
NCAR/MMM

January 2005 1

3. MAKE UTILITY3. MAKE UTILITY

Dave GillDave Gill
gill@gill@ucarucar..eduedu

NCAR M3

3.1 Really Big Projects with3.1 Really Big Projects with
makemake

Let us Let us makemake man in our image, in our man in our image, in our
likeness, and let them rule over the fish oflikeness, and let them rule over the fish of
the sea and the birds of the air, over thethe sea and the birds of the air, over the
livestock, over all the earth, and over all thelivestock, over all the earth, and over all the
creatures that move along the ground.creatures that move along the ground.

Gen 1:26Gen 1:26

NCAR M3

3.1 UNIX make Utility3.1 UNIX make Utility

 Two-fold purpose: 1) overview of UNIXTwo-fold purpose: 1) overview of UNIX
make command, and 2) use within MM5make command, and 2) use within MM5
systemsystem

 As programming complexity increasesAs programming complexity increases
from a single source file to multiplefrom a single source file to multiple
includes, dependencies and conditionalincludes, dependencies and conditional
compilation, make becomes a necessitycompilation, make becomes a necessity

NCAR M3

3.1 UNIX make Utility3.1 UNIX make Utility

 Only re-compiles what is required,Only re-compiles what is required,
recognizes tree-like structure of multiplerecognizes tree-like structure of multiple
source files for single executablesource files for single executable

NCAR M3

3.2 make Functionality3.2 make Functionality

 Dependency is the underlying relationshipDependency is the underlying relationship
between two filesbetween two files

 myprogmyprog.f .f myprogmyprog.o .o myprogmyprog.exe.exe

myprogmyprog.f is a dependency file for the target.f is a dependency file for the target
myprogmyprog.o, and .o, and myprogmyprog.o is a dependency for.o is a dependency for
the target the target myprogmyprog.exe.exe

NCAR M3

3.2 make Functionality3.2 make Functionality

mainprog.f

mainprog.o

unit.include data.include

readit.f

readit.o

sum.include data.include

meanit.f

meanit.o

sum.include data.include

printit.f

printit.o

average

See section 3.8, hierarchical tree dependency structure

NCAR/MMM

January 2005 2

NCAR M3

3.2 make Functionality3.2 make Functionality

 Date and time of last modification used toDate and time of last modification used to
determine whether dependency is out ofdetermine whether dependency is out of
date date wrt wrt targettarget

 When improper time relationship exists,When improper time relationship exists,
make uses rules to restore the targetmake uses rules to restore the target

 Hierarchy of include files, source, objectHierarchy of include files, source, object
and executable follows this sequential timeand executable follows this sequential time
dependency, leading to natural associationdependency, leading to natural association
of dependency timestampsof dependency timestamps

NCAR M3

3.3 The 3.3 The MakefileMakefile

 MakefileMakefile, , makefile makefile (make (make ––f make.file)f make.file)
 File read by make utility which containsFile read by make utility which contains

dependency relationshipsdependency relationships and rules for and rules for
updating targets (updating targets (generation commandsgeneration commands))

 Dependency relations Dependency relations –– determine when a determine when a
file must be regeneratedfile must be regenerated

 Generation commands Generation commands –– how do you build how do you build
out of date filesout of date files

NCAR M3

3.4 Sample make Syntax3.4 Sample make Syntax

targetfiletargetfile: dependencies: dependencies
<tab><tab> command1command1
<tab><tab> command2command2

myprogmyprog.exe: mysource1.f mysource2.f.exe: mysource1.f mysource2.f
<tab><tab> f77 f77 ––o o myprogmyprog.exe mysource1.f \.exe mysource1.f \

mysource2.fmysource2.f

NCAR M3

3.4 Sample make Syntax3.4 Sample make Syntax

 Rule Rule –– begins in the first position of a line, begins in the first position of a line,
with the following formatwith the following format
target : dependenciestarget : dependencies

 If the files to the right are NEWER than theIf the files to the right are NEWER than the
files to the left of the colon, a new target isfiles to the left of the colon, a new target is
rebuiltrebuilt

NCAR M3

3.4 Sample make Syntax3.4 Sample make Syntax

 Dependency rule Dependency rule MAYMAY be followed by one be followed by one
or more commandsor more commands

 Commands must begin with a <tab>Commands must begin with a <tab>
character to be recognized, otherwise theycharacter to be recognized, otherwise they
are seen as rules or macros, and then youare seen as rules or macros, and then you
are toastare toast

 Commands are passed to the shell toCommands are passed to the shell to
execute (note this is execute (note this is shsh, not , not cshcsh))

NCAR M3

3.5 Macros3.5 Macros

 Similar to shell variables, syntactically andSimilar to shell variables, syntactically and
semanticallysemantically
MyFlags MyFlags = -a = -a ––b b ––c c ––dd

 Usage of $(Usage of $(MyFlagsMyFlags) expands to:) expands to:
––a a ––b b ––c c ––dd
 The () may be omitted if the macro name is only aThe () may be omitted if the macro name is only a

single charactersingle character
 () are not required as in () are not required as in csh csh for an arrayfor an array

NCAR/MMM

January 2005 3

NCAR M3

3.6 Internal Macros3.6 Internal Macros

 Built in cool, short-cuts, sure to impressBuilt in cool, short-cuts, sure to impress
members of the members of the digiteratidigiterati

 $@$@ name of the current target name of the current target
 $<$< dependency file, as if from implicit rule dependency file, as if from implicit rule
 $?$? list of all dependencies newer than target list of all dependencies newer than target
 $*$* basename basename of current targetof current target

NCAR M3

3.7 Default Suffixes and Rules3.7 Default Suffixes and Rules

 Typical default rules for FORTRAN, shut offTypical default rules for FORTRAN, shut off
with with ““make make ––rr”” ((““make make ––pp”” for the brave and for the brave and
curious)curious)

.f.o:.f.o:
<tab><tab> $(FC) $(FFLAGS) $(FC) $(FFLAGS) ––c $<c $<

.f:.f:
<tab><tab> $(FC) $(FFLAGS) $(LDFLAGS) \$(FC) $(FFLAGS) $(LDFLAGS) \
 $< -o $@ $< -o $@

NCAR M3

3.7 Default Suffixes and Rules3.7 Default Suffixes and Rules

 Typical default suffixes, typically at theTypical default suffixes, typically at the
beginning of a beginning of a Makefile Makefile (or included near(or included near
the top)the top)

.SUFFIXES: .o .c .f.SUFFIXES: .o .c .f

NCAR M3

3.7 Default Suffixes and Rules3.7 Default Suffixes and Rules

 All of the MM5 system Fortran codes are set upAll of the MM5 system Fortran codes are set up
to be processed by to be processed by cppcpp..

 Not all Fortran compilers handle this in the sameNot all Fortran compilers handle this in the same
way.way.

 Gain uniformity through explicit rules:Gain uniformity through explicit rules:
.F.o:.F.o:
<tab><tab> $(RM) $@$(RM) $@
<tab><tab> $(CPP) $(CPPFLAGS) $*.F >! $*.f$(CPP) $(CPPFLAGS) $*.F >! $*.f
<tab><tab> $(FC) $(FC) ––c $(FFLAGS) $*.fc $(FFLAGS) $*.f

NCAR M3

3.8 Program Dependency Chart3.8 Program Dependency Chart

 Head to that other slide, DaveHead to that other slide, Dave

NCAR M3

3.9 Program Components3.9 Program Components

PROGRAM PROGRAM mainprogmainprog
CALL CALL readitreadit
CALL CALL meanitmeanit
CALL CALL printitprintit
STOP 99999STOP 99999
ENDEND

NCAR/MMM

January 2005 4

NCAR M3

3.9 Program Components3.9 Program Components

SUBROUTINE SUBROUTINE readitreadit
Include Include ‘‘unit.includeunit.include’’
INCLUDE INCLUDE ‘‘data.includedata.include’’
OPEN(OPEN(iunitiunit, file=, file=‘‘input.datainput.data’’, ACCESS = &, ACCESS = &

‘‘sequentialsequential’’, FORM=, FORM=‘‘FORMATTEDFORMATTED’’))
READ(READ(iunutiunut,FMT=,FMT=‘‘(F10.4)(F10.4)’’) data) data
RETURNRETURN
ENDEND

NCAR M3

3.9 Program Components3.9 Program Components

SUBROUTINE SUBROUTINE meanitmeanit
INCLUDE INCLUDE ‘‘data.includedata.include’’
INCLUDE INCLUDE ‘‘sum.includesum.include’’
DO L=1,lengthDO L=1,length
 sum = sum + data(L) sum = sum + data(L)
END DOEND DO
sum = sum / FLOAT(length)sum = sum / FLOAT(length)
ENDEND

NCAR M3

3.9 Program Components3.9 Program Components

SUBROUTINE SUBROUTINE printitprintit
INCLUDE INCLUDE ‘‘data.includedata.include’’
INCLUDE INCLUDE ‘‘sum.includesum.include’’
PRINT *,data(1:length)PRINT *,data(1:length)
PRINT *,PRINT *,‘‘average = average = ’’,sum,sum
ENDEND

NCAR M3

3.9 Program Components3.9 Program Components

 unit.includeunit.include
PARAMETER (PARAMETER (iunitiunit=7)=7)
 sum.includesum.include
COMMON /COMMON /avgavg/ sum/ sum
 data.includedata.include
PARAMETER (length = 10)PARAMETER (length = 10)
COMMON /space/ data(length)COMMON /space/ data(length)

NCAR M3

3.10 3.10 makefile makefile Example 1Example 1

average: average: mainprogmainprog.o .o readitreadit.o .o meanitmeanit.o .o printitprintit.o.o
f77 f77 ––o average o average mainprogmainprog.o.o readit readit.o.o meanit meanit.o.o printit printit.o.o

mainprogmainprog.o : .o : mainprogmainprog.f.f
f77 f77 ––c c mainprogmainprog.f.f

readitreadit.o : .o : readitreadit.f unit.include data.include.f unit.include data.include
f77 f77 ––c c readitreadit.f.f

meanitmeanit.o : .o : meanitmeanit.f data.include sum.include.f data.include sum.include
f77 f77 ––c c meanitmeanit.f.f

printitprintit.o : .o : printitprintit.f data.include sum.include.f data.include sum.include
f77 f77 ––c c printitprintit.f.f

NCAR M3

3.10 3.10 makefile makefile Example 2Example 2

average: average: mainprogmainprog.o .o readitreadit.o .o meanitmeanit.o .o printitprintit.o.o
f77 f77 ––o o $@$@ mainprogmainprog.o.o readit readit.o.o meanit meanit.o.o printit printit.o.o

mainprogmainprog.o : .o : mainprogmainprog.f.f
f77 f77 ––c c $<$<

readitreadit.o : .o : readitreadit.f unit.include data.include.f unit.include data.include
f77 f77 ––c $<c $<

meanitmeanit.o : .o : meanitmeanit.f data.include sum.include.f data.include sum.include
f77 f77 ––c c $*.f$*.f

printitprintit.o : .o : printitprintit.f data.include sum.include.f data.include sum.include
f77 f77 ––c $*.fc $*.f

NCAR/MMM

January 2005 5

NCAR M3

3.10 3.10 makefile makefile Example 3Example 3

OBJS = OBJS = mainprogmainprog.o .o readitreadit.o .o meanitmeanit.o .o printitprintit.o.o
average: average: $(OBJS)$(OBJS)

f77 f77 ––o $@ o $@ $(OBJS)$(OBJS)
readitreadit.o : .o : readitreadit.f unit.include data.include.f unit.include data.include

f77 f77 ––c $<c $<
meanitmeanit.o : .o : meanitmeanit.f data.include sum.include.f data.include sum.include

f77 f77 ––c $*.fc $*.f
printitprintit.o : .o : printitprintit.f data.include sum.include.f data.include sum.include

f77 f77 ––c $*.fc $*.f

NCAR M3

3.10 3.10 makefile makefile Example 4Example 4
.f.o:.f.o:

rm rm ––f $@f $@
f77 f77 ––c $*.fc $*.f

OBJS = OBJS = mainprogmainprog.o .o readitreadit.o .o meanitmeanit.o .o printitprintit.o.o

average: $(OBJS)average: $(OBJS)
f77 f77 ––o $@ $(OBJS)o $@ $(OBJS)

readitreadit.o : unit.include data.include.o : unit.include data.include
meanitmeanit.o : data.include sum.include.o : data.include sum.include
printitprintit.o : data.include sum.include.o : data.include sum.include

NCAR M3

3.11 MM5 make Commands3.11 MM5 make Commands

 Directly put macro definitions into theDirectly put macro definitions into the
make commandmake command

 Precedence over values initialized asPrecedence over values initialized as
macros inside the macros inside the makefilemakefile

make make ““FC=f90FC=f90”” ““FFLAGS=-gFFLAGS=-g””

NCAR M3

3.12 Top-level 3.12 Top-level MakefileMakefile

 Example from TERRAIN, so just 2 levels:Example from TERRAIN, so just 2 levels:
top and lowertop and lower

 .IGNORE:.IGNORE: same as same as ––ii
 AR = AR = ar ruar ru macrosmacros
 default:default: first target is default, any name first target is default, any name
 unameuname ––a > .a > .tmpfiletmpfile if test for vendorif test for vendor

NCAR M3

3.12 Top-level 3.12 Top-level MakefileMakefile

 grepgrep CRAY . CRAY .tmpfiletmpfile
 if [$$? = 0] ; thenif [$$? = 0] ; then blah blah
 $(MAKE) all$(MAKE) all ““allall”” is the low-level target is the low-level target
 Note Note CPPFLAGSCPPFLAGS includes includes

NCARGRAPHICSNCARGRAPHICS macro: macro: NCARGNCARG or or
NONCARGNONCARG

NCAR M3

3.12 Top-level 3.12 Top-level MakefileMakefile

 ?????? fifi ; \ ; \ end of each end of each if ; thenif ; then block block
 Second target is Second target is terrain.deckterrain.deck
 Must specifically name any target (otherMust specifically name any target (other

than first) to activate itthan first) to activate it
 make terrain.deckmake terrain.deck
 clean:clean: typical target to zap detritustypical target to zap detritus

NCAR/MMM

January 2005 6

NCAR M3

3.13 Low-level 3.13 Low-level MakefileMakefile

.IGNORE:.IGNORE: unnecessary with $(MAKE) unnecessary with $(MAKE)

.SUFFIXES:.SUFFIXES: .F .f .i .o pseudo target, .F .f .i .o pseudo target, explexpl suffixes suffixes

.F.f:.F.f:
<tab><tab> $(CPP) $(CPPFLAGS) $*.F > $@$(CPP) $(CPPFLAGS) $*.F > $@

OBS = OBS = iaia.o .o …… macro definition macro definition
SRC = $(OBJS:.o=.f)SRC = $(OBJS:.o=.f) list of source files list of source files
cray dec cray dec hp hp ibm sgiibm sgi sun default: sun default: first target first target

NCAR M3

3.13 Low-level 3.13 Low-level MakefileMakefile

 @echo @echo ““you need ...you need ... easy error trapping easy error trapping
 all:all: target specified in top-level target specified in top-level MakefileMakefile
 terrain.exe data_area.exe terrain.exe data_area.exe rdemrdem.exe.exe three three

dependency filesdependency files
 (FC)(FC) defined in top-level defined in top-level MakefileMakefile
 anal2.o:anal2.o: just an overall great name just an overall great name
 Note Note crlndcrlnd.o.o is listed more than once is listed more than once

