol-
lowing command:

f77 -o average mainprog.o readit.o meanit.o printit.o

Consider the object file mainprog.o and its associated source code file mainprog.f. Since a
change in mainprog.f necessitates recompiling mainprog.o, we say that mainprog.o is depen-
dent upon mainprog.f. Using the same reasoning we see that the final program average is depen-
dent upon mainprog.o. average in this context is the target program (the program we wish to
build). In this fashion we can build up a tree of dependencies for the target, with each node having
a subtree of its own dependencies (See Figure 3.1). Thus the target average is dependent upon
both mainprog.o and mainprog.f, while mainprog.o is dependent only upon mainprog.f.
Whenever mainprog.f is newer than mainprog.o, average will be recompiled.

make uses the date and time of last modification of a file to determine if the dependent file is
newer than the target file. This is the time you see when using the UNIX ls command. By recog-
nizing this time relationship between target and dependent, make can keep track of which files
are up-to-date with one another. This is a reasonable approach since compilers produce files
sequentially. The creation of the object file necessitates the pre-existence of the source code file.
Whenever make finds that the proper time relationship between the files does not hold, make
attempts to regenerate the target files by executing a user-specified list of commands, on the
assumption that the commands will restore the proper time relationships between the source files
and the files dependent upon them.

The make command allows the specification of a heirarchical tree of dependency relationships.
Such relationships are a natural part of the structure of programs. Consider our program average
(See Figure 3.1). This application consists of 6 include files and four source code files. Each of
the four source code files must be recompiled to create the four object files, which in turn are used
to create the final program average. There is a natural dependency relationship existing between
each of the four types of files: include files, FORTRAN sources, object, and executables. make
uses this relationship and a specification of the dependency rules between files to determine when
a procedure (such a recompilation) is required. make relieves people who are constantly recom-
piling the same code of the tedium of keeping track of all the complexies of their project, while
avoiding inefficiency by minimizing the number of steps required to rebuild the executable.

3.3 The Makefile

Even with a small number of files the dependency relationships between files in a programming
project can be confusing to follow. In the case of mm5 with hundreds of files, an English descrip-
tion would be unuseable. Since make requires some definition of the dependencies, it requires
that you prepare an auxillary file -- the makefile -- that describes the dependencies between files
in the project.

There are two kinds of information that must be placed in a makefile: dependency relations and
generation commands. The dependency relations are utilized to determine when a file must be
regenerated from its supporting source files. The generation commands tell make how to build
out-of-date files from the supporting source files. The makefile therefore contains two distinct
line formats: one called rules, the other commands.
3-4 MM5 Tutorial

3: MAKE UTILITY
3.4 Sample make Syntax

A rule begins in the first position of the line and has the following format:
targetfile: dependencies.

The name or names to the left of the colon are the names of target files. The names to the right of
the colon are the files upon which our target is dependent. That is, if the files to the right are
newer than the files to the left, the target file must be rebuilt.

A dependency rule may be followed by one or more command lines. A command line must begin
with at least one tab character; otherwise, it will not be recognized by make and will probably
cause make to fail. This is a common cause of problems for new users. Other than this, make
places no restrictions are command lines - when make uses command lines to rebuild a target, it
passes them to the shell to be executed. Thus any command acceptable to the shell is acceptable to
make.

3.5 Macros

make Macro definitions and usage look very similar to UNIX environment variables and serve
much the same purpose. If the Macro STRING1 has been defined to have the value STRING2,
then each occurrence of $(STRING1) is replaced with STRING2. The () are optional if STRING1
is a single character.

MyFlags = -a -b -c -d

In this example every usage of $(MyFlags) would be replaced by make with the string “-a -b -c -
d” before executing any shell command.

3.6 Internal Macros

targetfile : dependencies

< tab > command1

< tab > command2

myprog.exe: mysource1.f mysource2.f

< tab > f77 -o myprog.exe mysource1.f mysource2.f

$@ name of the current target

$< The name of a dependency file, derived as if selected for use with an
implicit rule.
MM5 Tutorial 3-5

3: MAKE UTILITY
3.7 Default Suffixes and Rules

In the Makefile you may notice a line beginning with .SUFFIXES near the top of the file, and fol-
lowed by a number of targets (e.g., .f.o). In addition, you may notice that the MAKE macro is
commonly defined using the -r option. These definitions are all designed to deal with what are
known as make’s implicit suffix rules.

An implicit suffix rule defines the relationship between files based on their suffixes. If no explicit
rule exists and the suffix of the target is one recognized by make, it will use the command associ-
ated with the implicit suffix rule. So if there is no explicit rule in the Makefile which deals with
the target mainprog.o, make will recognize the suffix .o to indicate that this is an object file and
will look in its list of implicit suffix rules to decide how to update the target. If there is a file
named mainprog.f in the directory, make will compile mainprog.o using the .f.o rule. If instead
there is a file named mainprog.c, make will compile mainprog.o using the .c.o implicit suffix rule.
If both source files are in the directory, the rule used is dependent on the particular implementa-
tion of make.

The -r option to make turns off the implicit suffix rules. So on most platforms we do not use the
implicit suffix rules, preferring to define our own suffix rules. We do this by specifying which
files with suffixes use suffix rules - this is done with the .SUFFIXES macro. We then define what
these rules in low-level makefiles. For example, one of the suffix rule we specify is

.F.o:
<tab> $(RM) $@
<tab> $(FC) -c $(FCFLAGS) $*.F

The reason we have this suffix rule is that all our Fortran files are named *.F, which will be sub-
ject to cpp (c pre-processor) before being compiled.

$? The list of dependencies that are newer than the target

$* The basename of the current target, derived as if selected for use with
an implicit rule.

D directory path, $(@D), $(<D)

F file name, $(@F), $(<F)

.f.o:

< tab > $(FC) $(FFLAGS) -c $<

.f:

< tab > $(FC) $(FFLAGS) $(LDFLAGS) $< -o $@

.SUFFIXES:

< tab > .o .c .f
3-6 MM5 Tutorial

3: MAKE UTILITY
3.8 Sample Program Dependency Chart

average

mainprog.o readit.o meanit.o printit.o

mainprog.f readit.f meanit.f printit.f

unit.include

data.include data.include data.include

sum.include sum.include

Fig. 3.1 Sample program dependency chart.
MM5 Tutorial 3-7

3: MAKE UTILITY
3.9 Sample Program Components for make Example

 mainprog.f readit.f
 ------------------------ -------------------------
 program mainprog subroutine readit
 call readit include 'unit.include'
 call meanit include 'data.include'
 call printit open (iunit,file='input.data',
 stop 99999 * access='sequential',
 end * form='formatted')
 read (iunit,100) data
 100 format(f10.4)
 close (iunit)
 return
 end

 meanit.f printit.f
 ------------------------ -------------------------
 subroutine meanit subroutine printit
 include 'data.include' include 'data.include'
 include 'sum.include' include 'sum.include'
 do 100 l = 1, length print *,(l,data(l),l=1,length)
 sum = sum + data (l) print *,'average = ',sum
100 continue return
 sum = sum / float(length) end
 return
 end

 unit.include sum.include
 ------------------------ -------------------------
 parameter (iunit=7) common /avg/ sum

 data.include

 parameter (length=10)
 common /space/ data(length)
3-8 MM5 Tutorial

3: MAKE UTILITY
3.10 makefile Examples for the Sample Program

#
first makefile example
#
average : mainprog.o readit.o meanit.o printit.o

f77 -o average mainprog.o readit.o meanit.o printit.o

mainprog.o : mainprog.f
f77 -c mainprog.f

readit.o : readit.f unit.include data.include
f77 -c readit.f

meanit.o : meanit.f data.include sum.include
f77 -c meanit.f

printit.o : printit.f data.include sum.include
f77 -c printit.f

#
second makefile example
#
average : mainprog.o readit.o meanit.o printit.o

f77 -o $@ mainprog.o readit.o meanit.o printit.o

mainprog.o : mainprog.f
f77 -c $<

readit.o : readit.f unit.include data.include
f77 -c $<

meanit.o : meanit.f data.include sum.include
f77 -c $*.f

printit.o : printit.f data.include sum.include
f77 -c $*.f
MM5 Tutorial 3-9

3: MAKE UTILITY
#
third makefile example
#
OBJS = mainprog.o readit.o meanit.o printit.o
average : $(OBJS)

f77 -o $@ $(OBJS)

readit.o : readit.f unit.include data.include
f77 -c $<

meanit.o : meanit.f data.include sum.include
f77 -c $<

printit.o : printit.f data.include sum.include
f77 -c $<

#
fourth makefile example
#
.f.o:

rm -f $@
f77 -c $*.f

OBJS = mainprog.o readit.o meanit.o printit.o

average : $(OBJS)
f77 -o $@ $(OBJS)

readit.o : unit.include data.include
meanit.o : data.include sum.include
printit.o : data.include sum.include

3.11 Make Command Used in MM5 Preprocessing Programs

The make rules, defined dependencies (sometimes not the default ones), and compiler/loader
options are defined in Makefiles. The syntax for the make command is in general

 make "rule1" "rule2"

3.12 An Example of Top-level Makefile

Top-level Makefile for TERRAIN

Macros, these should be generic for all machines

.IGNORE:
3-10 MM5 Tutorial

3: MAKE UTILITY
AR =ar ru
CD =cd
LN =ln -s
MAKE=make -i -f Makefile
RM =/bin/rm -f
RM_LIST=*.o *.f core .tmpfile terrain.exe data_area.exe rdem.exe
NCARGRAPHICS = NCARG
#NCARGRAPHICS = NONCARG

Targets for supported architectures

default:
uname -a > .tmpfile
grep CRAY .tmpfile ; \
if [$$? = 0]; then echo "Compiling for CRAY" ; \
($(CD) src ; $(MAKE) all\
"RM= $(RM)" "RM_LIST= $(RM_LIST)"\
"LN= $(LN)" "MACH= CRAY"\
"MAKE= $(MAKE)""CPP= /opt/ctl/bin/cpp" \
"CPPFLAGS= -I. -C -P -D$(NCARGRAPHICS) -DRECLENBYTE"\
"FC= f90" "FCFLAGS= -I."\
"LDOPTIONS = " "CFLAGS = "\
"LOCAL_LIBRARIES= -L/usr/local/lib -lncarg -lncarg_gks -lncarg_c -lX11 -

lm") ; \
else \
grep OSF .tmpfile ; \
if [$$? = 0]; then echo "Compiling for Compaq" ; \
($(CD) src ; $(MAKE) all \
"RM= $(RM)" "RM_LIST= $(RM_LIST)"\
"LN= $(LN)" "MACH= DEC"\
"MAKE= $(MAKE)""CPP= /usr/bin/cpp" \
"CPPFLAGS= -I. -C -P -D$(NCARGRAPHICS)"\
"FC= f77""FCFLAGS= -I. -convert big_endian -fpe"\
"LDOPTIONS = ""CFLAGS = "\
"LOCAL_LIBRARIES= -L/usr/local/ncarg/lib -lncarg -lncarg_gks -lncarg_c -

lX11 -lm") ; \
else \
grep IRIX .tmpfile ; \
if [$$? = 0]; then echo "Compiling for SGI" ; \
($(CD) src ; $(MAKE) all\
"RM= $(RM)" "RM_LIST= $(RM_LIST)"\
"LN= $(LN)" "MACH= SGI" \
"MAKE= $(MAKE)""CPP= /lib/cpp"\
 "CPPFLAGS= -I. -C -P -D$(NCARGRAPHICS)"\
"FC= f77" "FCFLAGS= -I. -n32"\
"LDOPTIONS = -n32""CFLAGS = -I. -n32"\
"LOCAL_LIBRARIES= -L/usr/local/ncarg/lib -L/usr/local/lib -lncarg -

lncarg_gks -lncarg_c -lX11 -lm") ; \
else \
grep HP .tmpfile ; \
if [$$? = 0]; then echo "Compiling for HP" ; \
($(CD) src ; $(MAKE) all\
"RM= $(RM)" "RM_LIST= $(RM_LIST)"\
"LN= $(LN)" "MACH= HP"\
"MAKE= $(MAKE)""CPP= /opt/langtools/lbin/cpp" \
"CPPFLAGS= -I. -C -P -D$(NCARGRAPHICS) -DRECLENBYTE"\
"FC= f77" "FCFLAGS= -I. -O"\
"LDOPTIONS= " "CFLAGS= -Aa"\
"LOCAL_LIBRARIES= -L/usr/local/ncarg/lib -L/usr/local/lib -lncarg -

lncarg_gks -lncarg_c -lX11 -lm") ; \
else \
grep SUN .tmpfile ; \
if [$$? = 0]; then echo "Compiling for SUN" ; \
($(CD) src ; $(MAKE) all\
"RM= $(RM)" "RM_LIST= $(RM_LIST)"\
MM5 Tutorial 3-11

3: MAKE UTILITY
"LN= $(LN)" "MACH= SUN"\
"MAKE= $(MAKE)""CPP= /usr/ccs/lib/cpp" \
"CPPFLAGS=-I. -C -P -D$(NCARGRAPHICS) -DRECLENBYTE"\
"FC= f77" "FCFLAGS= -I."\
"LDOPTIONS= " "CFLAGS= -I."\
"LOCAL_LIBRARIES= -L/usr/local/ncarg/lib -L/usr/openwin/lib -L/usr/dt/lib

-lncarg -lncarg_gks -lncarg_c -lX11 -lm") ; \
else \
grep AIX .tmpfile ; \
if [$$? = 0]; then echo "Compiling for IBM" ;\
($(CD) src ; $(MAKE) all\
"RM= $(RM)" "RM_LIST= $(RM_LIST)"\
"LN= $(LN)" "MACH= IBM"\
"MAKE= $(MAKE)""CPP= /usr/lib/cpp" \
"CPPFLAGS= -I. -C -P -D$(NCARGRAPHICS) -DRECLENBYTE"\
"FC= xlf""FCFLAGS= -I. -O -qmaxmem=-1"\
"LDOPTIONS= " "CFLAGS= -I."\
"LOCAL_LIBRARIES= -L/usr/local/lib32/r4i4 -lncarg -lncarg_gks -lncarg_c -

lX11 -lm") ; \
fi ; \
fi ; \
fi ; \
fi ; \
fi ; \
fi ; \
($(RM) terrain.exe ; $(LN) src/terrain.exe .) ;

terrain.deck:
uname -a > .tmpfile
grep OSF .tmpfile ; \
if [$$? = 0]; then \
echo "Making terrain deck for Compaq" ; \
(cp Templates/terrain.deck.dec terrain.deck) ;\

 else \
grep CRAY .tmpfile ; \
if [$$? = 0]; then \
echo "Making terrain deck for CRAY" ; \
(cp Templates/terrain.deck.cray terrain.deck) ;\

 else \
grep IRIX .tmpfile ; \
if [$$? = 0]; then \
echo "Making terrain deck for SGI" ; \
(cp Templates/terrain.deck.sgi terrain.deck) ;\

 else \
grep HP .tmpfile ; \
if [$$? = 0]; then \
echo "Making terrain deck for HP" ; \
(cp Templates/terrain.deck.hp terrain.deck) ;\

 else \
grep SUN .tmpfile ; \
if [$$? = 0]; then \
echo "Making terrain deck for SUN" ; \
(cp Templates/terrain.deck.sun terrain.deck) ;\

 else \
grep AIX .tmpfile ; \
if [$$? = 0]; then \
echo "Making terrain deck for IBM" ; \
(cp Templates/terrain.deck.ibm terrain.deck) ;\
fi; \
fi; \
fi; \
fi; \
fi; \
fi;

code:
3-12 MM5 Tutorial

3: MAKE UTILITY
($(CD) src ; $(MAKE) code\
"MAKE=$(MAKE)"\
"CPP=/usr/bin/cpp"\
"CPPFLAGS=-I. -C -P -DDEC")

clean:
($(CD) src ; $(MAKE) clean "CD = $(CD)" "RM = $(RM)" "RM_LIST =

$(RM_LIST)")
$(RM) $(RM_LIST)

3.13 An Example of Low-level Makefile

Lower level Makefile for TERRAIN
Suffix rules and commands
#######################
FIX01 =
#######################

.IGNORE:

.SUFFIXES: .F .f .i .o

.F.o:
$(RM) $@
$(CPP) $(CPPFLAGS) -D$(MACH) $(FIX01) $*.F > $*.f
$(FC) -c $(FCFLAGS) $*.f
$(RM) $*.f

.F.f:
$(CPP) $(CPPFLAGS) -D$(MACH) $(FIX01) $*.F > $@

.f.o:
$(RM) $@
$(FC) -c $(FCFLAGS) $(FIX01) $*.f

OBJS =ia.o anal2.o bint.o bndry.o crlnd.o crter.o dfclrs.o exaint.o \
finprt.o fudger.o interp.o label.o lakes.o \
latlon.o llxy.o mxmnll.o nestll.o oned.o \
outpt.o output.o pltter.o rdldtr.o replace.o rflp.o setup.o sint.o \
smth121.o smther.o smthtr.o terdrv.o terrain.o tfudge.o vtran.o \
xyobsll.o hiresmap.o plots.o crvst.o \
crvst30s.o nestbdy.o crsoil.o equate.o labels.o labelv.o patch.o\
plotcon.o watercheck.o crlwmsk.o soil_tg.o water_vfr.o check_data.\
terrestial_info.o write_fieldrec.o

SRC =$(OBJS:.o=.f)

cray dec hp ibm sgi sun default:
@echo "you need to be up a directory to make terrain.exe"

all:: terrain.exe data_area.exe rdem.exe

terrain.exe:$(OBJS)
$(FC) -o $@ $(LDOPTIONS) $(OBJS) $(LOCAL_LIBRARIES)

code: $(SRC)
MM5 Tutorial 3-13

3: MAKE UTILITY
#
for preprocessor 1
#

OBJS1 = latlon.o llxy.o mxmnll.o nestll.o rflp.o setup.o outpt.o vtran.o\
 search.o data30s.o data_area.o

SRC1 = $(OBJS1:.o=.i)

data_area.exe: $(OBJS1)
$(RM) $@
$(FC) -o $@ $(OBJS1) $(LDOPTIONS) $(LOCAL_LIBRARIES) $(LDLIBS)

code1: $(SRC1)

#
for preprocessor 2
#

OBJS2 = cr30sdata.o read30s.o rdem.o ia.o

SRC2 = $(OBJS2:.o=.i)

rdem.exe: $(OBJS2)

$(RM) $@
$(FC) -o $@ $(OBJS2) $(LDOPTIONS) $(LOCAL_LIBRARIES) $(LDLIBS)

code2: $(SRC2)

DO NOT DELETE THIS LINE -- make depend depends on it.

anal2.o: parame.incl nestdmn.incl
bndry.o: maps.incl option.incl
crlnd.o: parame.incl paramed.incl ltdata.incl fudge.incl option.incl
crlnd.o: maps.incl nestdmn.incl trfudge.incl ezwater.incl
crlwmsk.o: parame.incl paramesv.incl paramed.incl maps.incl nestdmn.incl
crlwmsk.o: ltdata.incl
crsoil.o: parame.incl paramesv.incl paramed.incl ltdata.incl
crter.o: parame.incl paramed.incl nestdmn.incl option.incl ltdata.incl
crvst.o: parame.incl paramed.incl ltdata.incl
crvst30s.o: parame.incl paramed.incl nestdmn.incl maps.incl ltdata.incl
data_area.o: parame.incl maps.incl nestdmn.incl ltdata.incl
exaint.o: parame.incl
finprt.o: option.incl parame.incl paramesv.incl headerv3.incl
interp.o: option.incl ltdata.incl
labels.o: paramesv.incl vs_cmn2.incl
labelv.o: paramesv.incl vs_cmn2.incl
latlon.o: maps.incl option.incl
llxy.o: maps.incl
mxmnll.o: parame.incl maps.incl option.incl
nestbdy.o: parame.incl
nestll.o: option.incl
output.o: option.incl paramesv.incl ltdata.incl headerv3.incl nestdmn.incl
output.o: maps.incl namelist.incl vs_cmn2.incl vs_cmn1.incl
3-14 MM5 Tutorial

3: MAKE UTILITY
pltter.o: parame.incl maps.incl nestdmn.incl option.incl paramesv.incl
pltter.o: vs_cmn1.incl vs_cmn2.incl
rdldtr.o: paramed.incl paramesv.incl space.incl
replace.o: parame.incl option.incl paramesv.incl vs_cmn1.incl maps.incl
replace.o: nestdmn.incl
rflp.o: maps.incl
search.o: parame.incl maps.incl nestdmn.incl ltdata.incl option.incl
setup.o: ezwater.incl parame.incl paramesv.incl maps.incl nestdmn.incl
setup.o: fudge.incl trfudge.incl option.incl ltdata.incl namelist.incl
setup.o: vs_cmn1.incl vs_cmn2.incl vs_data.incl
sint.o: parame.incl
smth121.o: parame.incl
smthtr.o: parame.incl
terdrv.o: paramed.incl parame.incl paramesv.incl maps.incl nestdmn.incl
terdrv.o: option.incl ltdata.incl trfudge.incl space.incl vs_cmn1.incl
terdrv.o: vs_cmn2.incl
terrain.o: parame.incl paramesv.incl maps.incl nestdmn.incl option.incl
terrain.o: ezwater.incl
terrestial_info.o: maps.incl
tfudge.o: parame.incl paramesv.incl vs_cmn1.incl maps.incl nestdmn.incl
vtran.o: parame.incl
xyobsll.o: maps.incl option.incl

clean:
$(RM) $(RM_LIST)
MM5 Tutorial 3-15

3: MAKE UTILITY
3-16 MM5 Tutorial

	3 MAKE UTILITY
	3.1 The UNIX make Utility
	3.2 make Functionality
	f77 -o average mainprog.o readit.o meanit.o printit.o

	3.3 The Makefile
	3.4 Sample make Syntax
	3.5 Macros
	MyFlags = -a -b -c -d

	3.6 Internal Macros
	3.7 Default Suffixes and Rules
	3.8 Sample Program Dependency Chart
	3.9 Sample Program Components for make Example
	3.10 makefile Examples for the Sample Program
	3.11 Make Command Used in MM5 Preprocessing Programs
	3.12 An Example of Top-level Makefile
	3.13 An Example of Low-level Makefile

