Organized Convection and Mesoscale Vortices: Observations from BAMEX (2003)

Chris Davis

National Center for Atmospheric Research Boulder, Colorado USA

Collaborators: Stan Trier and Morris Weisman (NCAR), Dave Jorgensen (NSSL), Roger Wakimoto (NCAR), Hanne Murphey (UCLA), and Mike Montgomery (CSU)

Background and Definitions

Mesoscale Convective System (MCS): an isolated, nearly contiguous region of thunderstorms, sometimes surrounded by an extensive region of moderate rainfall. Total size is usually 100-300 km across.

Bow-echo: a bow-shaped line of thunderstorms often containing strong surface winds. \

Mesoscale Convective Vortex: a lower-mid-tropospheric horizontal wind circulation derived from an area of convection (often an MCS).

Rotation in MCSs on Different Scales

- Deformation Radius (~1000 km; mid-latitude)
- MCV (~100 km, 12 h)
- Line-end vortex (book-end vortex) (~30 km, 3 h)
- Mesovortex (~10 km, 1 h)
- Mesocyclone (~1 km, < 1 h)
- Tornado (100 m, 10 min)

Time Scales for MCVs

- Inertial: $2\pi/f \sim 18 \text{ h}$
- Diurnal heating cycle ~ 24 h
- Rotation: $2\pi R/V \sim 18 \text{ h}$ (for R=100 km, V=10 m/s)
- Vertical Shear: $2R/(H*dU/dz) = 2R/\Delta U \sim 6 \text{ h } (for \Delta U=10 \text{ m/s})$
- Diabatic Heating: H/w ~ 6 h (for w=0.25 m/s, H=5 km)

=> Competing Time Scales

Why do we want to study Mesoscale Convective Vortices (MCVs)?

- ■Understand and quantify "upscale" growth (emergence of balanced modes)
- Understand the linkage between successive convective systems
 - **►** Convection initiation
 - ➤ Feedback to vortex
- Verify and improve dynamical models used for mesoscale prediction and processes
 - ➤ Quantitative Precipitation Forecasting
 - ➤ Representation of diabatic processes (PV redistribution)
- ■Understand "downward" penetration of vorticity to boundary layer (relevant to tropical cyclone formation)

May 7 1985, 0500 UTC (Brandes, 1990, MWR)

Idealized Simulation (Skamarock et al., 1994, MWR)

Fig. 13. The Coriolis simulation at 6 h, depicted as in Fig. 5.

Mechanism for Lind-end Vortices

=> Tilting followed by stretching

MCV Tracks and Occurrence

Major Serial Cases

MCV Tracks (1998 and 1999 Warm-Seasons)

15 May - 15 June
 15 June - 15 July Black
 15 July - 15 August Color
 15 August - 15 September

Black arrow head => 1998 Colored arrow head => 1999

★ Convection+ Dry

Raymond and Jiang (JAS 1990) Conceptual Model of Isentropic Lifting within a Steady Balanced Vortex (e.g., MCV)

(a) Background shear-induced isentropic motion within baroclinic zone associated with balanced vortex

(b) Vortex-induced isentropic motion within background baroclinic zone

MCV Induced Lifting and Destabilization

Comparison of the Weather Research and Forecast (WRF) model and the NCEP Eta model

- •Eta poorly predicts MCV; subsequent rainfall in wrong place
- •WRF has a much better prediction, related mostly to a better MCV prediction.

24 h Forecast from NCEP Eta

Longevity of MCVs

Davis et al. 2002, MWR

Bow Echo and MCV Experiment (BAMEX)

20 May- 6 July, 2003

MidAmerica Airport

BAMEX
Facility
Deployment
Strategy

BAMEX Domain

Developing MCVs

- July 4-5: Severe Bow Echo
 - NOAA P-3
 - Lear
- July 6: Severe Bow Echo
 - NOAA P-3
 - NRL P-3 (ELDORA)
 - Lear

IOP 16 (3 July, 2003)

OH IN 2004 UTC 2134 UTC 150 km 2309 UTC

IOP 17: July 4-5

Vertical Cross Section of Relative Vorticity

Mid-tropospheric Vorticity

Reflectivity Animation: 6 July

04 UTC 10 UTC

IOP 18 (6 July)

030706/0000 72558 OAX SLAT: 41 SLON: -96 SELV: 350 LIFT: -8 CAPE: 2860

0517 UTC 6 July

0550 UTC 6 July

Vertical Cross Section Through Line-end Vortex

Developing MCV, July 6, 2003 (IOP 18)

z = 1.6 km AGL

Evolution of Mid-tropospheric Vortex

12 UTC 6 July

18 UTC 6 July

Sea-level Pressure (1 hPa interval)

Vortex signature at surface

Coupling of Vortices at Two Levels

Schematic

Key Points and Issues

- Line end most intense in the lower troposphere
- Circulation already ~ half mature MCV
- Most of storm-relative rear-inflow is rotational

- What is relationship to mid-level MCVs?
 - In IOP 18, perhaps vortex merger
 - IOP 17: no long-lived MCV observed

Mature MCVs

- May 24: remnant of severe bow echo
- June 2: hybrid with cyclone wave
- June 5: remnant of large MCS
- June 11: Multi-day MCS/MCV system, late became frontal cyclone
- June 24: MCV from multi-MCS complex

 Data: dropsondes, MGLASS, profilers (storm relative and time-space corrected)

IOP 1: 00 UTC 24 May

Precursor Conditions

500 hPa Φ , ζ 850 hPa wind

→ MCS

→ MCV

IOP 4: 00 UTC 2 June

IOP 5: 00 UTC 5 June

IOP 8: 00 UTC 11 June

IOP 15: 00 UTC 29 June

IOP 1

200 km

Analysis Method

• Dropsonde, profiler and MGLASS

• Composited to common reference time (const MCV motion assumed)

- Divergence and vorticity analyzed assuming linear variation along sides
- Restrictions on minimum angle, area; maximum side length and area
- Overlapping triangles used to assess
 "confidence" (σ)

•25-km analysis grid

Wind Profiles (averages of quadrant means)

Convection Initiation Downshear from MCV

Dropsondes in Different Vortex Quadrants (1616-1838 UTC 11 June)

Balance within MCVs

Procedure:

- $\succ \zeta \rightarrow \Psi \rightarrow \Phi$ via nonlinear balance
- $\triangleright \Phi \rightarrow \mathsf{T}_{\mathsf{v}}$ (hydrostatic)
- ➤T_v profile at sounding locations
- ➤ Quadrant averages (r<R_{max}; r≥R_{max})
- ➤ Subtract mean outer profile from inner profile: **T'**_v

IOPs 1 and 8 have best data coverage

Vertical Motion Profiles

Summary

- Developing Vortices
 - ➤ Tied to convective line
 - Large fraction of circulation of mature MCV
 - ➤ Merger (at two levels) leads to deep vortex
- Mature MCVs
 - ➤ Structure responds to vertical shear
 - ► All maximize at 550-600 hPa.
 - **≻**Balanced
 - Weak surface signature except multi-day or shortwave cases
 - Modification of convection environment

Remaining Questions

- Vortex merger and symmetrization for incipient MCV?
 Do we understand the basic formation mechanism?
 (analogy to TC mechanism of Montgomery et al.?)
- Effect of developing MCV on MCS?
- Resistance of mature MCV to shear, adiabatic or diabatic?
- Is shear main limiting factor in vertical structure?
- What selects 550-600 hPa for maximum strength of mature MCV? Shear? Melting?