

was used in the verification. RMSE and BIAS were 2.3 to 2.9°C and -0.7 to -2.3°C. RMSE and BIAS were increased according to projection time (Fig. 7). The prediction whose valid time were night time were better than day time (Fig. 8), because of large cold bias in day time. The result shows the prediction system had cold bias in the lowest layer, especially strong cold in daytime. If we resolve this problem, the skill will be improved greatly and this is next our study.

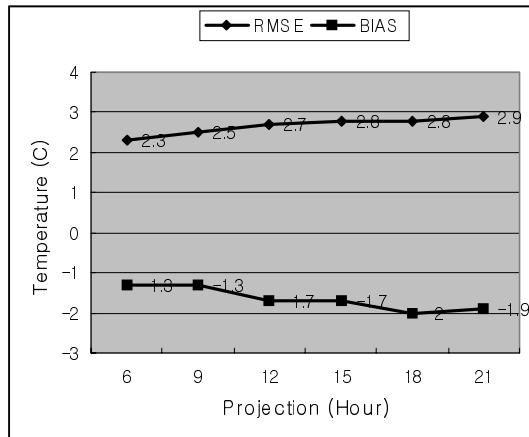


Fig. 7. RMSE and BIAS of temperature prediction on surface layer during May 2000 according to projection. The observation from 15 AWS was used in verification

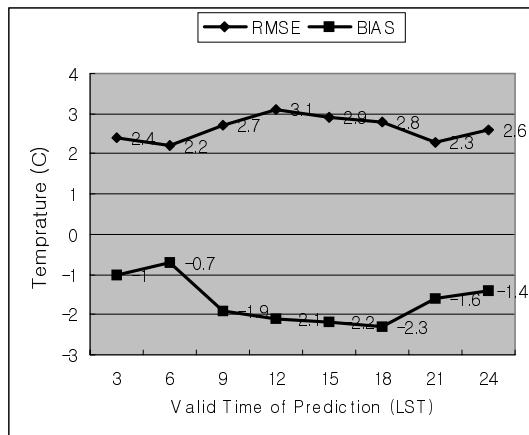


Fig. 8. Same as Fig. 5, except for valid time of projection.

In this paper only one rainfall case was showed but the prediction system has been verified through several cases, for example, rainfall in southern part of Cheju island in August 14 1999 and local surface horizontal wind and temperature structure in April 6

2000. These studies showed a good results too.

The storm scale prediction system (HSRPS) have been operated every 6 hours in the Cheju Regional Meteorological Office from April 2000 and supported a good guidance to forecaster.

4. Acknowledgements

This research was performed for the Natural Hazards Prevention Research Project, one of the Critical Technology-21 Programs, funded by the Ministry of Science and Technology of Korea, and for the project of Korean Meteorological Research Institute, "The Development of Numerical Weather Prediction System in Korea".

Reference

Albers, S., 1995: The LAPS wind analysis. *Wea. Forecasting*, 10, 342-352.

Albers, S., J. McGinley, D. Birkenheour, and J. Smart, 1996: The Local Analysis and Prediction System; Analysis of clouds, precipitation, and temperature. *Wea. Forecasting*, 11, 273-287.

Dudhia J., Dave Gill, Yong-Run Guo, Kevin Manning, and Wei Wang, 2000: *PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and Users' Guide (MM5 Modeling System Version 3)*, Mesoscale and Microscale Meteorology Division NCAR. 1-1 ~ 15-12.

Kim, Y., S.Kothari, E. Takle, and Z. Pan, 1997: A run-time library and load balance analysis for parallel atmospheric models, *Symposium on Regional Weather Prediction on Parallel Computer Environments*, Athens, Greece.

Lee D.-K. and T-K. Wee, 1998: Numerical simulation of a meso-beta scale heavy rainfall event over the Korean peninsula, *Proceedings of international conference on monsoon and hydrological cycle*, Kyongju Korea, 76-80.

McGinley, J., S. Albers and P. Stamus, 1991: Validation of a composite convective index as defined by a real time local analysis system. *Wea. Forecasting*, 6, 337-356