

Dissipative Heating in the WRF Model

George Bryan NCAR

WRF Users' Workshop 16 June 2015

Dissipation

• Dissipation: the removal of kinetic energy in a fluid due to viscosity (e.g., Batchelor 1967)

$$\frac{\partial k}{\partial t} = \underbrace{\left(\frac{\partial (u\tau_{xz})}{\partial z} + \frac{\partial (v\tau_{yz})}{\partial z}\right)}_{\text{diffusion}} - \underbrace{\left(\tau_{xz}\frac{\partial u}{\partial z} + \tau_{yz}\frac{\partial v}{\partial z}\right)}_{\text{dissipation }(\varepsilon)}$$

Dissipation

• Dissipation: the removal of kinetic energy in a fluid due to viscosity (e.g., Batchelor 1967)

velocity equations: "dot" with velocity: kinetic-energy equation: $\frac{\partial u}{\partial t} = \frac{\partial \tau_{xz}}{\partial z} \qquad \qquad u \times \left[\frac{\partial u}{\partial t} = \frac{\partial \tau_{xz}}{\partial z} \right] \qquad \qquad \frac{\partial k}{\partial t} = u \frac{\partial \tau_{xz}}{\partial z} + v \frac{\partial \tau_{yz}}{\partial z} \\ v \times \left[\frac{\partial v}{\partial t} = \frac{\partial v}{\partial z} \right] \qquad \qquad k \equiv (u^2 + v^2)/2$ rearrange RHS:

$$\frac{\partial k}{\partial t} = \underbrace{\left(\frac{\partial (u\tau_{xz})}{\partial z} + \frac{\partial (v\tau_{yz})}{\partial z}\right)}_{\text{diffusion}} - \underbrace{\left(\tau_{xz}\frac{\partial u}{\partial z} + \tau_{yz}\frac{\partial v}{\partial z}\right)}_{\text{dissipation }(\varepsilon)}$$

IF: THEN:
$$\tau_{xz} = K(\partial u/\partial z)$$

$$\varepsilon = K \left[\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right]$$
 In this case, ε is positive-definite (thus, removes k from fluid)

Dissipative Heating

Dissipative Heating is the associated increase in internal energy:

$$\frac{\partial k}{\partial t} = \dots - \underbrace{\varepsilon}_{\text{dissipation}}$$

$$\frac{\partial T}{\partial t} = \dots + \underbrace{\frac{\varepsilon}{c_{\nu}}}_{\text{dissipative heating}}$$

Note: total energy equation

$$\frac{\partial E_t}{\partial t} = \frac{\partial k}{\partial t} + c_v \frac{\partial T}{\partial t}$$
$$= \dots - \varepsilon + \varepsilon$$

- Things to remember about dissipative heating:
 - It is required for conservation of total energy (hence, it is typically included in Global Climate Models)
 - It is related to viscous modification of flow (u,v)

Dissipative Heating in NWP Models

Dissipative Heating seems simple:

$$\frac{\partial T}{\partial t} = \dots + \underbrace{\frac{\varepsilon}{c_v}}_{\text{dissipative heating}}$$

- But dissipative heating is not included in many NWP models
 - It's complicated! There can be several sources of dissipation (PBL, advection, upper-level damper, etc)
 - It is usually considered to be small in magnitude ...

Dissipative Heating in Hurricanes

- Bister and Emanuel (1998, Meteor. Atmos. Phys.) found:
 - Dissipative heating can be quite large (>100 K day⁻¹) in hurricanes
 - Dissipative heating can increase maximum hurricane intensity (MPI) by 20%

- Other modeling studies found similar results:
 - Zhang and Altshuler (1999, MWR): MM5, Hurricane Andrew (1992): ~10% increase in V_{max}
 - Jin et al. (2007, WAF): COAMPS, Hurricane Isabel (2003): up to 20% increase in V_{max}

Dissipative Heating in the WRF Model

- Dissipative Heating is included in two physical parameterization schemes in WRF:
 - MM5/WRF surface layer scheme (sf_sfclay_physics = 1) [only if isftcflx ≥ 1]
 - GFS PBL scheme (bl_pbl_physics = 3) [used for HWRF]
- But, both formulations are unusual ...

Dissipative Heating for sf_sfclay_physics = 1

- For sf_sfclay_physics = 1 (the "MM5-WRF Monin-Obhukov scheme";
 more recently, the Revised MM5/WRF scheme (Jimenez et al., 2012):
- a portion of dissipative heating was included in WRF for, but ...
 - Only at the lowest model level
 - Only over water
 - Only for isftcflx \ge 1
 - But it was commented-out in WRF 3.6.1

Dissipative Heating for sf_sfclay_physics = 1

- The heating tendency is (was) added to the surface sensible heat flux
 - Perhaps convenient, but....
 - ... sensible heat flux (temperature flux) and dissipative heating (viscous flow modification) are two different physical processes

sensible heat flux

extra term to account for dissipative heating

u* is surface friction velocity U_1 is windspeed at lowest model level (z = $\Delta z/2$)

Dissipative Heating for sf_sfclay_physics = 1

- The heating tendency is (was) added to the surface sensible heat flux
 - Perhaps convenient, but....
 - ... sensible heat flux (temperature flux) and dissipative heating (viscous flow modification) are two different physical processes

sensible heat flux

$$F = H + \rho u^* u^* U_1$$

extra term to account for dissipative heating

u* is surface friction velocity U_1 is windspeed at lowest model level (z = $\Delta z/2$)

$$\frac{\partial k}{\partial t} = \dots \underbrace{\left(\tau_{xz} \frac{\partial u}{\partial z}\right)}_{\text{dissipation } (\varepsilon)}$$

$$\frac{\partial \theta}{\partial t} = -\frac{1}{(\rho c_p \pi)} \frac{\partial F}{\partial z}$$

$$\frac{\partial \theta}{\partial t} = -\frac{1}{(\rho c_p \pi)} \frac{P_{\Delta} - F_0}{\Delta z}$$

$$= +\frac{1}{(\rho c_p \pi)} \frac{F_0}{\Delta z}$$

$$= +\frac{1}{(c_p \pi)} u^* u^* \frac{U_1}{\Delta z}$$

surface stress magn. (τ)

Shear near the surface

- GFS PBL: included at every grid point (not just lowest model level)
- But, formulated incorrectly: uses both terms in kinetic-energy equation

$$\frac{\partial k}{\partial t} = u \frac{\partial \tau_{xz}}{\partial z} + v \frac{\partial \tau_{yz}}{\partial z}$$

$$= \underbrace{\left(\frac{\partial (u\tau_{xz})}{\partial z} + \frac{\partial (v\tau_{yz})}{\partial z}\right) - \left(\tau_{xz} \frac{\partial u}{\partial z} + \tau_{yz} \frac{\partial v}{\partial z}\right)}_{\text{dissipation } (\varepsilon)}$$

The entire RHS of this equation is used for calculation of d.h. in HWRF

- GFS PBL: included at every grid point (not just lowest model level)
- But, formulated incorrectly: uses both terms in kinetic-energy equation

$$\frac{\partial k}{\partial t} = u \frac{\partial \tau_{xz}}{\partial z} + v \frac{\partial \tau_{yz}}{\partial z} \\
= \underbrace{\left(\frac{\partial (u\tau_{xz})}{\partial z} + \frac{\partial (v\tau_{yz})}{\partial z}\right)}_{\text{diffusion}} - \underbrace{\left(\tau_{xz} \frac{\partial u}{\partial z} + \tau_{yz} \frac{\partial v}{\partial z}\right)}_{\text{dissipation } (\varepsilon)}$$

- GFS PBL: included at every grid point (not just lowest model level)
- But, formulated incorrectly: uses both terms in kinetic-energy equation

$$\frac{\partial k}{\partial t} = u \frac{\partial \tau_{xz}}{\partial z} + v \frac{\partial \tau_{yz}}{\partial z} \\
= \underbrace{\left(\frac{\partial (u\tau_{xz})}{\partial z} + \frac{\partial (v\tau_{yz})}{\partial z}\right)}_{\text{diffusion}} - \underbrace{\left(\tau_{xz} \frac{\partial u}{\partial z} + \tau_{yz} \frac{\partial v}{\partial z}\right)}_{\text{dissipation } (\varepsilon)}$$

- GFS PBL: included at every grid point (not just lowest model level)
- But, formulated incorrectly: uses both terms in kinetic-energy equation

$$\frac{\partial k}{\partial t} = u \frac{\partial \tau_{xz}}{\partial z} + v \frac{\partial \tau_{yz}}{\partial z} \\
= \underbrace{\left(\frac{\partial (u\tau_{xz})}{\partial z} + \frac{\partial (v\tau_{yz})}{\partial z}\right)}_{\text{diffusion}} - \underbrace{\left(\tau_{xz} \frac{\partial u}{\partial z} + \tau_{yz} \frac{\partial v}{\partial z}\right)}_{\text{dissipation } (\varepsilon)}$$

This formulation can produce negative tendencies (i.e., cooling)!

Dissipation from PBL schemes

• An alternative method (if stress terms, e.g., τ_{xz} and τ_{yz} , are not known):

$$\frac{\partial u}{\partial t} = \frac{\partial \tau}{\partial z}$$

- Assume stress is zero at model top, integrate downward to get $\tau(z)$
- Then, using $\tau(z)$ and u(z), calculate ε:

$$\frac{\partial k}{\partial t} = \dots \underbrace{\left(\tau_{xz} \frac{\partial u}{\partial z}\right)}_{\text{dissipation } (\varepsilon)}$$

- About 10 lines of code
- A caveat ... perhaps not applicable to schemes with counter-gradient fluxes, backscatter, etc.

Simulations

- Under development / testing: a generalized code for WRF
 - Uses u_{*}, z₀ near surface
 - Uses PBL tendencies to retrieve τ
 - Note: PBL schemes with TKE equations typically calculate arepsilon
- Here: axisymmetric model simulations
 - Setup 1: MM5-WRF surface layer + YSU PBL (ARW)
 - Setup 2: GFDL surface layer + GFS PBL (HWRF)
 - TC test case setup: SST = 28 C, $f = 5x10^{-5} s^{-1}$ (20 N), avg. tropical sounding
 - $\Delta x = 3$ km, 62 vertical levels ($\Delta z = 20$ m near surface)

- Questions:
 - What is magnitude of dissipative heating with WRF physics?
 - Is it sufficient to only calculate dissipative heating at lowest model level?

Setup 1 (ARW physics)

Setup 2 (HWRF physics)

Summary

- Proposed modifications to dissipative heating (d.h.) in WRF:
 - For sfclay_physics=1: separate d.h. calculation from surface heat flux
 - Also: include d.h. over land
 - Add a namelist option (separate d.h. calculation from hurricane-windspeed flux mods)
 - For pbl_physics=3 (HWRF): isolate dissipation (i.e., exclude diffusion)
- In idealized hurricane simulations with WRF physics:
 - Heating rates of nearly 100 K/day near surface;
 5 K/day above surface
 - Increase maximum winds by 10% (sfclay only) or 15% (sfclay + PBL)