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1 Introduction 
         Mountains have important influences on large- and 
mesoscale meteorological phenomena, and one of 
profound effects is on precipitation. Colle et al. (1999) 
verified the 36- and 12-km resolution Penn State/NCAR 
Mesoscale Model (MM5) precipitation forecasts from 9 
December 1996 through 30 April 1997 and NCEP's 10-km 
resolution Eta Model (Eta-10) forecasts from 7 January 
1997 through 30 April 1997 across Pacific West. It is 
found that the 12-km MM5 tends to generate too much 
precipitation along the steep windward slopes and not 
enough precipitation in the lee of major barriers. The Eta-
10 overpredicts precipitation along the windward slopes 
even more than the 12-km MM5. Cassano et al. (2001) 
used the Polar MM5 to simulate a complete annual cycle 
from April 1997 through March 1998 over the Greenland 
ice sheet. The modeled precipitation is excessive along the 
steep coastal margins with spot value in excess of 400 
cm/yr located on the southeast coast where has the steepest 
windward slope while the corresponding observed value  
is about 120 cm/yr.        
          As has been understood for decades, the horizontal 
pressure gradient force (HPGF) in terrain-following 
(including pressure-based and height-based) coordinates is 
a small difference between two large terms over steep 
slopes and its computational errors are very large. This 
problem also arises in the nonhydrostatic model MM5 
formulated in terms of pressure perturbation relative to a 
hydrostatic reference state. Dempsay and Davis (1998) 
gave an error analysis of the MM5's HPGF schemes, and 
found that the standard HPGF scheme in MM5 can 
produce significant velocity errors above steep terrain. 
Some alternative schemes may reduce, but cannot 
eliminate, these errors. Mesinger (1984) developed the 
step-mountain approach of the Eta-coordinate system to 
calculate the pressure gradient in a region of complex 
terrain. However, the piecewise constant representation of 
the terrain is only first-order accurate in mathematics. 
Based on Z. Janjic (1998), Colle et al. (1999) pointed out 
that the Eta-10 produces excessive flow blocking upwind 
of major barriers and results in too much upward motion 
and precipitation well upwind of the orographic crest. 
Furthermore, physical parameterizations in the planetary 
boundary layer are straightforward with the terrain-
following coordinates. At present, many global and 
limited-area models, for example, the WRF model, still 
use terrain-follwing coordinates.  
      Recently Chen and Bromwich (1999, hereafter referred 
to as CB99) proposed a new method to compute the HPGF 
in σ-coordinates and this method uses terrain-following 
coordinates. The horizontal wind can be separated into its 
irrotational and rotational parts in a limited region (Chen 
and Kuo, 1992). The HPGF G in σ-coordinates is also a 

horizontal vector and can also be separated into its 
irrotational and rotational components in a limited region 
and expressed by 
            G = -∇Φe - k × ∇η             (1)             
where Φe  and η are referred to as equivalent geopotential 
and geo-streamfunction, respectively.  
       In the ordinary �-coordinates, �=p/p*(x,y,t), where 
p*(x,y,t) is the earth's surface pressure, the HPGF G of a 
hydrostatic model can be expressed by 
   G = - ∇� (x,y,�,t)-RT∇ lnp* (x,y,t)        (2) 
 where �(x,y,�,t) is the geopotential. In this hydrostatic 
model, the equivalent geopotential �e and geo-
streamfunction η in limited region are derived from the 
corresponding Poisson equations. In a nonhydrostatic model, 
for examples, the MM5 or WRF, the HPGF has its specific 
expression, from which the corresponding Poisson equations 
and boundary conditions can also be derived and solved. 
        Comparing �e(x,y,�,t) with �(x,y,p,t), both -
∇�e(x,y,�,t) and -∇�(x,y,p,t) are the same irrotational part 
of the HPGF, but they are in p- and �-coordinates, 
respectively. The HPGF in p-coordinates, ∇�(x,y,p,t), has 
only the irrotational part. The rotational part can only be 
computed through the lower boundary condition at p=p* 
(x,y,t) or z = H* (x,y) implicitly. In general, the rotational 
part of the HPGF is much smaller than its irrotational part. It 
has been shown in Table 1 of CB99 that the absolute value 
of the rotational part in �-coordinates is very small 
comparing to the irrotational part over the Greenland 
including steep slopes. Thus, although there are two terms in 
the expression (1) of the HPGF, the small difference 
between two large terms over steep slopes is eliminated 
automatically. 
       Because -∇�(x,y,p,t) and -∇�e(x,y,�,t) are the same 
irrotational part of the HPGF, the equivalent geopotential 
�e(x,y,�,t) in �-coordinates can be used in the same way as 
�(x,y,p,t) is used in p-coordinates. The equivalent 
geopotential �e can be used in synoptic analysis on constant 
� surface, and several examples of the equivalent 
geopotential analysis at �=0.995 have been shown in CB99. 
Many artificial anomalous systems over the Tibetan Plateau 
and Greenland in the sea-level pressure maps caused by 
pressure reduction to the sea level are all removed in the 
analyses on the constant �-surface at �=0.995, and the 
behaviors of weather systems over the surface of high 
mountain regions are shown clearly in the constant �=0.995 
surface analyses. The analyses in CB99 show that the 
geostrophic relation �e=f0� between the equivalent 
geopotential and rotational wind is approximately satisfied 
on the constant � surface for the synoptic scale motions, and 
it is the same as that �= f0� on the isobaric surface. 
2. The perturbation method and the equations of the equi 
 valent geopotential and geo-streamfunction for the MM5 

bruyerec
                      Thirteenth PSU/NCAR Mesoscale Model Users' Workshop                                                             35



a. Perturbation method used in the HPGF computation 
     The pressure in the MM5 in z-coordinates is denoted 
by          p (x, y, z, t) = p0(z) + p' (x, y, z, t)  
where p0(z) and p'(x, y, z, t) are the pressure of a 
hydrostatic balanced reference state and its perturbation, 
respectively. In the WRF model, the dynamic equations 
are different from the MM5’s, but a similar perturbation 
method is also used. Because the hydro balanced reference 
state is artificially given, the most of p' is the hydrostatic 
pressure rather than the dynamic pressure if the dynamic 
pressure is defined as the difference between the pressure 
and hydrostatic pressure. The vertical coordinate � in the 
MM5 is defined by 
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where p*(x,y)=ps (x, y) - pt .  Here ps(x, y) is the stationary 
surface pressure and determined from a given temperature 
profile and terrain height and pt is top pressure. The 
pressure in �-coordinates is given by 
          p = pr0 + p’ = p* � + p t + p’ 
where pr0(x,y,�) is expressed by 
         pr0 = p – p’ = p* � + p t  
and p’= p -pr0.  They are the stationary and non-stationary 
parts of the pressure  in �-coordinates, respectively.  
     The x- and y-components of the momentum equations 
in MM5 are denoted by 
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 where Fx and Fy are advection and other terms.  The 
HPGF in (3) and (4) is expressed by 
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        Now we use the distribution of p' (x, y, �, t) on the 
constant � surfaces to check qualitatively whether or not 
the sum of the two terms on the right hand side of (1a) 
over steep slopes is a small difference between two large 
terms. If so, the gredient of p' must be extremely large 
over steep slopes. In p-coordinates, the distribution of 
geopotenyial is closely related to distribution of synoptic 
and mesoscale weather systems and has no relation to the 
topography even over very steep slopes.  In the �-
coordinates, the distribution of �(x,y,�,t)or lnp*(x,y,t) 
represent not only the features of the weather systems but 
also the effects from topography. The steeper the slopes 
are, the larger the horizontal gradient of � and or lnp* 
become. Thus, the gredient of � is extremely large over 
steep slopes.  This characteristic on the constant � surfaces 
can also be used to study the two terms on the right hand 
side of (1a). Figures 1(a) and 1(b) show the distribution of 
p'(x, y, �, t) on the constant � =0.9975 surface at 0000 
UTC 26 and at 1200 UTC 27 January 1999, respectively. 
In Fig. 1(a), most of the topographic effects are removed, 

and the horizontal gradient of p' is not very large over steep 
slopes. However, after 36 hours, the horizontal gradient of p' 
is particularly large along the east coast of Greenland. At 
this time, the computation of the HPGF must have large 
errors based on the two terms on the right hand side of (1a) 
in this coastal region. This is because the separation method 
uses a given temperature profile T0(p). If the deviation T-
T0(p) is very small, the perturbation method may reduce 
some computation errors of the HPGF over mountainous 
regions. If the deviation T-T0(p) is very large over steep 
slopes, the computation of the HPGF is still a small 
difference between two large terms on the right hand side of 
(1a) in this region. The above results state that the method of 
separating the HPGF into a hydrostatic balanced reference 
state and its perturbation in terrain-following coordinates 
cannot guarantee to reduce errors of the HPGF computation 
over steep slopes. However, if the equivalent geopotential 
and geo-streamfunction are used in the computation of the 
HPGF, no any T0(p) is used. The figure 1(c) shows the 
distribution of the equivalent geopotential, (of which the 
computation method is shown in the following subsection), 
at the same time of Fig. 1(b).  It is seen that the Φe is very 
smooth over steep slopes. The errors of the HPGF 
computation can be solved completely by using the Φe.   
b. The equations of the inner and harmonic parts of the  
    equivalent geopotential and geo-streamfunction for the   
    HPGF of the MM5 
       If the HPGF (1a) is separated into the rotational and 
irrotational parts, the equivalent geopotential �e and the geo-
streamfunction � satisfy the Poisson equations 
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Over the globe, the above Poisson equations are easily 
solved without lateral boundary conditions. If they are 
solved in a limited region, the boundary condition is 
expressed by 
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where s  and  n  are tangential and normal unit vectors, 
respectively, and s and n are distances along and normal to 
the boundary. In this case,  the equivalent geopotential and  
geo-streamfunction are derived by solving Poisson equations 
(5) and (6) with the coupled boundary conditions (7) and (8). 
      Using the harmonic-sine series, the solutions for �e and 
�  can be separated into their inner and harmonic parts as 
       �e = � ei + � eh ,       � = � i + � h        (9) 
where � eh , � h  and  � ei , � i  are the harmonic and inner 
parts of the equivalent geopotential and the geo-
streamfunction, respectively. The inner parts, � ei  and  �i, 
satisfy Poisson equations (5) and (6) with zero Dirichlet 
boundary value. The solutions for �ei and �i can be easily 
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derived by using a double Fourier sine series. The internal 
HPGF is then computed by 
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where GxI  and GyI are the components of the internal 
HPGF. In a limited region, the difference between the 
HPGF and internal HPGF is denoted by 
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and  GxE  and GyE  are referred to as the components of the 
external HPGF.  Utilizing (1), (9) and (10), the external 
HPGF can be expressed by the harmonic parts of the 
equivalent geopotential and the geo-streamfunction as 
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        The harmonic parts of the equivalent geopotential and 
the geo-streamfunction satisfy the Laplace equations 
    )14(0,0 22 =∇=∇ heh ηφ  

Thus, the external HPGF is not only non-divergent but 
also irrotational in a limited region. The coupled boundary 
conditions (7) and (8) for solving Laplace equations (14) 
of the harmonic parts in region R become 
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where EtG  and EnG are the tangential and normal 
components of the external HPGF at the boundary. 
3 Precipitation over Greenland modeled by the MM5  
  with  ΦΦΦΦe  
           Now we will show a synoptic example, in which 
there is a cyclone moving across the southern part of 
Greenland. The southeast coast is in the windward slopes, 
while the west coast of the central and southern parts is in 
the lee side. The 36 hr predictions of the sea-level pressure 
(SLP) and Φei at σ=0.9975 (at 1200 UTC 27 January 
1999) by the models with Φe are given in Figs. 2a and 2b, 
respectively. It is seen that the weather systems over 
Greenland are be shown more clearly and smoothly on the 
constant σ-surfaces than the SLP maps. The 36 hr 
predictions of the precipitation by the models without and 
with Φe are given (omitted) and their distribution patterns 
look like the same.  Figure 2c shows the difference of the 
36 hr precipitation prediction by the models with and 
without Φe,  P(with Φe) – P(without Φe). It is seen from 
Fig. 2c that the negative areas are located primarily in the 
windward slopes of the southeast coast of Greenland. It 
means that the modeled precipitation with Φe decreases in 
the windward slopes. The positive areas are primarily 
located in the lee side of the west coast of the central and 
southern parts. The modeled precipitation with Φe 

increases in this region. Thus, Fig. 2c shows that the 
precipitation prediction errors of the MM5 found by Colle et 
al. (1999) and Cassano et al. (2001) can be reduced by using 
Φe in the model without any other changes.  
 4. Conclusion 
       (1) The HPGF in σ-coordinates can be separated into its 
rotational and irrotational parts, expressed by the equivalent 
geopotenial and geo-streamfunction, respectively. This 
separation method can be used in the HPGF computation in 
a dynamic model and has the important physical basis. The 
Φe is computed from time dependent T(x,y,�,t), while p’ is 
computed from a given T0(p). The Φe is always very smooth 
over steep slopes but p’ cannot. Thus, the equivalent 
geopotential is much better than p’. 
       (2) If this method is used in the MM5 instead of its 
original HPGF scheme over Greenland, the simulated 
precipitation by the model with Φe decreases in the 
windward slopes of the southeast coast, but increases in lee 
side. This method can improve the precipitation prediction 
of the MM5 near the steep slopes. 
       (3) The equivalent geopotenial can be used in synoptic 
analysis and model outputs directly on constant σ-surfaces, 
and it is in the same way as Φ(x, y, p, t) is used in p-
coordinates. The model ontputs are not necessary to be 
transferred to p-coordinates and they can be examined 
directly in σ-coordinates. By this method, weather systems 
over high mountain regions can be shown clearly and 
correctly on the constant σ-surfaces near the earth’s surface.  
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Fig.1  a. The pressure perturbation p’ at 0000 UTC 26 January 1999 at �=0.9975 (90 km grid length). b.  The pressure 
perturbation p’ at 1200 UTC 27 January 1999 at �=0.9975 (90 km grid length). c. The inner part of the equivalent 
geopotential at 1200 UTC 27 January 1999 at �=0.9975.  
 
 

   
 
Fig.2 a. The 36hr prediction of sea level pressure ( at 1200 UTC January 1999) by the model with �e.  b. The equivalent 
geopotential at 0000 UTC 27 January 1999 at �=0.9975. c. The difference of the 36hr precipitation prediction by the 
models with �e and without �e, i.e., P(with �e) – P(without �e). 
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