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I. INTRODUCTION:
Large snowpack temperature gradients (on the order of 10◦C m−1) cause water vapor to migrate upward from the
(warm) bottom of the snowpack and are a critical factor controlling the formation of depth hoar and the metamor-
phosis of the snow crystal structure (LaChapelle, 1992). The tranisition from a “cold” snowpack to an isothermal
snowpack is a crucial event in the hydrologic cycle of the sub-alpine forest ecosystem as liquid water becomes avail-
able for trees which initiates large-scale photosynthetic uptake of CO2 (Monson et al., 2005). In our study, four years
of snowpack temperature data from the Niwot Ridge Ameriflux site were examined with respect to atmospheric con-
ditions, radiation, and the turbulent surface fluxes of heat and water vapor. The average canopy height of the forest is
around 11 m with a tree density on the order of 0.4 trees m−2. Atmospheric measurements were provided by the Uni-
versity of Colorado (CU) Ameriflux 26-m tower and also from the LTER “C1” site (Figure 1). The snow temperature
probes consisted of polycarbonate rods embedded with thermistors every 10cm (model TP101 probes, Measurement
Research Corporation (MRC), Gig Harbor, WA, 98335). Soil temperature and soil moisture were also measured. In
the winter of 2004, snow density profiles were determined weekly by manual snow pits. The primary objective of our
study is to examine the cause of intense snowpack warm-up events described herein.
Typical of continental mountain locations, Niwot Ridge experiences several cold-air “events” each winter when the night-time air temperature drops to -20◦C. De-
pending primarily on the snowpack depth these cold air events may (or may not) affect the soil temperature beneath the snowpack (Figure 2). The winters of 2002-3
and 2003-4 both experienced relatively shallow snowpacks (in Nov/Dec) which exposed the soils at both C1 and in the forest to cold air temperatures and allowed the
soil temperature at 5-cm depth to get as cold as -7◦C. In contrast, the winter of 2004-5 experienced heavy snowfall in early December that provided insulation of the
soils at both C1 and near the CU tower throughout the entire winter. We should note that the C1 soil sensors are in a location that is more exposed than the “forest” soil
sensors near the CU tower. This difference in exposure results in snow-free conditions at C1 anywhere from a few weeks to a month earlier than complete ablation at
the CU tower (Fig. 2c). However, the onset of snowmelt, indicated by a change in soil moisture, appears to occur with similar timing at both locations (Fig. 2d). (also
note that the snowdepth sensor and soil temperature sensor at C1 are not co-located which explains why the diurnal cycle at C1 appears in the soil temperature prior to
the date of complete snow ablation.) During the transition from winter to spring, the intensity of incoming radiation increases, days become longer, and air

Figure 1: Location of the CU Ameriflux Tower and MRS “C1”.
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Figure 2: The winter-long time series of (a) cumulative precipitation, (b) snow depth, (c) soil temperature Tsoil, and (d) soil moisture qsoil from C1. For Tsoil and qsoil the blue lines are from sensors near

the CU tower (the CU tower qsoil data have been shifted to overlay the C1 data). Snow depths that are shown as symbols are from manual snow-pits or marked poles near CU tower.
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Figure 3: Time series of (top panel) snow depth, snowpack temperature, atmospheric pressure, air temperature Ta, specific humidity q, and (bottom panel) wind speed WS from Feb 1 to early May for

2003-2006 (a-d). For Ta and WS the mean daytime (11:00-15:00 MST) and night-time (23:00-3:00 MST) values are shown. Dashed vertical lines indicate significant snowpack warming events.
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temperatures start to increase. These increased energy inputs lead to a snowpack with a temperature profile that is
at or near freezing (the so-called “equitemperature” (ET) snowpack) and the phase transition of snow crystals into
water begins. Any additional energy inputs after the snowpack has become ET are used to melt snow. From our
snowpack observations, the transition from a cold, temperature-gradient (TG) snowpack to an ET snowpack can
occur very abruptly (on a time scale of hours). If it is early in the season, the snowpack will (sometimes) revert
back to a TG snowpack. Some of the transition periods to an ET snowpack are marked with vertical dashed lines in
Fig. 3. Based on these data it appears that one common feature of most of the abrupt transitions to an ET snowpack
is having air temperatures above freezing and unseasonally moist air (specific humidity on the order of 4 g kg−1).
Based on data from a single tower it is difficult to assess if the air humidity is increasing due to the melting of the
snow or if the humid air is advected into the area as part of a larger-scale weather system. However, humid, warm
air has the ability to condense on snow surfaces which releases latent heat energy into the snowpack and can initiate
snow melt. This phenomena is known to be one of the most efficient processes for melting snow (Doesken and
Judson, 1997). Our discussion will focus on one 10-day period in 2006 where a sudden warm-up of the snowpack
occurred (this event is shown in Fig. 3d and Figs. 4 and 5)

II. SNOWPACK HEAT BUDGET:
The energy balance of snowpacks has been well studied (Cline, 1997; Hayashi et al., 2005). For a snowpack of
depth h, the energy inputs that affect changes in snow temperature (Ts) can be written as,∫ h

0
ρs Cs

∂Ts

∂t
dz + Qm = Rn + Qsoil + Qe + Qh + Qp

Time-Variation of Melt/Freeze Net Soil Latent Sensible Precip

Snow Temperature Energy Radiation Heat Flux Heat Flux Heat Flux Energy

where the terms on the left are internal changes to the snowpack energy (ρs and Cs are the snow density and heat
capacity, respectively) and the terms on the right side are primarily surface phenomena. A positive sign indicates
energy added to the snowpack and a negative sign is energy extracted from the snowpack. All terms have units
W m−2. Next, we now consider some of these terms over our 10-day period of interest (Figs. 4 and 5). Radiative
transfer in a forest is a complex process and we won’t consider Rn except to note that most days in our 10-day
period were cloud-free (and also precipitation-free). Fig. 4k shows that the heat fluxes are generally small with
sensible heat (Qh) warming the snowpack and evaporation (Qe) cooling the snowpack. Note that the night prior to
the formation of the ET snowpack there was an extremely strong downslope wind (the so-called Chinook or Foehn
wind). Such a strong wind mixes warm (dry) air from aloft down toward the snow surface. As the windspeed drops
at around noon on Feb. 28, the humidity of the atmosphere starts to increase, and the snowpack begins to transition
from TG to ET. Fig. 5 shows that the snow “warmup” starts at the top of the snowpack and moves downward (pre-
sumably due to melted snow-water percolating through the snowpack). Also, the warming of the snowpack in the
clearing starts about 1-2 hours earlier than the warmup of the snow near the trees. During the Chinook-wind period
the net turbulent flux transferred energy into the snowpack and helped the transition from TG to ET. However, for
the day following the transition to ET, there was a net cooling of the snowpack by the turbulent fluxes, and the
snowpack reverted back to TG (Fig. 4l).

Figure 4: Ten-day time series as the snowpack goes isothermal at

the end of February, 2006. The vertical dashed line represents the

time period when the snowpack was isothermal.
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III. CONCLUSIONS:

• Four years of snowpack temperature data from a Colorado sub-alpine forest were examined.

• Snow cover persists up at a month longer at our forest location compared to a more exposed
location 500 m away; however, the initiation of snowmelt has similar timing at both locations.

• Abrupt transition from a TG to ET snowpack (and vice versa) occur about 2-3 times in late
winter and early spring prior to a complete transition to an ET snowpack.

• Transitions from a TG to ET snowpack are often accompanied by warm (T > 0) and humid
(q > 4 g kg−1) air. (Should examine larger-scale weather patterns for better understanding.)

• Detailed examination of one TG-ET transition revealed that the Chinook winds were im-
portant in keeping the night-time 2-m air temperature above 0◦C and helped to initiate the
melt.

• Snowmelt near trees lagged that in a small forest clearing.
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