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1. INTRODUCTION 

In recent years, much attention has been given to 
improving ABL predictions by addressing the surface 
boundary conditions used in atmospheric models. For a 
given synoptic condition, the ABL structure and evolu-
tion are controlled mostly by the entrainment fluxes at 
the top of the ABL and by surface fluxes, especially the 
latter. Thus, multilevel soil models, some with vegeta–
tive canopy submodels (e.g., Noilhan and Planton, 
1989), have become more common and have been 
coupled with rainfall estimates to provide case-specific 
soil-moisture profiles (e.g., Chen et al. 1996, 1997; 
Chen and Dudhia, 2001). However, this approach relies 
heavily on the accuracy of the land-surface models and 
rain estimates, which are often taken from prior 
forecast-model runs. Mahfouf (1991) and Bouttier et al. 
(1993) used the evolving surface-layer temperature and 
humidity to estimate the soil moisture in numerical 
model predictions. McNider et al. (1994) took a similar 
approach, but assimilated satellite-observed surface 
skin temperature tendencies to estimate soil moisture. 
In these techniques, the largest errors are present in the 
simulated surface-energy budget and are due to errors 
in the soil moisture parameter.  

Alapaty et al. (2001a,b) developed a new tech-
nique that allows continuous assimilation of surface 
observations to improve surface-layer predictions. In 
this technique, they first directly assimilated surface-
layer temperature and water vapor mixing ratio by 
using the analyzed surface data. Then they used the 
difference between the observations and model 
predictions to calculate adjustments to the surface 
fluxes of sensible and latent heat. These adjustments 
were used to calculate a new estimate of the ground 
temperature, thereby affecting the predicted surface 
fluxes in the subsequent time step. Here, we extend that 
work further by assimilating/adjusting the soil moisture 
availability using an inverse technique. This indirect 
data assimilation/adjustment of soil moisture and 
temperature is applied simultaneously with the direct 
assimilation of surface data in the model’s lowest layer, 
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thereby maintaining greater consistency between the 
soil temperature and moisture, and the surface layer 
mass-field variables.  

The objectives of our research are to develop and 
evaluate an inverse technique for adjusting soil 
moisture such that it (1) helps reduce errors in the 
surface layer simulation, and (2) varies noticeably only 
at weekly to monthly time scales. Note that the latter 
objective is of interest to many modelers because that 
type of observed temporal variability is missing in 
many meteorological models. We first present descrip–
tions of how each of three land surface models (LSMs) 
are modified using our inverse technique, followed by 
some preliminary results obtained using the mesoscale 
model MM5V3.4. Our ultimate goal is to perform a 
seasonal simulation to study the ability of this tech–
nique to replicate seasonal variability in the soil 
moisture that exists during a drought or a moist period. 

2.  DESCRIPTION OF INVERSE TECHNIQUE 
First, we start with the work of Alapaty et al. 

(2001a,b) and Stauffer et al. (1991). From their work, 
the surface data assimilation (SDA) equation for a 
surface variable,α  (e.g., temperature, TL, of a model’s 
lowest layer close to the surface) can be written as: 
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where p* is the difference between base state pressures 
at the surface and model top; t is time; F is a forcing 
term representing all physical processes affecting α  in 
the model; x and y are the horizontal spatial 
coordinates; Gα = 9.0 x 10-4 s-1 is nudging factor for 
α ; Wα is a weighting function that determines the 
horizontal, vertical, and time weighting applied to the 
analysis; εα is an analysis quality factor ranging 
between 0 and 1; and α̂  is the analyzed (gridded) 
value obtained from observations for α . When the last 
term in Eq. (1) was rewritten for the air temperature of 
the model’s lowest layer as tT F

L ∂∂ / , the change in the 
surface-layer temperature in the time interval ∆t due to 
the direct nudging was used to compute the nudging 
adjustment to the turbulent sensible heat flux, F

SH  
(Wm-2), and it was written as 
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where ρ is near-surface air density, and Cp is specific 
heat of air at constant pressure. Similarly, if tq F

L ∂∂ /  is 
the rate of change of the surface-layer water vapor 
mixing ratio due to direct nudging, then the adjustment 
to the turbulent latent heat flux, F

lH (Wm-2), was 
written as 
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where L is the latent heat due to condensation. Thus, 
the adjustment to the ground/skin temperature due to 
indirect assimilation of surface-layer temperature and 
moisture data over the interval ∆t, F

gT∆ , was written in 
the form of the surface energy budget equation as 
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where Cg is the thermal capacity of the uppermost soil 
slab per unit area.   

We now discuss the main focus of the current 
work, the assimilation/adjustment of soil moisture using 
an inverse technique, for each of three LSMs: (1) the 
Carlson and Boland scheme; (2) the Noilhan and 
Planton scheme; and (3) the Chen and Dudhia scheme. 
The first LSM is a simple scheme that has been used 
over a decade by many users. The second and third 
LSMs are more sophisticated, dealing in detail with 
many soil and vegetation parameters. 
Carlson and Boland Scheme: The surface kinematic 
latent heat flux estimated using the formulation by 
Carlson and Boland (1978) in the MM5 is written as 
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where Ma is the soil moisture availability, k the von 
Karman constant, u* the friction velocity, qvs the 
saturated water vapor mixing ratio at temperature Tg, 
qva the water vapor mixing ratio of air in the lowest 
layer of the model, za the altitude of the lowest model 
level, Ka the background molecular diffusivity, zl the 
depth of the molecular layer, and Φh the nondimen–
sional stability parameter for heat. In the Carlson and 
Boland formulation, Ma is generally specified as a 
constant during a season, and is a function of land use. 
Since we already estimated the nonphysical latent heat 
fluxes that arise due to surface data assimilation ( FH l ), 
we adopt an inverse methodology using Eq. (2) to 
estimate nonphysical soil moisture availability due to 
surface data assimilation. It can be written as 
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Then, the updated soil moisture availability ( aM̂ ) can 
be written as 

F
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An equation for assimilation of soil moisture 
availability analogous to Eq. (1) can be written as:  
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In the above equation, the first term on the right side, 
( R
r

), represents variations in soil moisture availability 
due to rainfall rate, runoff, vegetation interception, and 
soil characteristics; its estimation will be addressed in a 
future paper. Substituting Eq. (3) into Eq. (4), we get 
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The nudging coefficient, GMa, is taken to be 1.286 x 
10-7, the reciprocal of the number of seconds in a 90-
day period. This small value ensures that the diurnal 
variation in Ma is insignificant. It also implies that in 
the presence of a persistent error, it will take at least 90 
days for Ma to converge into aM̂ . Note that we 

restricted the range of variability in F
aM such that 
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F
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allowing an adjustment of –100% to +100% in the soil 
moisture availability in a long-term time frame. The 
forward time integration method is used to solve the 
prediction equation (5) for every advection time step. 
Since the magnitude of the forcing term on the right-
hand side of Eq. (5) is very small, our numerical solver 
is absolutely stable even for a large advection time step 
(appropriate for mesoscale modeling).  
Noilhan and Planton Scheme: The second LSM is a 
more detailed formulation to estimate surface latent 
heat fluxes suggested by Noilhan and Planton (1989). 
This formulation uses prognostic equations for the soil 
moisture of the two soil layers and a prognostic 
equation for canopy storage. The total kinematic latent 
heat flux (Hl) into the atmosphere’s surface layer is the 
sum of bare-ground evaporation, transpiration from 
plant canopies, and evaporation from wet parts of the 
canopy (due to dew formation and/or rainfall 
interception). This can be written as  

lH  = (Eg + Etr + Er )/ρa 



where Eg , Etr , and Er are physical fluxes and ρa is the 
air density at the surface. Now we consider three 
nonphysical evaporation fluxes (similar to the above 
physical fluxes) denoted F

gE , F
trE , and F

rE . These 
three fluxes arise due to surface data assimilation of the 
surface water vapor mixing ratio. To estimate these 
nonphysical fluxes, we use the already known FH l flux 
due to surface data assimilation. The problem here is to 
link FH l with F

gE , F
trE , and F

rE . A simple solution 
to this problem is as follows. If E is the total 
evaporative flux, then  

E = (Eg + Etr + Er ) 

Now, FH l can be partitioned according to the relative 
magnitudes of the fluxes Eg , Etr , and Er . The 
nonphysical evaporation fluxes arising due to surface 
data assimilation of water vapor mixing ratio can then 
be written as  
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Finally, introducing the above terms into the original 
set of equations results in a new set of equations: 
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This way, all terms interact very smoothly with the soil 
moisture for layers 1 and 2. Note that the new terms are 
underlined in the above equations. Descriptions of all 
terms can be found in Pleim and Xiu (200x) and 
Alapaty et al. (1997). 
Chen and Dudhia Scheme: We now consider the third 
LSM, which also includes detailed vegetation-
atmosphere interactions. This scheme uses prognostic 
equations for three soil layers along with the canopy 
storage equation. The total kinematic evaporation flux 
is given by  

E = (Edir + Et1 + Et2 + Et3 + Ec) 
where Edir is direct evaporation flux from the ground 
surface; Et1 , Et2 , and Et3 are evaporation fluxes via 
canopy and roots; and Ec is evaporation flux from the 
precipitation intercepted by the canopy. As we did with 
the Noilhan and Planton scheme, we introduce 

nonphysical fluxes similar to these evaporation fluxes 
using the FH l  flux arising due to surface data 
assimilation. These can be rewritten as 
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The modified prognostic equations that include 
adjustment terms for volumetric soil moisture of the 
three soil layers and the equation for the canopy storage 
can be written as 
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Note that the new terms in the above equations are 
underlined. Descriptions of all terms can be found in 
Chen and Dudhia (2001). 

3.  MM5 SIMULATIONS AND RESULTS 
First, we tested the Carlson and Boland method 

and the Noilhan and Planton method in our 1-D model 
using the FIFE observations; these results are 
documented in Alapaty et al. (2001c). We then 
implemented our inverse technique in all three LSMs 
using the MM5V3.4 for initial testing. For each LSM, 
two sets of numerical simulations were performed for 
three days starting from July 10, 1997. In the first set, 
only the SDA technique was used (no soil moisture 
adjustment), while in the second set the inverse 
technique and the SDA technique were used. Note that 
the objectives of this work are to improve surface layer 
simulations and to introduce seasonal variation into the 
soil moisture availability. Because the results presented 
in this paper are from simulations of just three days, 



one should anticipate only minor differences between 
the simulations without and with soil moisture 
adjustment. After completing evaluation of our 
preliminary results, we will perform a seasonal 
simulation. The work described here serves as 
confirmation that the inverse technique does truly make 
small adjustments in the soil moisture. Figure 1 shows 
the temporal variation in spatially averaged soil 
moisture availability (SMA) obtained using the Carlson 
and Boland scheme with and without the inverse 
technique. Without using the inverse technique, SMA 
stays constant (during an entire season). When the 
inverse technique is used, spatially averaged SMA, in 
general, increases over time but only by a small 
amount. Over certain regions, spatially averaged SMA 
showed a decrease over time, again by a small amount. 
In general, the modeled lowest-layer mixing ratio was 
underpredicted; as a result, more moisture is added by 
the SDA technique and by the inverse technique to 
reduce the simulation errors in the surface layer. Other 
results obtained using the Noilhan and Planton scheme 
and the Chen and Dudhia scheme are being analyzed 
and compared with observations. 
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Figure 1. Temporal distribution of domain-averaged 
soil moisture availability, with the inverse technique 
(“New”) and without it (“Old”). 
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	where Cg is the thermal capacity of the uppermost soil slab per unit area.
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