

Table 1. Properties of the various simulations, where  $w_{\max}$  is the maximum updraft velocity, and  $\theta_{e\text{-max}}$  is the maximum  $\theta_e$  below 300 mb. Only the MM5 experiments labeled “new turbulence” can be compared to the ARPS experiments, since they contain similar physics.

| Experiment                                    | $w_{\max}$ (m s <sup>-1</sup> ) | $\theta_{e\text{-max}}$ (K) |
|-----------------------------------------------|---------------------------------|-----------------------------|
| Control                                       | 58.83                           | 363.88                      |
| Iterative condensation                        | 48.15                           | 358.09                      |
| Original condensation, after “sound”          | 59.41                           | 354.79                      |
| Iterative condensation, after “sound”         | 47.69                           | 350.33                      |
| No drag                                       | 77.83                           | 365.77                      |
| New turbulence code                           | 57.56                           | 354.22                      |
| New turbulence code, iterative condensation   | 44.95                           | 349.64                      |
| ARPS, control                                 | 58.00                           | 352.81                      |
| ARPS, forward-in-time                         | 57.23                           | 349.43                      |
| ARPS, iterative condensation                  | 42.49                           | 348.31                      |
| ARPS, forward-in-time, iterative condensation | 42.31                           | 347.71                      |

ARPS and MM5. The two models were configured to be as similar as possible. All ARPS simulations use a three-dimensional turbulent mixing parameterization similar to the scheme designed for MM5 by Bryan and Fritsch (2000); therefore, the MM5 simulations noted by “new turbulence” in Table 1 are most comparable to the simulations from ARPS. Notice how ARPS also produces the  $\theta_e$  problem, and that the magnitudes of  $w_{\max}$  and  $\theta_{e\text{-max}}$  are similar. The next two sections elaborate on the two mechanisms that we suspect are the causes of the  $\theta_e$  problem.

### 3.1 Condensation Closure

The manner in which condensation is treated in MM5 was found to play a major role in the intensity of the  $\theta_e$  problem. All condensation schemes in MM5 follow the methodology of Soong and Ogura (1973). That is, temperature and moisture are stepped forward in time without consideration of condensation. Then, if the resulting state at a grid point is supersaturated, an “adjustment step” is applied that converts water vapor to liquid water and warms the air. A final relative humidity of 100% is assumed. Typically, modelers apply an equation that uses a single step to approximately reach 100% relative humidity (see Soong and Ogura 1973 for the derivation of this equation). A Taylor series expansion is used to derive this equation, where only the first-order terms are retained. Therefore, this equation only approximates the amount of condensation necessary to obtain 100% relative humidity.

By examining the amount of condensation in

the warm rain scheme during every time step, we have found that this technique can artificially increase  $\theta_e$  at a grid point. It seems that the approximations used to derive the one-step condensation equation tend to overestimate the final value of mixing ratio and/or temperature such that the resulting  $\theta_e$  is too high. The artificial increase in  $\theta_e$  during condensation is usually small (about 0.01 K), but when applied *every time step* the  $\theta_e$  problem tends to magnify over time – this is especially true for the very small time steps and grid lengths used at cloud-scale resolution.

Based on plots of  $\theta_{e\text{-max}}$  and maximum updraft for different model configurations, and after analysis of tendency terms during model integration, it appears that the  $\theta_e$  problem is actually a positive feedback loop:

- $\theta_e$  inside the cloud increases,
- Higher  $\theta_e$  results in larger positive buoyancy in the vertical velocity equation,
- The thunderstorm updraft increases,
- More moisture is advected upward, which condenses and releases more latent heat,
- $\theta_e$  inside the cloud increases

We have designed an iterative condensation closure that retains the value of liquid-water potential temperature (Tripoli and Cotton 1982). The results using this scheme are compared to the warm rain scheme in Table 1. Notice that the  $\theta_e$  problem is reduced.

Another problem was found with the manner in which condensation is treated in MM5. The Soong-Ogura condensation procedure should (technically) be applied *after* the model equations are stepped forward. However, in MM5, the relative humidity is set to 100% using the value of pressure at time  $t-\Delta t$ , then pressure is stepped forward in time (in the “sound” subroutine), and the resulting relative humidity from the new temperature and the new pressure is greater than (less than) 100% when pressure increases (decreases). We have applied the condensation adjustment step after the “sound” subroutine using both the original warm rain scheme and with our iterative condensation closure. The results are summarized in Table 1; note how this change further decreases the value of  $\theta_{e\text{-max}}$ .

### 3.2 Time Integration

MM5 (and many other models) use centered-in-time (leapfrog) time integration for advection:

$$\alpha^{t+\Delta t} = \hat{\alpha}^{t-\Delta t} + 2\Delta t \frac{\partial \alpha}{\partial t},$$