
Parallelization in CM1

George Bryan
NCAR

Presentation at NCSA
2 December 2009

Frequently Asked Questions:
• What is CM1?

– A 3d nonhydrostatic atmospheric model developed for idealized
modeling of clouds/cloud-systems at LES scales (Δ ≈ 10-100 m)

– Specifically designed for distributed-memory computing systems

Bryan (2002) Wakimoto et al. (1996)

Frequently Asked Questions:

• Why CM1?
• (or, why not WRF, ARPS?)

– CM1 was “born” in the late
90s at Penn State as a
modified version of MM5
(fifth-generation mesoscale
model → first-generation
cloud model)

– Primary solver is similar to
WRF (ARW) … RK3 split-
explicit, 5th/6th-order
advection … but uses a
Cartesian height coordinate

Bryan (2002)

Frequently Asked Questions:
• What makes CM1 different from other models?

– Energy conservation: considers heat content of liquid/solid water,
includes dissipative heating (as of cm1r12)

– Five pressure solvers: (incompressible, anelastic, 3 compressible)

Bryan and Rotunno (2009, MWR) www.mmm.ucar.edu/people/bryan/cm1

• How fast is CM1?
– Depends:
– With no terrain, it’s very fast (roughly twice as fast as ARW)
– Using energy-conserving equations adds 5-15%

• What parallelization options are available in CM1?
– Shared memory parallelization with OpenMP is available in CM1

…. but hasn’t been developed much
– Distributed memory parallelization using MPI … focus of this talk
– Can do hybrid OpenMP / MPI

Frequently Asked Questions:

Distributed-memory parallelization in CM1
• 2d domain decomposition:

(example using 12 processors)

myid = 0 myid = 1 myid = 2 myid = 3

myid = 4 myid = 5 myid = 6 myid = 7

myid = 8 myid = 9 myid = 10 myid = 11

Distributed-memory parallelization in CM1
• 2d domain decomposition:

(example using 12 processors)

myid = 0 myid = 1 myid = 2 myid = 3

myid = 4 myid = 5 myid = 6 myid = 7

myi = 1 myi = 2 myi = 3 myi = 4

myj = 1

myj = 2

myid = 8 myid = 9 myid = 10 myid = 11myj = 3

subdomain (tile)

subroutine comm_1…

subroutine comm_3…

subroutine getcorner…

MPI strategy
• Mostly non-blocking communications

1. Call mpi_isend / mpi_irecv ….
2. Go do some other work for awhile
3. When data are needed … Call mpi_wait

(goal is to separate steps 1 and 3 as much as possible)

MPI strategy
• Mostly non-blocking communications

1. Call mpi_isend / mpi_irecv ….
2. Go do some other work for awhile
3. When data are needed … Call mpi_wait

(goal is to separate steps 1 and 3 as much as possible)

e.g., calculate new θ, start comm_3s ….

MPI strategy
• Mostly non-blocking communications

1. Call mpi_isend / mpi_irecv ….
2. Go do some other work for awhile
3. When data are needed … Call mpi_wait

(goal is to separate steps 1 and 3 as much as possible)

e.g., calculate new θ, start comm_3s …. … do other calculations, then finish comm_3s

Communications on small (acoustic) steps

pp pu u

Communications on small (acoustic) steps

pp pu u

myid = 4 myid = 5

Communications on small (acoustic) steps

pp pu u

myid = 4 myid = 5

this “u” point is predicted on both subdomains

there are ni “p” points on each subdomain

there are ni+1 “u” points on each subdomain

only “p” data needs to
be communicated!

NCAR’s bluefire: IBM Power 575, 4.7 GHz Power6 processors,
infiniband switch, xlf compiler

3d hurricane simulation, 480 × 480 × 100 grid points, 3,600 time steps

SP = time using 1 processor
 / time using N processors

NCAR’s bluefire: 1-64 processors
(bluefire has 32 processors per node)

3d hurricane simulation, 480 × 480 × 50 grid points, 600 time steps

green = SMT

red = standard

NCAR’s bluefire: 1-64 processors
(bluefire has 32 processors per node)

3d hurricane simulation, 480 × 480 × 50 grid points, 600 time steps

SHARCNET’s saw: 2,688 processors, InfiniBand interconnect
8 processors per node, Intel Xeon 2.83 GHz, Intel fortran compiler

3d hurricane simulation, 480 × 480 × 100 grid points, 600 time steps

