NCAR/MMM

3. MAKE UTICTTY

Dave Gill

gill@ucar.edu

3.1 UNIX make Utility

m Two-fold purpose: 1) overview of UNIX
make command, and 2) use within MM5
System

m As programming complexity increases
from a single source file to multiple
includes, dependencies and conditional
compilation, make becomes a necessity

3.2 make Functionality

m Dependency is the underlying relationship
between two files

m myprog.f = myprog.o =» myprog.exe

myprog.fis a dependency file for the target
myprog.o, and myprog.o is a dependency for
the target myprog.exe

January 2005

3.1 Really Big Projects with
make

Let us make man in our image, in our
likeness, and let them rule over the fish of
the sea and the birds of the air, over the
livestock, over all the earth, and over all the
creatures that move along the ground.

Gen 1:26

3.1 UNIX make Utility

m Only re-compiles what is required,
recognizes tree-like structure of multiple
source files for single executable

3.2 make Functionality

See section 3.8, hierarchical tree dependency structure

average

!—V—LV—\

mainprog.o readito meanito printito

mainprog.f readit f meanit.f printit.f

e

unitinclude datainclude sum.include data.include sum.include data.include

NCAR M?

NCAR/MMM

3.2 make Functionality

m Date and time of last modification used to
determine whether dependency is out of
date wrt target

m When improper time relationship exists,
make uses rules to restore the target

m Hierarchy of include files, source, object
and executable follows this sequential time
dependency, leading to natural association
of dependency timestamps

NCAR M?

3.4 Sample make Syntax

<tab> command 1

<tab> command?2

myprog.exe: mysourcel.f mysource2.f
<tab> t77 —o myprog.exe mysourcel.f\

mysource2.f

3.4 Sample make Syntax

m Dependency rule MAY be followed by one
or more commands

m Commands must begin with a <tab>
character to be recognized, otherwise they
are seen as rules or macros, and then you
are toast

m Commands are passed to the shell to
execute (note this is sh, not csh)

NCAR M?

January 2005

3.3 The Maketile

m Makefile, makefile (make —f make.file)

m File read by make utility which contains
dependency relationships and rules for
updating targets (generation commands)

m Dependency relations — determine when a
file must be regenerated

m Generation commands — how do you build
out of date files

3.4 Sample make Syntax

m Rule — begins in the first position of a line,
with the following format

target : dependencies

m [f the files to the right are NEWER than the
files to the left of the colon, a new target is
rebuilt

3.5 Miacros

m Similar to shell variables, syntactically and
semantically

MyFlags=-a-b —c—d

m Usage of $(MyFlags) expands to:

—a—-b-c—d

m The () may be omitted if the macro name is only a
single character

m () are not required as in csh for an array

NCAR M?

NCAR/MMM

3.6 Internal Mactos

m Built in cool, short-cuts, sure to impress
members of the digiterati

m $@ name of the current target
m $< dependency file, as if from implicit rule
7 list of all dependencies newer than target
* basename of current target

3.7 Detault Suftixes and Rules

m Typical default suffixes, typically at the
beginning of a Makefile (or included near
the top)

.SUFFIXES: .0 .c¢ .f

3.8 Program Dependency Chart

m Head to that other slide, Dave

<

January 2005

3.7 Detault Suftixes and Rules

m Typical default rules for FORTRAN, shut off
with “make —”” (“make —p” for the brave and
curious)

f.0:

<tab> $(FC) $(FFLAGS) —¢ $

N
<tab> $(FC) $(FFLAGS) $(LDFLAGS)
$<-0 5@

3.7 Detault Suftixes and Rules

m All of the MM5 system Fortran codes are set up
to be processed by cpp.

m Not all Fortran compilers handle this in the same
way.

® Gain uniformity through explicit rules:

.F.o:

<tab>
<tab>

NCAR M?

3.9 Program Compoenents

PROGRAM mainprog
CALL readit

CALL meanit

CALL printit

STOP 99999

END

NCAR/MMM

3.9 Program Components

SUBROUTINE readit
Include ‘unit.include’
INCLUDE ‘data.include’

OPEN(iunit, file="input.data’, ACCESS = &
‘sequential’, FORM="FORMATTED”)

READ(iunut, FMT="(F10.4)’) data
RETURN
END

3.9 Program Compoenents

SUBROUTINE printit
INCLUDE ‘data.include’
INCLUDE ‘sum.include’
PRINT *,data(1:length)
PRINT *,‘average = ’,sum
END

3.10 makefile Example 1

average: mainprog.o readit.o meanit.o printit.o
£77 —o0 average mainprog.o readit.o meanit.o printit.o
mainprog.o : mainprog. f
£77 —c mainprog. f
readit.o : readit.f unit.include data.include
£77 —c readit.f
meanit.o : meanit.f data.include sum.include
£77 —c meanit.f
printit.o : printit.f data.include sum.include
£77 —c printit.f

January 2005

3.9 Program Compoenents

SUBROUTINE meanit
INCLUDE ‘data.include’
INCLUDE ‘sum.include’
DO L=1,length

sum = sum + data(L)
END DO
sum = sum / FLOAT(length)
END

3.9 Program Compoenents

m unit.include

PARAMETER (iunit=7)

m sum.include

COMMON /avg/ sum

m data.include

PARAMETER (length = 10)
COMMON /space/ data(length)

3.10 makefile Example 2

average: mainprog.o readit.o meanit.o printit.o

£77 —o S(@) mainprog.o readit.0 meanit.o printit.o

mainprog.o : mainprog. f
£77 —c 5

readit.o : readit.f unit.include data.include
77 —¢ $<

meanit.o : mear ata.include sum.include
77— $

printit.o : printit.f data.include sum.include

@‘ 77— $+f

NCAR/MMM

3.10 makefile Example 3

OBJS = mainprog.o readit.o meanit.o prntit.o
average: $(OB)J
£77 — (OBJS)
readit.o : rea unit.include data.include
77 —¢ $<

meanit.o : meanit.f data.include sum.include

printit.o : printit.f data.include sum.include

<

£77 —c $*.f

3. 11 MMS5 make Commands

m Directly put macro definitions into the
make command

m Precedence over values initialized as
macros inside the makefile

make “FC=190” “FFLAGS=-g”

3.12 Top-level Makefile

m grep CRAY .tmpfile
m if [$$7=0] ; then blah

m §(MAKE) all “all” is the low-level target

m Note CPPFLAGS includes
NCARGRAPHICS macro: NCARG or
NONCARG

January 2005

3.10'makefile Example 4

im —{ $(@
C *:iz'f
(QANES nprog.o readit.o0 meanit.o printit.o

average: $(OBJS)
$(OBJS)

readit.o : unit.include data.include
meanit.o : data.include sum.include

printit.o : data.include sum.include

NCAR M?

3.12 Top-level Makefile

m Example from TERRAIN, so just 2 levels:
top and lower

m [GNORE: same as—i

m AR =arru macros

m default: first target is default, any name
m uname —a > .tmpfile if test for vendor

3.12 Top-level Makefile

m 7?7 fi;\ end of each if ; then block
m Second target is terrain.deck

m Must specifically name any target (other

than first) to activate it

m make terrain.deck

m clean: typical target to zap detritus

NCAR/MMM

3.13 Low-level Makefile

AGNORE: unnecessary with $(MAKE)
SUFFIXES: F .f .i .0 pseudo target, expl suffixes

JE

<tab> $(CPP) $(CPPFLAGS) $*.F > S@

OBS =1ia.0 ... macro definition
SRC = $(OBJS:.0=.f) list of source files

cray dec hp ibm sgi sun default: first target

NCAR M?

January 2005

3.13 Low-level Makefile

m (Wecho “you need ... easy error trapping

m all: target specified in top-level Makefile

m terrain.exe data_area.exe rdem.exe three
dependency files

m $(FC) defined in top-level Makefile

m anal2.0: just an overall great name

m Note crind.o is listed more than once

