1. Introduction

11 PURPOSE OF THIS DOCUMENT

This document is intended to provide a detailed description of the structure, function, and rationale behind the
distributed-memory (DM) parallel MM5 code for maintainers and developers. It may also be of some interest to MM5
users, though the focusis primarily how the code is implemented and how it works on distributed memory parallel
computers.

1.2. OTHER SOURCES

2. Design of the DM-parallel MM5

The DM-parallel option to MM5 is a same-source implementation. This means that in addition to providing a
single-source code for both DM-parallel and non-DM users, the code also preserves the original 1ook and operation of
the non-DM code. Most of the complexity of the parallel implementation isinvisible in the code, residing instead in the
build mechanism associated with the DM-parallel option and in files located in asingle, optional, directory treethat is
distributed as a separate tar file. The design, first implemented with MM5 Version 2.8 in March of 1998, has worked
well in that it has proven to be as efficient on distributed memory parallel computers as earlier hand-coded separate
versions of the model. And it has allowed the DM-parallel option to be maintained as part of the official model through
more than seven subsequent code rel eases and one new version (the code is at 3.3 at thiswriting). (See <citation>).

The same-source parallel implementation has five components:

1. RSL, ahigh-level library that provides interprocessor communication for stencil-exchange and inter-
domain exchange of forcing and feedback data, support for data domain decomposition and control of
iteration over decomposed dimensions within local processor subdomains, and distributed Fortran input
and ouput;

2. FLIC, aFortran source trandator that recognizes and converts loops over decomposed dimensions to use
RSL -provided loop ranges for iteration within local subdomains and converts between global and local
uses of indices where needed;

DM -specific code fragments that are included at a number of locations (28) in the MM5 source code;
4. DM-specific subroutines (16) that are included in the program at linkage; and

A set of DM-related makefiles, tables, and other miscellaneous files that install, preprocess, compile, and
link the code in DM-parallel mode.

and these are used to address the 5 functional aspects of MM5 in which parallelism must be addressed:

1. Two-dimensiona (horizontal) decomposition of two-and three-dimension arrays containing model state
data;

2. Interprocessor communication to address horizontal data dependencies and reduction operations in model
initialization;

3. Interprocessor communication and/or replicated computation to address horizontal data dependenciesin
the main and time-split solvers that advance the model solution forward one time step;

4. 1/0:
a. Input of configuration data from the namelist file,
b. Input of initial conditions from filesin MM5 data format,

c. Input of lateral boundary conditions from filesin MM5 data format,

d. Input of gridded data sets for FDDA analysis nudging,
e. Input of point-observation data sets for FDDA observational nudging,
f. Output of model history filesin MM5 data format, and
0. Output of model restart data sets; and
5. Interprocessor communication associated with nest forcing and feedback.
A minimal parallelization of MM5 must addressitems 1-3, 4 a-c, and 4 f.

Section 3 ljeﬂ:ri bes the parallel implementations in terms of the steps one would take to parallelize the code
anew, beginning with a serial version of MM5, modifying so that it first can be built as a serial code but with the
parallel build mechanism, then as a pre-parallel code capable of initializing itself and running on one processor, and
then finally with communication added to enable execution in parallel. Section 4 hetaj Is the aspects of the parallel
implementation in modul e-by-modul e fashion. Section 6 hiscum performance measurement and optimization
strategies. Section ﬂ)rovides information on debugging the parallel code.

3. How to paralelize MM5

Although the officially available version of MM5 is already parallel, the discussing the process by which the
model was parallelized isinstructive for basic understanding and also for users faced with retrofitting parallelism
within older versions of this model or in models other than MM5. The basic flow is implement the new build-
infrastructure and get the model to compile and run on a single processor then add parallelism, beginning with 1/0 and
initialization and finishing with automatic loop restructuring and interprocessor communication in the solver. The
remainder of this section provides ais atop-level task list for parallelizing MM5, starting with an existing, non-parallel
version of the model.

3.1 SET UPBUILD INFRASTRUCTURE

The same source approach to parallelizing MM5 dictates that as little of the model itself by modified as
possible. What this means, however, is that alarge amount of the complexity of the parallel MM5 -- the invocation of
the FLIC preprocessor on model subroutines, the linkage to the RSL library, the modification of model data structures
for local processor memory, etc. -- is actually encapsulated within the build mechanism. Therefore, the first step in
parallelizing MM5 is to start with aworking seria version and then adapt it to the mechanism that is used to build the
parallel model. Theresult is a serial version of the code that is built the same way as the parallel code.

3.1.1. The MPP directory

This discussion assumes the existence and availability of the officially available parallel version of MM5 and
in particular the MPP directory containing parallel code an build-infrastructure. Download and unpack
W that the MPP directory resides at the top-level of the model
Source tree. Think of this directory asa " Kit tor parallelizing the code; not everything will be ready-to-go, but all the
components are here in at |east example form so that parallelization is accomplished by modifying components of the
kit and of the model to be parallelized. Y ou should aso download and install the model itself from

ftp://ftp.ucar.edu/mesouser/M M5V 3/MM5.TAR.qz th have aworking example to refer to.
MPP directory

All of the files for the DM-parallel option are maintained within a single directory tree that is separate from
the rest of the code, in keeping with the same-source design. The DM-parallel source tree isrooted in the directory
MPP, that appears among the top level directoriesin the MM5 source distribution if the user has downloaded the file
MPP.TAR.gz. The model can be built and used on non-DM computer platforms without the MPP directory.

ftp://ftp.ucar.edu/mesouser/MM5V3/MPP.TAR.gz
ftp://ftp.ucar.edu/mesouser/MM5V3/MM5.TAR.gz

The MPP directory contains files and directories applying to the DM-option in general and also a
subdirectory, RSL, that contains files and directories that are specific to the RSL implementation, including the RSL
library itself.

This structure alows other parallel libraries to be utilized instead of RSL. If adifferent package is used, a new
directory (e.g. NNTSMS) should be created under the MPP directory and all NNTSM S specific files would appear
there. The MPP_LAYER variablein section 7 of the configure.user fileis set to the name of the library to be used.

The MPP directory aso contains a directory named FLIC. This contains the FLIC source trandlator, used to
pre-compile the MM5 source code for use with RSL or other message passing libraries. The FLIC tool generates
library-independent M4 macros within the code that are then expended prior to compilation using library-specific
macro definitions that are contained in the package-specific directory. For example, the RSL-specific macro definitions
areinthefile RSL/LMexp.m4 (except for the FujitsuV PP, which uses RSL/LMvpp.exp).

At the top level of the MPP directory are files that apply to the parallel MMS5 regardless of what library is
used. Theseinclude:

= mpp_objects all. A listof al the .o files that make up the DM version of the model. This file contains CPP
#ifdefs that key on the contents of the file include/defines.incl, which is generated by the parseconfig program
using settings in the configure.user file when either version of MM5 (hon-DM or DM) is built. Thisfileis used to
generate.

= FLICFILE. Small file of optionsto FLIC to direct the trandlation of the MM5 prior to compilation.

= namelist.data. File containing atable of the namelist parameters used by MM5; this table is used to generate the
code in param.F that broadcasts namelist information to the other distributed-memory processes after it has been
read by process zero. The script namedata.awk processes the table.

= col_cutter.c. A C program used during precompilation to ensure that statements in the modified code do not go
past column 72.

= mpaspect.F. A subroutine that computes the dimensions of a two-dimensional processor mesh, given the available
number of processors and lower bounds for the number of north/south rows and east/west columns in the mesh.
MM5 calls this routine to get default processor mesh dimensions (or failure if a mesh cannot be computed) but
allows the default dimensions to be overridden via the namelist (NPROC_LT and NPROC_LN).

= Makelinks. A csh shell script that creates the MPP/build directory (described below) in which the DM-parallel
version of the code is compiled.

= mpp_ingtall. Existence of thisfile indicates that MPP has installed itself.

MPP/build directory

The DM-paralel version of the code is built in the MPP/build directory. This directory is created the first time
the code is compiled with ‘make mpp’. The MPP/build directory is created by the script MPP/Makelinks. It is removed
using ‘make uninstall’. This directory contains symbolic links to every .F and .c file in the rest of the MM5 directory
tree. This may be a benefit if you prefer working in aflat source directory structure but remember these are links, not
copies: changes made to .F files that appear in the MPP/build directory affect the original file. The MPP/build also
contains alink to the library specific makefile from the directory MPP/$(MPP_LAY ER)/Makefile $(MPP)_LAYER) —
for example, MPP/RSL/Makefile.RSL.

When the DM-parallel codeis built using ‘make mpp’, al of the intermediate files reside in MPP/build,
including pre-processed .f files that are input to the compiler and the resulting .0 object files. The resulting executable
file, mm5.mpp, is copied automatically into the Run directory at the end of a successful link. Building the DM-parallel
code in its own directory and having a separately named executable allows both the DM and non-DM codes to exist
simultaneoudly in the same directory tree. Thisis useful for testing the DM-parallel code with respect to the non-DM
code.

MPP/FLIC directory

The MPP/FLIC directory contains the source code for the FLIC precompiler. FLIC and a small csh driver
script, MPP/FLIC/FLIC/flic, are built the first time that the code is compiled with ‘make mpp’. The directory is
automatically cleaned with ‘make uninstall’. Absolute pathnames are used in the driver script; therefore, whenever the
MMS5 code is moved to a different directory, it should be uninstalled and remade using ‘ make uninstall’ and then ‘ make
mpp’ in the new location.

FLIC isalex/yacc based trandator. However, the lex and yacc generated C files and not the lex and yacc
sources themselves are distributed. Thisis amixed blessing: it ensuresthat FLIC will compile even on systems where
lex and yacc are not available; however, there have been occasional incompatibilities when porting to new versions of
Unix.

MPP/RSL

The MPP/$(MPP_TARGET) directory contains every file that is specific to a particular library, such as RSL.
The parallel implementation of MM5 isintended to be package independent and so, allows for other libraries by adding
adirectory beneath MPP for that target library. Currently only RSL is targeted. For simplicity, the remainder of this
discussion will ssimply refer to RSL.

Library specific include files: MPP/RSL/mpp_*.incl

In addition to the directory containing the RSL library itself (MPP/RSL/RSL), the MPP/RSL directory
contains alarge collection of “include” filesthat are incorporated into MM5 source routines as a precompilation step
using CPP #include directives. The includes are triggered by definition of the CPP macro MPP1, which is defined as
part of CPPFLAGS in MPP/RSL/Makefile.RSL. These files have names mpp_subroutine label.incl, where subroutine
refers to the name of the including MM5 subroutine and label is an integer identifier for the modification. This
technique allows the inclusion of library-specific and parallel-specific modifications with only minimal impact on
readability or essentially same-source look and feel of the original source code. The mpp_*.incl files include files may
include declarations, executable lines of code, or directives. This approach minimizes the number of lines of code
changed for parallelism, it eliminates references to a particular parallel library in the code itself, and it further facilitates
amore library independent approach to the parallelization. Here is an example:

#i f def MPP1
include "nmpp_solve_10.incl"
#endi f

The MPP/RSL directory also contains the file rdlcom.inc, which contains declarations for constants, data
structures and subroutines that are used in MM5 subroutines in distributed memory parallel mode (or, more properly,
that are used in the mpp_*.include files that are included in MM5 when the CPP macro MPPL1 is defined). Among the
important data structures defined in rslcom.inc is DOMAINS(RSL_MAXDOMAINS), an array storing the integer RSL
domain descriptor for each active domain. Many RSL routines, including stencil exchange and 1/O routines, need this
descriptor to know which domain the operation pertainsto. DOMAINS(1) always contains an active descriptor, the
mother domain. The index into DOMAINS corresponds to the MM5 variable INEST in most model routines.

Although thisfileisincluded by aimost all MM5 subroutines, the #include directives for rslcom.inc do not
appear in the source code itself. The includes are inserted automatically by FLIC using the the -
CPP="include<rslcom.inc>' option in the definition of FLIC_FLAGS in MPP/RSL/Makefile.RSL.

Library specific subroutines: MPP/RSL/parallel_src

Subroutines specifically for parallelization with the RSL library appear in the directory MPP/RSL/paralléel_src.
These are:

define_comms.F. This subroutine defines communication constructs (stencil exchanges) that are used at
various places in the calculation of a model time step, primarily in the SOLVE and SOUND routines but
also initialization, nesting, and el sewhere.

fkill_model.F and kill_model.c. These routines provide graceful program termination through the
MPI_ABORT routine in the case of errors. The FLIC program automatically coverts all STOP statements
in MM5 to call FKILL_MODEL using the -STOP=FKILL_MODEL option in the definition of
FLIC_FLAGSin MPP/RSL/Makefile. RSL.

bcast_size.F and merge_size.F. These routines calcul ate the buffer sizes used in communication for nest
forcing and feedback.

mp_equate.F. Contains the parallel definitions of the EQUATE and EQUATEO routines used in the MM5
input (rdinit.F) and output (outtap.F) routines and el sewhere.

mp_initdomain.F. Used to initialize runtime data structures in rslcom.inc and in MPP/RSL/LMexp.m4 for
computation on a particular domain.

Ib_alg.c. Contains the algorithms used to decompose MM5. The routinesin this file take into account the
static memory size of model arrays, possible differences in computational speed of processorsin the run-
time partition (IBM only), and static imbalances associated with domain boundaries. The routines here
override the simpler decomposition algorithms built into the RSL library.

mp_blw.F. Used in parallel implementation of FDDA analysis nudging.

mp_feedbk.F, mp_stotndt.F, and vpp_stotndt.F. Related to nest forcing and feedback. The vpp_stotdnt.F
fileisused instead of mp_stotndt.F on the Fujitsu VPP.

Error_dupt3d.c. Cray T3D and T3E specific routines for redirecting standard output and standard error to
files from each processor. Other machines use the RSL library routine RSL_ERROR_DUP.

upshot_mmb5.c. Routines related to upshot profiling. Upshot profiling is enabled when the model is
compiled with—-DUPSHOT in defined for CPPFLAGS and CFLAGS in the configure.user file.

Library specific macros. MPP/RSL/LMexp.m4

Thisfile contains a number of expansions for macros that the FLIC trandlator inserts as part of precompiling
the source code. Having FLIC generate library-independent macros instead of the RSL-specific code meansit isonly
necessary to redefine the macrosin thisfile to have FLIC target a different library package. The expansions that must
be defined in thisfile are:

FLIC_RUN_DECL: expands to the data structures that contain information for controlling loops over
decomposed dimensions in the model and converting between global and local indices. The macro is
inserted automatically by FLIC into each subroutine viathe -H="FLIC_RUN_DECL' option, specified in
FLICFLAGS in MPP/RSL/Makefile.RSL.

FLIC_INIT_RUNVARS: expands to callsto the RSL library to initialize the data structures included by
the expansion of FLIC_RUN_DECL. Thismacrois part of MPP/RSL/parallel_src/mp_initdomain.F.

FLIC DO N, FLIC DO_M, FLIC_ENDDO: macrosthat FLIC inserts at the beginning and end of loops
over decomposed dimensions (M correspondsto | in MM5; N corresponds to J). These expand to use loop
control data structures in the expansion of the macro FLIC_RUN_DECL.

Include directories

Non-DM builds of MM5 include header files from the include directory. DM-parallel builds include header
files from the pick directory and from the directory MPP/RSL/RSL. The header files for DM-parallel builds are placed
in the pick directory by the include/M akefile and MPP/RSL/Makefile.RSL. Three header files, read_configl.h,
read_config2.h, and read_config3.h, appear only in DM-parallel builds. These are included when

domain/initial/param.F is compiled and contain declarations and code pack and unpack configuration datain buffers for
broadcast to all processors.

3.1.2. Edit thetop-level Makefile and configure.user

Modify the top-level makefile to add targets mpp, MPP/mpp_install, mpclean, and uninstall, using Makefile in
the official MM5 as a guide. Add the following definitions to your configure.user file, assuming you have one in your
version of the model (very old versions of MM5 do not). If there is no configure.user file included by your Makefile,
then add the definitions to the Makefile directly or make other provisions for these being defined.

» RUNTIME_SYSTEM = system » MAKE = make—i —
» MPP_TARGET = RSL » CPP=cpp—C-P
» MPP_LAYER=RSL » AWK, SED, M4, CUT, and EXPAND

set to local command names

= PROCMIN_NS=1
_ = |WORDSIZE, RWORDSIZE, and
PROCMIN_EW =1 LWORDSIZE: size in bytes of integer,
= MFC = fortran compiler real, and logical

= MCC=C compiler

The value of system for RUNTIME_SY STEM should be set to a string identifier (no quotes) for your system
corresponding to those supported by RSL. Type 'make' in the MPP/RSL/RSL directory for alist.

3.1.3. Editlist of object filesin MPP/mpp_objects_all

The file MPP/mpp_objects all containsalist of all the .o files that make up a compilation. The file defines the
make macro OBJS that is used to construct M PP/build/tmpobjs, which isincluded by MPP/RSL/Makefile.RSL. Object
filesthat are linked unconditionally should be part of BASE_OBJ. The rest of the file may cantain definitions for other
object filesthat are only linked in when certain objects are specified in the configure.user file~This conditional
inclusion is controlled by CPP macros set in the file include/defines.incl.

3.14. Modify the file MPP/RSL/Makefile.RSL

Makefile.RSL isthe primary makefile for the DM-parallel code. It contains the command to link the
executable mm5.mpp from the constituent object files and all rules for creating those object files. The generic make
rule for compiling .F filesand .c files .0 is near the beginning of the file. Thisisfollowed by certain special rules that
cover:

= Defining the preamble to the parame.incl file,

= Compiling the param.F with special mechanisms for broadcasting namelist data,

= Compiling define_comms.F without FL1C and with special M4 macroslocal to that routine,

= Routinesthat are not compiled with FLIC because they contain FLIC macros already hand-inserted,
= Modulesthat do not need FLIC because they are column callable by design,

= Modulesthat do not use FLIC because they are related to nesting,

= Functions and block-data routines that do not need to be compiled with FLIC,

! This conditional inclusion is controlled by CPP macros defined in the file include/defines.incl. Thisfileis
created automatically in both the DM and non-DM versions when the program parseconfig (Util/parseconfig.c) is
invoked from the top-level Makefile.

= Packages needing special handling because of miter loops (Blackadar and Gayno-Seaman PBLS), and
= afew miscellaneous other special cases.

At this stage, none of the actual parall€lization work has begun we are only implementing the build mechanism for the
DM code. Therefore, one may wish to disable actual transformation of the code by commenting out the definitions of
FLICFLAGS and CPP_FLAGSElThiswi Il cause FLIC to simply pass the code through unmodified. Thiswill allow
you to develop and test the DM-build mechanism with the non-DM parallel code. It may also be necessary to remove
certain DM-specific abject files from MPP/mpp_objects all and set configure.user for as simple a configuration as
possible (e.g., MAXNES=1, for no nesting). It may also be necessary to add objects from the non-DM code that are not
part of the DM-parallel build.

Theresult of this exercise should be a version of the code that is compiled using the DM-parallel build
mechanism but that runs as a non-DM parallel executable and produces the same results.

Defining the preamble to parame.incl: array size parameters for distributed memory

Two- and three-dimensional arraysin MM5 are dimensioned using MIX, MJX, and MK X integer parameters
for north-south, east-west, and vertical, respectively. These are defined in the configure.user file. Thisfile, information
in include/parame, and mechanism in include/M akefile are used to create include/parame.incl, the file that is actually
included by MM5 subroutines when the non-DM version is built. In DM-parallel builds, configure.user,
include/parame, and MPP/RSL/Makefile.RSL are used to construct pick/parame.incl.

MPP/RSL/Makefile.RSL contains a set of rulesthat add a preamble to the file in include/parame to create the
pick/parame.incl, included by nearly all the subroutinesin the DM-parallel build. The mechanism is analogous to that
in include/Makefile for the non-DM code In the case of the DM-parallel code, the horizontal array dimensions MIX
and MJX are modified on the DM-parallel code to include extra memory for halo data around the local processor
subdomain and also to reduce the overall amount of memory required on each processor. MIX and MJX in the
configure.user file are renamed to MIX_G and MJX_G (for "global") in the pick/parame.incl file, and the local MIX
and MJX are redefined as:

PARAMETER(M X=M X_G $(PROCM N_NS) +2* $$RDP+2)
PARAMVETER(MIX=MIX_G $(PROCM N_EW +2* $$RDP+2)

where PROCMIN_NS is the minimum number of processors allowed in the north-south dimension and
PROCMIN_EW isthe minimum in the east-west dimension. These are also defined in configure.user. RDP isthe
amount of pad area needed by RSL for stencil exchanges (3, as defined in MPP/RSL/RSL/rd i) and the extra 2 isto
allow an additional element on each end of the dimension for spurious boundary calculations™. The values of MIX and
MJX are used in subsequent parameter statementsin parame.incl to define a number of related constants associated
with particular optional packages in the model —for example, MIXIC and MJXIC are related to ice-physics, MIXR and
MJXR to radiation, and so on. All of these become local memory dimensionsin the DM-parallel version.

On arelated note, MIX and MJX in their various forms are listed in MPP/FLICFILE using the mdim and ndim
directives. This provides FLIC with the information it needs to recognize loops over decomposed dimensions when it
precompiles the model.

2 |In the case of certain architectures, it may be necessary to preserve certain architecture specific definitions
such as—-DDEC_ALPHA on the Compaq Alpha systems. Rule of thumb would be if the CPP definition is also needed
for the non-DM parallel build, it should be retained here as well.

3 This occurs when the code on a processor computes a value for a boundary that isn't stored locally. One
could avoid this by inserting conditionals; however, we simply allow the processor to compute the value anyway, but in
a safe extra zone of memory. Thisiswhy al memory isinitialized to a non-zero valuein
MPP/RSL/mpp_mm5_05.incl, to prevent spurious floating point exceptionsin these calculations.

3.2 TOP-LEVEL PARALLEL INITIALIZATION

The main routine of the model is adapted to initialize the underlying parallel system (RSL and MPI).The main
routine for MM5, both in the DM-parallel and non-DM versions of MM5, is contained in the file Run/mm5.F. This
routine contains calls to read in namelist configuration information, initialize the model from initial or restart data,
other initializations, and the main time loop of the model (the 10 loop) which includes call to the nesting, the solver,
and model output routines. In addition, the DM-parallel version of mm5.F includes:

= MPP/RSL/mpp_mm5_00.incl:

1.
2.
3.

CALL RSL_INITIALIZE: Initialize RSL.
CALL ERROR_DUP: Redirect standard output and standard error on each processor

CALL SET_DEF _DECOMP_FCN(MAPPING): Establish MAPPING (defined in
MPP/RSL/parallel_src/lb_alg.c) asthe decomposition function (overriding the default algorithm in
RSL)

= MPP/RSL/mpp_mm5_05.incl: Initial value (1.0) to all state datat]
= MPP/RSL/mpp_mm5_10.incl:

1.

CALL RSL_OUTPUT_BUFFER_YES, RSL_IO_NODE_YES (or NO): enable (or disable) use of
processor zero as a dedicated 1/0 server for the other nodes.

CALL STATMEM_STAT(MIX,MJX): provide the static array sizes in the minor |-dimension
(north-south) and the major J-dimension (east-west) to the MAPPING function that was passed to
RSL in MPP/RSL/mpp_mm5_00.incl. The MAPPING function needs this information to avoid
decompositions that would require larger memory on each processor than statically defined.

CALL RSL_MESH(NPROC_LT, NPROC_LN): Specify processor mesh as the number of
processors in minor (north-south) and major (east-west) grid dimensions. The mesh is computed by
the routine MPASPECT, defined in MPP/mpaspect.F (it is not library-specific), called within
MPP/RSL/mpp_param_30.incl (which, as the name indicates, isincluded by domain/initial/param.F).

CALL INEST_STAT(1,1): informs decomposition function MAPPING that this is the mother
domain (not a nest).

CALL RSL_MOTHER_DOMAIN(DOMAINS(1), RSL_168PT, IL, JL, MLOC, NLOC): definesthe
mother domain and stores the RSL descriptor in the first element of the DOMAINS array (defined in
rslcom.inc). The second argument, RSL_168PT, tells RSL the largest stencil that will be used on the
domain for halo exchanges. The third and fourth argument give the logical (global)domain
dimensions) and the last two arguments are returned by the routine. These contain the minimum array
sizesin the north-south and east-west dimensions, respectively, for the local processor subdomain
RSL has computed. Following the call to RSL_ MOTHER_DOMAIN, these are tested to make sure
that the static dimensions of the MM5 arrays are large enough and, if not, an error is generated.

CALL SHOW_DOMAIN_DECOMP(DOMAINS(1)): Output afile, show_domain_0000, containing
decomposition information.

CALL DEFINE_COMMS(1): Define stencil communications for this domain.

CALL MP_INITDOMAINS(1): Enable computations on this domain by initializing the data
structures that are inserted into each subroutine by FLIC viathe FLIC_RUN_DECL macro.

= MPP/RSL/mpp_mm5_20.incl: Call RSL_SHUTDOWN on normal model completion.

* State dataisinitialized to 1, not zero, to avoid floating point exceptions in certain places where spurious
calculations are allowed to occur outside the local partition: computing resultsin halo regions or dealing with boundary
conditions on processors that don't actually own the boundary.

Thecall to RSL_INITIALIZE is accomplished early so that RSL may be used broadcast configuration information
from processor zero, which reads the input namelist, to the other processors. By the time the code in mpp_mm5_10.incl
is executed, all namelist configuration information is available on all processors. Thus, processor mesh specificationsin
the namelist can override the default if, for example, the user wishes to run with a 2x8 mesh instead of a 4x4 mesh on
16 processors.

Theinterface to RSL for controlling iteration over decomposed dimensions and for switching between model
domains requires that source files include the library Fortran header file MPP/RSL/RSL/rdl.inc and the MM5 specific
RSL data structures in MPP/RSL/rslcom.inc. These need not be inserted by hand; FLIC can do this automatically.
Renable the FLICFLAG optionsin MPP/RSL/Makefile.RSL so that it reads:

FLI CFLAGS = - F=$(MPPTOP)/ FLI CFI LE - CPP="i ncl ude<rsl .inc>" \
-CPP="include<rslcominc> -H="FLI C RUN DECL" \
- STOP=FKI LL_MODEL

The —F option directs FLIC to look for code trand ation directives in the file MPP/FLICFILE. The two —CPP options
instruct FLIC to insert CPP-style #include directives at the beginning of each subroutine it translates. The —H option
causes FLIC to include the macro FLIC_RUN_DECL in the declarations section of each model subroutine. The
expansion for this macro is contained in MPP/RSL/LMexp.m4. The last option instructs FLIC to replace STOP
statements in the model with calls to the routine FKILL_MODEL (defined in MPP/RSL/parallel _src/fkill_model.F).
Also renable the CPP_FLAGS macro in MPP/RSL/Makefile.RSL.

The main MM5 routine (Run/mmb5.F) should contain acall to MP_INITDOMAIN (defined in
MPP/RSL/parallel_src/mp_initdomain.F) early in the routine before any loops over decomposed dimensions have
occurred. In the officially supported MM5 thisis done in the included file MPP/RSL/mpp_mm5_10.incl.

At this point, all subroutines have access to the run-time data structures that provide the interface to RSL for
controlling loops over decomposed dimensions and distributed 1/0.

3.3. 1/0

The next step isto implement input and output so that the model can input initial data sets on one and then
multiple processsors. Output is also implemented to allow a check on input, with the exception of restart data sets.
MM5 1/O differs markedly between Version 2 and Version 3 and so does the DM-parallel implementation of 1/0in
those versions. However, in both versions, the DM-parallel option reads and writes the unformatted Fortran files same
files as the non-DM version.

A useful strategy for implementing /O isto pattern the modifications after what's been done already in the
official versions (2 and 3) of MM5. Reference is made to these in the description which follows in this section. Chose
which according to the vintage of the version you are parallelizing and according to the data format you wish to
support. Other things being equal, Version 3 is preferred since that format is self-describing, but one may have legacy
reasons for chosing the older Version 2 format and mechanisms.

During this phase of implementation, one may wish to include a temporary call to model output imediately
after model input and before any time-stepping has occurred to verify that input is working properly on single and
multiple processors. Specifically, place acall to OUTPUT and then RSL_SHUTDOWN and STOP immediately after
the call to INIT in the main routine in Run/mm5.F.

3.3.1. Modd input

Model input consists of input of namelist data, initial datafrom MMINPUT_DOMAINX files, where 'x' isthe
domain number, periodic input of lateral boundary conditions from the file BDY OUT_DOMAIN1 (only the coarse
domain), and — in the case of FDDA — other periodic input from MMINPUT files. Theinitial datais read by the
subroutine RDINIT (domain/io/rdinit.F); the boundary data by BDY IN (domain/boundary/bdyin.F). The discussion
here will focus on initial and lateral-boundary data, and will concentrate on MM5 Version 3. Version 2 input is
discussed in the next subsection.

Namelist datais read by node zero and broadcast to the other nodes in code added to the PARAM routine
(domain/initial/param.F). This is accomplished in the code included with MPP/RSL/mpp_param_30.incl :

| F(RSL_I AMVONI TOR()) THEN
C CODE ON MONI TOR ONLY
READ (1 LI F10, OPARAM)
READ (1 LI F10, LPARAM
READ (1 LI F10, NPARAM
READ (1 LI F10, PPARAM
READ (1 LI F10, FPARAM

C FI LE CONTAI NI NG AUTOVATI CALLY GENERATED PACK STATEMENTS
i ncl ude "read_config2. h"
ENDI F

CALL RSL_MON_BCAST(| BUF, | BUFLEN* | WORDSI ZE)
CALL RSL_MON_BCAST(LBUF, LBUFLEN* L\WORDSI ZE)
CALL RSL_MON_BCAST(RBUF, RBUFLEN* RWORDSI ZE)

call dm bcast_string (cdatest , 19)

I F(. NOT. RSL_I AMVONI TOR()) THEN
CODE ON OTHERS ONLY
FI LE CONTAI NI NG AUTOVATI CALLY GENERATED UNPACK STATEMENTS
i ncl ude "read_config3.h"

ENDI F

*¥OO O O

The reads of the namelist file are conditional on RSL_IAMMONITOR() so that they are only performed on node zero.
The data from the namelist variables are packed into one of three buffers -- IBUF, LBUF, or RBUF, for integer,
logical, and real items, respectively —which are then broadcast in the three callsto RSL_MON_BCAST. The buffers
are defined in the automatically generated include file pick/read_configl.h, included near the top of the PARAM
routine. The actual packing codeisin theinclude file pick/read config2.h, executed on node zero. The code to unpack
the buffers on the other nodes after the broadcast is in pick/read_config3.h.

The three read_config include files are automatically generated when param.F is compiled in
MPP/RSL/Makefile.RSL. The UNIX awk command is called using the script in M PP/namedata.awk to process the
table in MPP/namelist.data. The MPP/namelist.datatable lists all the namelist variables, their type, and dimensionality.
Thus, to parallelizing anon-parallel version of MMD5, it is necessary to go through this table and ensure the accuracy
and compl eteness of the entries for the model version in question. When one adds or removes a namelist variable from
the model, it is necessary to reflect that change in MPP/namelist.data. The read_config files themselves should not be
edited, since they are generated automatically and changes would be lost after the next compile.

Thecall to DM_BCAST_STRING (domain/io/dm_io.F) in the code fragment above is used to broadcast the
date string to other processorsin MM5 Version 3. In Version 2, the date is stored as an integer and broadcast as part of
the header information when the initial input datafile isfirst read. This was changed in Version 3 for Y 2K compliance.

More needed on Version 3 /0.

3.3.2. Modd input (V2)

Namelist datais handled in the same manner as Version 3.

Initial dataisinput from fort.11; boundary data from fort.9. The DM version of rdinit is named MPRDINIT
(MPP/RSL/paralé_src/mprdinit.F). The boundary dataread routineis MPBDY IN (also in the parallel_src directory).

The MPRDINIT routineis called from the same location in the INIT routine (domain/initial/init.F) as the
non-DM input routine, RDINIT. MPRDINIT routine follows the control flow of the non-DM RDINIT routine but with
reads of 2- and 3-dimensional arrays performed by callsto the RSL_READ routine. MPRDINIT takes one additional
argument, INEST, the index of the domain being initialized. Thisis needed by the DM version in order to index the
RSL domain descriptor from the array DOMAINS (defined in the included file MPP/RSL/rslcom.inc), for use in the
cal to RSL_READ.

Within RSL_READ, node zero performs an unformatted Fortran read and then distributes the data to the
other processors. It istherefore important to remember that RSL_READ must be called on all nodes and that only node
zero actually manipulatesthe file. That iswhy one finds, partway through the callsto RSL_READ in MPRDINIT, two
conditional callsto Fortran read statements to skip two unwanted fields in the model inpuit:

IF (RSL_IAMMONITOR()) READ(IUNIT)
IF (RSL_IAMMONITOR()) READ(IUNIT)

Other non-distributed actions on the fort.11 file — conditional rewinding of the file, reading of the large header record
that precedes each frame (time period) of datain the file, the close of the input file at the end of the routine -- are al'so
conditional on RSL_IAMMONITOR(), alogical function in the RSL library that returns true on node zero and false on
all other nodes. This function is defined in the rdl.inc file, a#include directive for which isinserted automatically into
the routine when it is preprocessed by FLIC. Certain data read in from the header record is broadcast to the other nodes
using RSL_MON_BCAST (note that this routine is outside the node-zero only code; all nodes must call this routine).

The routine beginswith acall to MP_INITDOMAIN(INEST) to set up the GLEN, LLEN, and DECOMP
arrays used by RSL_READ and also to set up iteration over decomposed | and J dimensions midway through the
routine where the non-hydrostatic base state is calculated. The routine ends with acall to RSL_EXCH_STENCIL to
update the halo regions on the just-read-in fields. The stencil STEN_INIT, like all stencilsinthe DM-parallel version
of MM5, isdefined in MPP/RSL/parallel_src/define_comms.F.

In MM5 Version 2, thereis also aread of the first record in the initial datafile fort.11 from the PARAM
routine (domain/initial/param.F). With the DM option, thisread is conditional on RSL_AMMONITOR() and the four
header arrays (two on the T3E) are broadcast to the other processorsusing RSL_ MON_BCAST (see
MPP/RSL/mpp_param_10.incl). Thisread of fort.11 in PARAM isthe reason a REWIND isneeded in RDINIT and
MPRDINIT.

The MPBDY N code is used to read datainto slab-boundary arrays that apply boundary forcing to the solution
through the NUDGE routine and elsewhere in SOLVE3. The dab-boundary arrays are dimensioned (MI1X,MKX,5) for
the western and eastern boundaries and (MJX,MKX,5) for the southern and northern boundaries. Thug—vest-east slab
arrays are distributed in the I-dimension and south-north slab arrays are distributed in the J-dimension™. This atypical
data structure is handled using a special MM5-V 2 specific routinein RSL: RSL_MM_BDY _IN. Thisroutine reads
and distributes all four slab-boundary arrays simultaneously.

RSL routines are called directly from these routines rather than hidden in #included files, asis done in the rest
of the code. Thisis because these are already separate RSL-specific routines that appear under the MPP/RSL directory.
The need for separate DM-parallel routines for model input isa Version 2 artifact. This has been corrected in MM5
Version 3.

3.3.3. Mode output

MMS5 output is primarily "history"; that is, periodic output of model state and diagnostic variables. Optionally,
MMS5 also outputs restart data sets. This discussion concentrates on history output.

More needed here for V3.

® These may also be distributed in the narrow dimension if the decomposition is fine enough.

3.34. Mode output (V2)

MMS5 V2 history is written by the OUTTAP routine (domain/io/outtap.F) and thereis no special version for
DM-parallel. However, most of the actual distributed output mechanism is hidden within the #included file
MPP/RSL/mpp_outtap 20.incl. Aswith the distributed input mechanism, the output of distributed 2- and 3-
dimensional arraysis handled with a call to an RSL routine, in this case RSL_WRITE. Distributed datais collected
from the other processors and assembled on node0, where it is written to file using a Fortran unformatted write
statement. Aswith model input, al non-distributed access to the output file is performed in RSL_AMMONITOR()
conditional code.

The header record for each new frame (time period) in the history file is written by node zero from the JUNK
arraysthat are set in OUTTAP prior to the include of mpp_outtap_20.incl. Note dependence on the fact that node zero
isthe only node that has a complete copy of the header information, because of the way the input header isread in
MPRDINIT.

The MPEQUATE routine (MPP/RSL /paralle_src/mpequate.F) isaspecial purpose array-copying routine
analogous to EQUATE (domain/util/equate.F) in the non-DM code. It is used only to zero out the extra memory in the
array around the actual subdomain to prevent garbage data from showing up in the last row and column of cross-point
arraysin the output records.

The other peculiar aspect of the DM-parallel implementation of OUTTAP isthe use of MP_DOMAINSTAT
and MP_INITDOMAIN at the beginning of OUTTAP and then again at the end of mpp_outtap 20.incl. This
mechanism provides away of setting the RSL 1/0 and loop-control data-structures for a particular domain within the
routine and then restoring them to the domain of the caller on return. The reason for thisisthat at model output time,
OUTTAP scalled from within OUTPUT (domain/io/output.F) successively for each active domain and the RSL -set
run-time data-structures must reflect the correct domain at all times. The call to MP_DOMAINSTAT savesthe
currently active domain identifier in the integer variable ISAVEDOMSTAT (declared at the top of OUTTAP) so that
this can be restored at the end of the mpp_outtap_20.incl file.

3.4. ITERATION STRUCTURE

Once 1/0 has been implemented and tested for DM, the next step is to implement the mechanism that will
control loops over decomposed dimensionsin the parallel code. These are the north-south loops, generally over the |-
dimension, and the east-west |oops generally over J. To alarge extent, thisis handled automatically by FLIC and the
macro expansions in MPP/RSL/LMexp.m4, which modify east-west and north-south loops to use RSL -set data
structures that specify the local start and end for the loop on each processor. What the programmer needsto do is
ensure that the data structures are set properly and to ensure that FLIC hasn't overlooked certain special cases.

The RSL data structures that control loop iteration are set by calling MP_INITDOMAIN(INEST), where
INEST istheindex of the domain to be interated over (e.g., 1, for the mother domain). For the mother domain, thisis
called before the call to SOLVES3 for INEST=1 in Run/mm5.F. MP_INITDOMAIN isaso called at certain other
points as needed for switching between domainsin a nested scenario, which we will not address at this time, since the
first thing to do in anew paralléelization effort is to get a single-domain running.

The special casesfor FLIC are 1) instances where a subroutine is called from within a J-loop, 2) cases where
the call to the subroutine is the only statement in the J-loop, and 3) miscellaneous instances where there are conflicting
uses of aloop variable aslocal and global indices.

When a subroutine is called within a J-loop, say from within the large 640 loop in the SOLV E3 routine of
Version 2, the Jindex is passed in through the argument list. Since FLIC does not do interprocedural analysis, it has no
way to know that Jis aloop variable inside the routine (because the loop resides externally, in the caller). FLIC will
erroneoudly assume that array references using J as index are loop-invariant and attempt to convert Jfrom a global to a
local index (whenitis, in fact, already alocal index, because FLIC converted the J-loop in the calling routine). The
solution issimple: tell FLIC that the argument is J-loop variable. Thisis done in the MPP/FLICFILE, using the
n=subroutine:index directive. The 'n' specifies that the directive refers to the 'n' dimension (east-west in MM5),
subroutine is the name of the subroutine and index is the name of the loop index argument asiit is known within the
subroutine.

The second specia case occurs when a subroutine is called within a J-loop and it is the only statement in the J-
loop. This causes a problem because FLIC needs at least one array reference in the loop body to deduce whether the
loop variable is indexing a decomposed dimension in order to trans ate the loop statement. The solution used in MM5
isto place areference to a dummy array anywhere in the loop body:

DOJ =1, JL
X = DUMWY(J) I | NSERTED TO HELP FLIC
CALL SUB(J, ...)

ENDDO

Thisoccurs only in Version 3, where the J-1oop loops have been broken up into many smaller loops
throughout the solver. J-loopsin the Version 2 solver, in contrast, are few and cover many lines of code.

The third sort of specia case occurs when aloop variable is used within the body of the loop both as alocal
index and a global index. An example of this occurs in the subroutine NUDGE (domain/boundary/nudge.F):

C
CG---- | NTERI OR J SLI CES:
C
#i f ndef MPP1
DO 10 1=2,IP
#el se
DO 10 12=2,1P
I =NOFLI C(1 2)
#endi f
FCX=FCOEF* XFUN(I)
GCX=GCOEF* XFUN(1)
DO 10 K=1, KD
C
C.... SOUTH BOUNDARY:
C

FLSO=(FSB(J, K, |) +DTB*FSBT(J, K, 1)) - FB(I, J, K)
FLS1=(FSB(J- 1, K, 1) +DTB*FSBT(J-1, K, 1))-FB(1, J- 1, K)
FLS2=(FSB(J+1, K, |) +DTB* FSBT(J+1, K, 1)) - FB(1, J+1, K)
FLS3=(FSB(J, K, | - 1) +DTB*FSBT(J, K, 1 - 1)) - FB(1 - 1, J, K)
FLS4=(FSB(J, K, | +1) +DTB*FSBT(J, K, | +1)) - FB(1 +1, J, K)
FTEN(I, K) =FTEN(1, K) +FCX* FLS0- GCX* C203*

+ (FLS1+FLS2+FLS3+FLS4- 4. * FLSO)

In this case, the original code used the loop variable | both as alocal index into decomposed |-dimension of
array FB (dimensioned MIX,MJX,MKX) and array FTEN (dimensioned MIX,MKX) and as a global index over the
narrow dimension of the two boundary-dab arrays, FSB and FSBT (dimensioned MJX, MK X,5). Furthermore, the
index | isbeing used globally to compute coefficients relating to distance from a boundary (FCX and GCX). The
solution isto recast the loop variable | as12 and then assign | to the value of NOFLIC(12). The NOFLIC directive
prevents FLIC from tracing back through the assignment statement to determine that | is an expression of the loop
variable 12 and thus prevents FL1C from incorrectly converting the DO 10 loop. As aresult, | isaglobal index (running
from 1 to 2) which is correct for indexing the undecomposed dimensions in the referencesto XFUN, FSB, and FSBT.
The other referencesto FB and FTEN, in which | doesindex decomposed dimensions, are also handled correctly
because FLIC considers | invariant with respect to any loop over a decomposed dimension (we have forced FLIC to
ignore the DO 10 loop). So it handles the referencesto FB and FBTEN asit would any loop-invariant index of a
decomposed dimension: it converts the index from global to local.

3.5. INTERPROCESSOR COMMUNICATION

At this point in the implementation of the parallel model we have

= installed the MPP directory and set up the model code to use the DM-parallel build mechanism,
= modified the main routine Run/mm5.F to initialize parallelism,

= modified the mechanism that constructs the parame.incl file to decompose memory arrays,

= set up model input and output, and

= implemented the iteration structure

so that the model should run on one processor in DM mode and produce reasonable (if not bit-for-bit) history output
when compared with the same code compiled in non-DM mode. The remaining work involves implementing
interprocessor communication so that it will run on multiple processors.

This section first describes how data dependencies are uncovered and how RSL interprocessor communicatoin
constructs, called "stencils, are implemented.

3.5.1. Datadependency analysis

Data dependencies arise in MM5 as aresult of, horizontal advection horizontal diffusion or horizontal
interpolation between staggered grids (dot-cross) or for smoothing and nest forcing. A data dependency is a non-local
use (appearance on aright hand side of an assignment statement) of a decomposed array whose index is some offset
from an arbitrary point 1Jin the domain; for example, 1+1,J or |,J-1. Decomposed arrays may be considered to bein
one of two states at any point in the code: valid or invalid for non-local use. Arrays are always valid for local use. The
relevant operations on an array are:

= set—by assignment, input, etc. Invalidates an array for non-local use.

= non-local use—requires valid data on a stencil, a pattern of points around the local points
= gtencil-exchange — interprocessor communication to update the stencil.

= runpad computation — computation onto the halo to update the stencil.

When an array isinvalidated by a set, it cannot be used non-locally again until it is updated — that is, until the halo
regions of the array are made to contain the updated val ues stored locally on other processors. Thisis done either
through communication with the other processors, or by duplicating the operations that set the non-local values of the
array by computing out onto the halo. Both strategies are employed in MM5. Through the course of an MM5 time step,
arrays are set from non-local references to other arrays and are then themselves used nonlocally. The relationships
between variables can be described through set-use chains (sometimes called def-use chains).

Because the cost for initiating a message between processors (latency) typically dominates in the overall cost
of communication, there is considerable performance advantage to aggregating messages into few stencil exchange
operations that communicate many fields at once. The RSL library is designed to facilitate message aggregation.
However, effort is required to analyze the set-use chains in a program and exploit the opportunities for aggragation.

For a given section of code, there will be a set of arraysthat will be subject to non-local use at some later point
in the code. Of this set, a subset of these arrays will have been invalidated by a set at some earlier point in the code. It
isthis subset of arrays that must be updated and to minimize latency, we wish to do it with as few exchanges as
possible. This subset will have alast-set point in the code and first non-local used point. For a subset to be aggregated
in asingle exchange, the last-set point must occur before the first non-local use, and the stencil exchange must occur at
some point between those two points. If the last-set point occurs after the first-used point, the subset will need to be
divided into smaller subsets and each of these subsets will require its own exchange.

3.5.2. Setting up RSL stencil communication

The principal interface file to the RSL communication library is MPP/RSL/parallel_src/define_comms.F. This
file contains the callsto RSL that register MM5 data structures, binding them to stencil-descriptors that may then be
used within the code to update the hal os of the arrays on each local processor subdomain.

Note for AER presentation: Go through the RSL Relaxation example at this point (PowerPoint slides)

The define_comms.F file defines the following stencils:

Version 2
Stencil name Shape Purpose Affected arrays Used
sten_init RSL_24PT Initialize pad areas for 2-|Very many nprdinit.F
and 3-d arrays, including mp_f eedbk. F
constant arrays npp_bdyval _10. i ncl
nmpp_i nit_10.i ncl
npp_i ni t nest _30/ 33/ 37/ 40/
50. i ncl
npp_i ni t sav_10. i ncl
sten_a RSL_12PT update pad areas at the |PS, U, V, T, W, PP, Q, [nmpp_sol ve3_10.i ncl
start of a new time step |(A&B time-levels)
sten_b RSL_12PT Update after these are |UA, VA, THA, PR1, npp_sol ve3_20. i ncl
modified in DO 90 loop |RHO1, TBP
sten_c RSL_8PT Update velocity UCD, VCD npp_sol ve3_40. i ncl

tendencies after
influence of PBL
sten_d RSL_8PT Update qdot for QDOT npp_sol ve3_50. 1 ncl
computation of dot-point
averaged divergence

(DO 961)
sten_sa RSL_8PT Update fields going into |U3D, V3D, T3D, PP3D, [npp_sound_20. i ncl
sound and T3D
Slow tendencies for
U,V,PP,W,
B-time level values of T,
QV, and PP
sten_sb RSL_8PT Update fields within U3D, V3D, PP3D, TB, |[mpp_sound_30. i ncl
minor time loop of sound|QVB
sten_e RSL_12PT Update UA and VA after |UA, VA mpp_sol ve3_60. i ncl

influence of sound

4. Module specific descriptions

4.1.

4.1.1.

4.1.2.

4.1.3.

4.2.

4.2.1.

4.2.2.

4.2.3.

SOLVER

Communication points

Loop control

Performance measurement (upshot and milliclock)
PHYSICS

General

PBL schemes with miter loops

Implementation

Implications for bit-for-bit agreement

4.2.4.

4.2.5.

Radiation schemes with CCM-data structures and |oop constructs

Routines that are called within a J-loop

Notation in FLIC file

May require a dummy assignment to a J-array

4.2.6.

4.3.

4.3.1.

4.3.2.

4.3.3.

4.3.4.

4.3.5.

4.3.6.

Other physics
INPUT AND OUTPUT
Rdinit.F

Rdter.F

Bdyin.F

Inddgd.F

Outtap

Restarts

4.4,

FDDA

44.1. Anaysisnudging

4.4.2. Obsnudging

4.5.

NESTING

45.1. Overview: nestingin MM5

45.2. Pardld nest definition

45.3. Nestinitialization

45.4. Forcing

4.5.5. Feedback

5. Adding to and modifying MM5

6. Performance and Benchmarking

7. Debugging strategies

7.1.

1
2.

© N o 0 A

TRACKING SEGMENTATION VIOLATIONS AND BUS ERRORS

Make uninstall, make mpp, and reproduce the error

Use interactive debugger to determine where fault is occurring; then make mpclean and recompile with —g
debugging and fine the line number

Deterimineif the fault isin amodel routine, the RSL library, or some routine you’' ve never seen before (athread or
operating system routine). Note that errors in malloc and free may be caused by memory overwrites or simply
running out of memory (stack, heap, or thread-stack) on a processor

Determine if the fault still occurs without the most recent change to the model code
Determine if the error occurs in the same place every time or if it is non-deterministic
Determine which processors incur the fault

Determine if the non-DM code works correctly on the problem (if possible)

Determine if the problem occurs on other data sets/problem sizes

7.2. NAN’SAND FLOATING POINT EXCEPTIONS

7.3. ERRORS IN MODEL RESULTS

Conditions under which the DM-parallel version should be expected to give bit-for-bit identical results with
the non-DM version: same processor hardware, same compiler, all modules compiled without optimization, no fast
libraries, and in the case of routines with mitre loops, the CPP constant BIT_FOR _BIT_KLUDGE #defined at the top
of the routine (HIRPBL and G-SPBL. Warning, never run operationally with this defined).

1. Determine if the DM-parallel version of the model gives different results on different numbers of processors.
Visualize output fields and look for tell-tale “windowpane” patternsin the dataitself or in difference plots with
output from runs on diffferent numbers of processsors or from the non-DM model. This may indicate a missed
stencil-exchange on an array. Hint: many such errors eventually trace back to stencil definition code in
MPP/RSL/parallel_src/define_comms.F.

2. Usedifference plotsto determine if results are correct on processor zero but incorrect on other processors. This
might indicate failure to broadcast a constant, some part of the namelist data, or some part of the input datafile
header. Note that MM5 does not broadcast the character-string information from the MM5 input file header to
other processors, only the REAL and INTEGER header fields= Therefore, MM5 model subroutines should not
evaluate conditionals using this character information because it will not be available on all processors. If such a
test must be performed, evaluate the conditional on processor zero and then broadcast the logical result of the test
to the other processors.

3. Usedifference plots and select a point in the domain known to diverge deterministically, identify it'si, j, and k
indices and then systematically begin inserting print statements for that point, tracing backwards though the code
to the source of divergence. Thisis a powerful technique but it may consume a good deal of computer time and
human effort. See the next section for additional information on this technique.

4. Keepinmind that the error might be anywhere, including in the tools that you are using to post-process the data or
in the model output routine of the model. This can show up as errors in output that seem too extreme for the model
to be able to run, when in fact that data inside the model is fine.

7.4. INSERTING PRINT STATEMENTS TO COMPARE DATA IN DM AND NON-DM RUNS

When all elsefails, it may become necessary to begin looking at and comparing the values of arrays between a
reference version (usually the non-DM version or the DM-parallel version on a different number of processors) and the
suspect code. Here are some things to keep in mind when debugging in this manner:

1. Remember that what the compiler seesisthe .f filesin the MPP/build directory but what you edit are the .F files.

2. Array indices between the DM-parallel and non-DM parallel versions will not correspond (but there are easy ways
around this)

3. If you print the value of asingle 1,J point, remember that the print will only produce valid output from one
processor, not al of them (because the points are distributed).

4. Write your debugging output to standard error rather than standard output, because on most machines, standard
error is not buffered. In other words, use WRITE(0,*) rather than PRINT*.

5. Loop variables used in conditionals will be converted from local to global, aslong as they are not hidden from
FLIC by anintrinsic (MAX or MIN) or by the NOFLIC macro.

6. Loop variables used as array indices are always local indices.

® The reason character information is not broadcast through RSL is because strings are represented differently
on different vencors machines and compilers. The Cray T3E representation is problematic in this regard.

7. Loop invariant variables used as array indices are converted by FLIC are considered global indices and will be
automatically converted to local indices.

Output mechanism may be the problem.

Don't blindly assume the reference code is the correct code. It has happened, albeit infrequently, that a
discrepancy between the two has turned out to be a problem with the non-DM version.

The remainder of this section will describe the author’ s favored technique for debugging the code using print
statements. Some of thisis a matter of personal preference but it will help to illustrate an effective technique
identifying pitfalls and showing works around.

Thefirst thing one does isto find the 1,J,K coordinates of a point that is discrepant compared with the
reference version. Since the discrepancy was probably first observed in model output, the obvious place to begin
looking isin adifference plot. Unlike data visualization for scientific analysis or forecasting, a good plotter for
debugging should not smooth or contour the output and it should provide an easy way for identifying the indices of
individual pointswithin the data. HMV is a freeware tool favored by the author, please refer to the Appendix.
Remember that | increases from south to north, J-dimension increases from west to east, and K increases from top to
bottom. Assume for the sake of example that the point we wish to instrument is =12, J=7, K=23.

I dentify the routine that you wish to begin your search. Thisisusualy SOLVE (SOLVE3in MM5v2) or
SOUND. Find the place in the routine where the output variable you're interested in is set and begin inserting print
statements here. Many of the prognostic variables (UA, VA, TA, WA, PPA) in MM5 are set in SOUND; the moisture
variables (QVA, QCA, QRA, ...) areset in SOLVE, prior to the call to SOUND. In all cases atendency array for the
variableis amajor term in the new value for a prognostic variable — for example, USDTEN for UA. The tendency
arrays are what are actually accumulated over the course of atime step so debugging will usually start with these. The
author’s favored place to start with debugging statementsisimmediately before the call to the SOUND routine, since
all tendencies are available at that point. Also, the SOUND routine in MM5 is quite complicated to debug. If one can
make the initial determination that a problem occurs before the call to SOUND, one may be able to avoid plunging into
this particularly difficult routine.

Begin by placing three CPP preprocessor definitions at the beginning of the solve.F file, above the
SUBROUTINE SOLVE declaration:

#defi ne | DEBUG 12
#def i ne JDEBUG 7
#def i ne KDEBUG 23

SUBROUTI NE SOLVE(. . .)
WRI TE(0, *)' USDTEN ', USDTEN(| DEBUG, JDEBUG, KDEBUG)
WRI TE(0, *)' V3DTEN ' . V3DTEN(| DEBUG, JDEBUG, KDEBUG)

CALL SOUND(I YY, JXX, UB, VB, .

To write out the values of the tendency arrays before the SOUND routine, insert write statements as shown in the
example. Thismakes it easy to change the 1K point without modifying the write statements. Once debugging
statements are in place in the code, make the DM-parallel and non-DM versions by typing ‘make mpp’ and ‘make’ and
then run the resulting mm5.mpp and mmb5.exe programs. The standard error output from the DM version is
automatically captured in the file rdl.error.xxxx (where xxxx is the number of the processor containing the point 1JK).
Capture standard error from the non-DM version into afile “errlog” using the sh (Bourne shell) command and then
compare the rdl.error.xxxx and errlog files using the UNIX diff utility .

sh —c "mb.exe 1> runlog 2> errl og"

The write statements in the first example are outside any decomposed loop. The next example shows how to
print the value of point within aloop. The IF statement is used to test when to execute the debugging write statements.

Even though the loops and arrays or over local memory indices on each processor, the writes will occur for the correct
IJK —that is, point corresponding to the same |JK in the non-DM code, because FLIC automatically converts the uses
of I, J, and K in the conditional statement to global coordinates before the comparison with IDEBUG, JDEBUG, and
KDEBUG occurs. (To see how the conversion occurs, examine the corresponding section of code after FLIC has
trandated the statements in the MPP/build/solve.f file.) Aswith the earlier example, the write statements will only
execute on the processor that contains the point 1JK in local memory. Keep thisin mind when changing the 1JK
coordinates of the point you are inspecting since you may end up moving the output to a different processor, and thus
to adifferent rd.error.xxxx file. Refer to the show_domain_0000 file to see how the domain is decomposed over
processors in your run.

DO J=JBNES
DO K=1, KL
DO | =I BNES, | ENES
I F (1.EQ I DEBUG AND. J. EQ JDEBUG AND. K. EQ KDEBUG) THEN
WRI TE(O, *)' DEBUG UB ', UB(I, J, K)
WRI TE(O, *)' DEBUG VB ', VB(I, J, K)
ENDI F
<statements in | oop>
ENDDO
ENDDO
ENDDO

If, based on the first set of prints before SOUND, oneis able to determine that the problem isin a tendency
array, then an alternate debugging technique may be employed to more quickly narrow down the source of the
problem. One may begin selectively removing (commenting out) calls to physics, advection, or diffusion routines that
modify tendency arrays earlier in SOLVE. When the problem disappears in the difference plot, its possible that the bug
isin, or at least traveling through, the subroutine that was removed from the computation. When you comment out a
routine, put a WRITE(0,*) statement in its place warning that the routine has been removed.

Dumping whole fields.
8. Appendices
8.1 LIST OF MPP RELATED #IFDEFS AND #INCLUDES IN CODE
8.2. USEFUL TOOLS FOR LOOKING AT DATA FOR DEBUGGING PURPOSES
8.2.1. Diffv3

8.22. HMV
http://rotang.com/HMV

8.3.

8.3.1.

8.3.2.

8.3.3.

8.3.4.

USEFUL TOOLS FOR PERFORMANCE MEASUREMENT AND BENCHMARKING
Mmbetime

Stats

Gprof

Jumpshot

	Introduction
	Purpose of this document
	Other sources

	Design of the DM-parallel MM5
	How to parallelize MM5
	Set up build infrastructure
	The MPP directory
	MPP directory
	MPP/build directory
	MPP/FLIC directory
	MPP/RSL
	Library specific include files: MPP/RSL/mpp_*.incl
	Library specific subroutines: MPP/RSL/parallel_src
	Library specific macros: MPP/RSL/LMexp.m4
	Include directories

	Edit the top-level Makefile and configure.user
	Edit list of object files in MPP/mpp_objects_all
	Modify the file MPP/RSL/Makefile.RSL
	Defining the preamble to parame.incl: array size parameters for distributed memory

	Top-level parallel initialization
	I/O
	Model input
	Model input (V2)
	Model output
	Model output (V2)

	Iteration structure
	Interprocessor communication
	Data dependency analysis
	Setting up RSL stencil communication

	Module specific descriptions
	Solver
	Communication points
	Loop control
	Performance measurement (upshot and milliclock)

	Physics
	General
	PBL schemes with miter loops
	Implementation
	Implications for bit-for-bit agreement

	Radiation schemes with CCM-data structures and loop constructs
	Routines that are called within a J-loop
	Notation in FLIC file
	May require a dummy assignment to a J-array

	Other physics

	Input and Output
	Rdinit.F
	Rdter.F
	Bdyin.F
	In4dgd.F
	Outtap
	Restarts

	FDDA
	Analysis nudging
	Obs nudging

	Nesting
	Overview: nesting in MM5
	Parallel nest definition
	Nest initialization
	Forcing
	Feedback

	Adding to and modifying MM5
	Performance and Benchmarking
	Debugging strategies
	Tracking segmentation violations and bus errors
	NaN’s and floating point exceptions
	Errors in model results
	Inserting print statements to compare data in DM and non-DM runs

	Appendices
	List of mpp related #ifdefs and #includes in code
	Useful tools for looking at data for debugging purposes
	Diffv3
	HMV

	Useful tools for performance measurement and benchmarking
	Mm5etime
	Stats
	Gprof
	Jumpshot

