The maximum intensity of hurricanes in axisymmetric numerical models

George H. Bryan and Richard Rotunno

NCAR / MMM

28th Conference on Hurricanes and Tropical Meteorology

Orlando, FL 2 May 2008

Output from an axisymmetric numerical model

yellow = cloud orange = rain contours = v (m s⁻¹)

Methodology

- Same approach as Rotunno and Emanuel (1987) (hereafter RE87)
- A single specified environment
 - Same sounding as RE87
 - $-SST = 26 \, ^{\circ}C$
- A mass- and energy-conserving model
 - $-\Delta r = 1 \text{ km}, \ \Delta z = 250 \text{ m}$
 - see Bryan and Rotunno (2008b)

Outline

- 1. Unresolved turbulence
- 2. Fall velocity of liquid water (V_t)
- 3. Comparison to E-MPI (the analytical maximum intensity derived by Emanuel)

1) The turbulence parameterization

Turbulence intensity is proportional to:

- a specified horizontal length scale (l_h)
- a specified vertical length scale (l_v)

NOTE: There is no theoretical guidance for how to set l_h and l_v in axisymmetric numerical models!

Sensitivity to l_h : v (m s⁻¹)

Sensitivity to turbulence length scales

Unnatural structures as l_v changes:

Sensitivity to l_h :

For largest l_v : PBL depths > 2 km

Strong frontogenesis in eyewall

For smallest l_v : |u| > 40 m s⁻¹ Turbulence limits frontal collapse © 2008 George H. Bryan, NCAR/MMM

2) Sensitivity to terminal fall velocity of liquid (V_t)

(RE87 default: $V_t = 7 \text{ m s}^{-1}$)

θ_e (formulated appropriately) and trajectory

shaded: θ_e black dot: location of v_{max} black line: trajectory

reversible configuration:

 θ_e^r is shaded

essentially pseudoadiabatic configuration:

 θ_e^p is shaded

Evaluation of the "high entropy reservoir"

configuration:

default

no surface fluxes in eye:

3) V_{max} compared to E-MPI

(using same method as PM03)

Moist slantwise neutrality

- PBL Model

– Gradient-wind and hydrostatic balance

- Moist slantwise neutrality
 - → does not explain discrepancy
 - → M and s are conserved along streamlines
- PBL Model
- Gradient-wind and hydrostatic balance

- Moist slantwise neutrality
 - → does not explain discrepancy
 - → M and s are conserved along streamlines
- PBL Model
 - → does not explain discrepancy
 - \rightarrow ds/dM \approx - τ_s/τ_m
- Gradient-wind and hydrostatic balance

- Moist slantwise neutrality
 - → does not explain discrepancy
 - → M and s are conserved along streamlines
- PBL Model
 - → does not explain discrepancy
 - \rightarrow ds/dM \approx - τ_s/τ_m
- Gradient-wind and hydrostatic balance
 - → This *is* the primary source of the discrepancy
 - → The problem seems to be: how to estimate the impact of this assumption

MPI+

- The approach was established by D. Lilly in the 1970s (manuscript unpublished)
 - Integrate conservation equations over a control volume enclosing eyewall
- Summarized recently by Emanuel (2004)
 - see also Bister and Emanuel (1998)
- Allowing for unbalanced flow, we find:

$$V_{\text{max}}^2 = -\left(\left(T_b - T_0 \right) M_b \frac{ds}{dM} \right) - \left(\frac{M_b \eta_b}{\rho_b r_b} \frac{d\psi}{dM} \right)$$

E-MPI contribution from unbalanced flow

MPI+

- The approach was established by D. Lilly in the 1970s (manuscript unpublished)
 - Integrate conservation equations over a control volume enclosing eyewall
- Summarized recently by Emanuel (2004)
 - see also Bister and Emanuel (1998)
- Allowing for unbalanced flow, we find:

$$V_{\text{max}}^2 = -\left(T_b - T_0\right) M_b \frac{ds}{dM} - \frac{M_b \eta_b}{\rho_b r_b} \frac{d\psi}{dM}$$

.... rearrange

$$MPI^{+} = (E-MPI^{2} + r_{m}\eta_{b}w_{b})^{1/2}$$

Evaluation of MPI+

Conclusions

- Maximum intensity occurs for:
 - inviscid flow (in radial direction)
 - pseudoadiabatic thermodynamics $(V_t \rightarrow \infty)$
- Explanation for E-MPI < v_{max}:
 - slantwise neutrality is not the source of the discrepancy
 - PBL closure is not the source of the discrepancy
 - gradient-wind and hydrostatic balance assumption is the source of the discrepancy
- MPI⁺
 - A term associated with unbalanced flow explains the ~10-40% weak bias of E-MPI

email: gbryan@ucar.edu

web: http://www.mmm.ucar.edu/people/bryan/