
NCAR/MMM

January 2005 1

NCAR/MMM

MM5 Model Code (Appendix B)

Code features
Portability
Vectorization
Parallelization
Use of pointers
Code flow outline

NCAR/MMM

Code features
 More than 220 subroutines
 Selective compilation for physics and nesting
 50 directories sorted by function (see end of

Chapter 8)
 More than 55000 lines
 Standard Fortran 77 plus “Cray” pointers
 CPP #ifdef and #include commands
 Shared-memory parallel directives
 Distributed-memory extension library

NCAR/MMM

Portability
Shared memory or single processor
 Cray
 SGI
 Sun
 Compaq/DEC
 HP
 IBM
 Linux
Distributed memory (next talk)

NCAR/MMM

Vectorization
Originally written for Cray
Vectorized over I index
 Inner loop (y direction)
Solver-called routines operate on (I ,K )

slices
Only some physics options are

vectorized

NCAR/MMM

Vector and parallel directions

NCAR/MMM

Parallelization
Shared-memory parallel directives
Solver has outermost J loops
Multi-tasking over J slices (each

processor takes a J slice)
Distinction made between shared and

private/local variables
No dependencies on results from other

slices



NCAR/MMM

January 2005 2

NCAR/MMM

Parallelization (cont.)
Local common blocks need special

directives (taskcommon or
threadprivate) to keep memory separate

Multi-tasked loops have special
directives (e.g. c$omp) ahead of them

These are only seen as comments by
non-parallel Fortran compilers

NCAR/MMM

Parallel loop directives
cmic$ do all autoscope
c$doacross
c$& local(i,j,k)
c$omp parallel do default(shared)
c$omp&private(i,j,k)
      DO J=1,JL
        DO I=1,ILX
          QDOT(I,J,1)=0.
          QDOT(I,J,KLP1)=0.
          W3DTEN(I,J,KLP1)=0.
        ENDDO

NCAR/MMM

Pointers
 A Cray feature that is now widely accepted

by Fortran compilers
 MM5 uses pointers to handle nests
 Arrays in COMMON blocks appear as
      COMMON/ADDR1/IAUA, IAUB, IAVA, …
      POINTER (IAUA, UA(MIX,MJX,MKX)), …
 IAUA is an address for array UA
 MM5 has about 300 such addresses for all

arrays/variables/constants associated with a
single domain

NCAR/MMM

Pointers (cont.)
 2 “super-arrays” ALLARR and INTALL store

all these arrays end-to-end
 Additional super-arrays for FDDA
 Super-arrays are 2D, second dimension is

domain id number (1 to MAXNES)
 2D array IAXALL stores pointers (IAUA, etc.)
 Routine ADDALL sets pointer values in

IAXALL
 Routines ADDRX1C/ADDRX1N reset pointers

to different domains using IAXALL.
 Pointers are used in all the main COMMON

blocks

NCAR/MMM NCAR/MMM

Pointers (cont.)
 Pointers were also used to handle boundary

I/O
 MM5 arrays are all dimensioned

(MIX,MJX,…) using maximum dimensions of
any nest

 However I/O needs actual domain dimension
(IX,JX,…) to read in boundary file

 Pointers are used to mimic local variable-
dimensioned arrays (IX,JX,…) that standard
F77 does not allow

 Note: This has been discontinued with
Version 3 format (1D scratch array read now)



NCAR/MMM

January 2005 3

NCAR/MMM

Code flow
 Main program is Run/mm5.F

 Initialization
 Main time loop for solver
 Calls first-level nest driver

 Main solver is dynamics/nonhydro/solve.F
 Calls dynamics and physics routines
 Advances one domain by one timestep

 Nest driver is domain/drivers/nstlev1.F
 Calculates nest boundary tendencies
 Calls solver for nest 3 times
 Calls next-level nest driver
 Finally calls feedback for nest NCAR/MMM

NCAR/MMM


