MPAS IMPLEMENTATION OVERVIEW

MPAS SOFTWARE ARCHITECTURE

DRIVER 1.Driver layer — The high-level DRIVER
t and SUBDRIVER interact with the core
through a generic interface.
SUBDRIVER
3
‘ 2. MPAS core — The MPAS CORE performs
the computational work of MPAS,
CORE employing data structures and
functionality of the INFRASTRUCTURE.
. t 3. Infrastructure — The infrastructure

provides derived types that the |/0,
INFRASTRUCTURE parallelism, and operators implemented

in the infrastructure work with.

Arrows indicate interaction between
components of the MPAS architecture

MPAS-CISL Modeling Meeting, 3 October 2011 2

THE DRIVER LAYERS

MPAS
PRIVER The SUBDRIVER interacts with
o both the INFRASTRUCTURE and
SUBDRIVER | | | CORE, and takes care of
mpas_init() mpas_run() mpas_finalize() uboilerplaten code that would
otherwise be duplicated in all
MPAS cores.
—»mpas_frame_init() mpas_core_finalize()
—»mpas_input_state() mpas_frame_finalize()
—>mpas_core_init()

»mpas_core_run()

The choice to split the superstructure into two layers was motivated by
®* The convenience of placing core-agnostic, driver-like code into one common place

®* The potential need to replace the highest-level driver code with, e.g., an interface
layer when driving MPAS from within other earth system models

MPAS-CISL Modeling Meeting, 3 October 2011 3

MPAS MODEL CORE

The particular MPAS core to be used is a compile-time decision

For MPAS models, the core is a combination - ~—
of dynamics and physics non-hydrostatic o
— The core’s run() routine contains time loop, atmosphere S E’ 0
since time integration is core-specific L)& o %
. i e N | = (%] >
— Both atmospheric dynamical cores share the hvd : 3 o =
same physics routines ydrostatic £ _g Q
— The core is passed higher-level DDTs, but use atmosphere ©
arrays directly from field DDTs provided by - s
infrastructure
DRIVER | Applying a broader interpretation of core,
SUBDRIVER we envision building pre- and post-
processing, or MPAS analysis software,
PRE-PROCESSING within the MPAS framework as well

® Actually, a separate real-data initialization core
for the non-hydrostatic model is currently
under construction!

INFRASTRUCTURE

MPAS-CISL Modeling Meeting, 3 October 2011 4

MPAS MODEL CORE

The non-hydrostatic atmosphere core is as described in Bill’s slides:

DRIVER
mpas_core_run()
\ MPAS CORE
do while (.not. isClockStopTime())
dynamics 9 physics
<
k .
ol E -l WREF physics
S
(solver decribed earlier...) T ETT :
s CAM physics
>
9
S
g GFS physics
=
o
end do
INFRASTRUCTURE

MPAS-CISL Modeling Meeting, 3 October 2011

MODEL INFRASTRUCTURE

INFRASTRUCTURE
DDTs | | I/O | | PARALLELISM | | OPERATORS

DDTs: We make heavy use of Fortran derived types in MPAS
®* domain encapsulates complete state of computational domain for a process

® block contains model fields, mesh description, and parallel information for a
single piece of the computational domain
® field stores single field’s data and metadata on a block
— fields are packaged in container types (green box) for convenience within a core

— MPAS model core ultimately uses field array component directly from field types

* Packaging of fields means that infrastructure DDTs are customized for a core

domain ®* dminfo contains MPI communicator
. and other information used by
dminfo
PARALLELISM
block ___ block __ * parinfo contains information about
parinfo parinfo .))
S NG which cells/edges/vertices in a mesh
mesh| [T mesh | [are in a the halo region, etc.

MPAS-CISL Modeling Meeting, 3 October 2011 6

MODEL INFRASTRUCTURE (2)

INFRASTRUCTURE

DDTs

/O

PARALLELISM

OPERATORS

1/O: Currently, we’re just using serial netCDF for our file I/O

PARALLELISM: Implements operations on field types needed for parallelism

* e.g., redistribute cells/edges/vertices among tasks, halo updates,
scatter/gather

® callable from either serial or parallel code (no-op for serial code)
® ideally, for multiple blocks per process, differences between shared-

memory and MPI are hidden

OPERATORS: Provides implementations of general operations on CVT meshes

® E.g., divand curl operators, interpolation, advection, etc.
® these are “building blocks” of MPAS models

MPAS-CISL Modeling Meeting, 3 October 2011

MESH REPRESENTATION

Meshes are explicitly represented in MPAS by a set of connectivity and geometry arrays:

*nEdgesOnCell(nCells) - the number of neighbors for each cell
*cellsOnCell(maxEdges, nCells) - the indices of neighboring cells for each cell
*edgesOnCell(maxEdges, nCells) - the indices of bounding edges for each cell
*verticesOnCell(maxEdges, nCells) - the indices of corner vertices for each cell
*edgesOnVertex(3,nVertices) - the indices of edges incident with each vertex

*verticesOnEdge(2,nEdges) - the indices of endpoint vertices for each edge

*cellsOnVertex(3,nVertices) - the indices of cells meeting at each vertex -

*cellsOnEdge(2,nEdges) - the indices of cells split by each edge ” i s —

nEdgesOnCell(7)=6 cellsOnCell(1,7)=8
cellsOnCell(2,7)=11
cellsOnCell(3,7)=10
cellsOnCell(4,7)=6
cellsOnCell(5,7)=3
cellsOnCell(6,7)=4

MPAS-CISL Modeling Meeting, 3 October 2011 8

MESH REPRESENTATION(2)

For any edge iEdge, positive u (normal) velocity
is always defined as flow from
cellsOnEdge(1,iEdge) to cellsOnEdge(2,iEdge)

cellsOnEdge(1,iEdge)
o

verticesOnEdge(2,iEdge)

Positive v (tangential) velocity is always defined
as flow from verticesOnEdge(1,iEdge) to

verticesOnEdge(1,iEdge) verticesOnEdge(2,iEdge)

"o
cellsOnEdge(2,iEdge)

The cross product of the positive u and v vectors always points upward, out of the plane
or sphere (i.e., the right-hand rule)

MPAS-CISL Modeling Meeting, 3 October 2011 9

MESH REPRESENTATION(3)

Other mesh geometry information is provided by the arrays:

dcEdge(nEdge) - distances between cell centers
dvEdge(nEdges) - length of each edge

areaCell(nCells) - area of each cell
areaTriangle(nVertices) - area of each dual-grid cell

kiteAreasOnVertex(3,nVertices) — area of intersection
between dual- and primal-mesh cells

MPAS-CISL Modeling Meeting, 3 October 2011

10

EXAMPLE LOOP USING MPAS MESH DESCRIPTION

Divergence:
do iEdge = 1,nEdges
do k=1,nVertLevels
divergence(k,cellsOnEdge(1l,iEdge)) += dvEdge(iEdge) * u(k,iEdge)
divergence(k,cellsOnEdge(2,iEdge)) -= dvEdge(iEdge) * u(k,iEdge)

end do

end do

do iCell = 1,nCells
r = 1.0 / areaCell(iCell)
do k = 1,nVertLevels

divergence(k,iCell) *= r

end do

end do

Edge loops can clearly be used to compute cell-
or vertex-based fields, but they do lead to
reproducible sum problems (described later...)!

MPAS-CISL Modeling Meeting, 3 October 2011

11

PARALLEL DECOMPOSITION

™~

Graph partitioning

The dual mesh of a Voronoi tessellation is a Delaunay
triangulation — essentially the connectivity graph of
the cells

Parallel decomposition of an MPAS mesh then
becomes a graph partitioning problem: equally
distribute nodes among partitions (give each
process equal work) while minimizing the edge cut
(minimizing parallel communication)

We use the Metis package for parallel graph

decomposition

® Currently done as a pre-processing step, but could be done
“on-line”

Metis also handles weighted graph partitioning

® Given a priori estimates for the computational costs of each
grid cell, we can better balance the load among processes

MPAS-CISL Modeling Meeting, 3 October 2011

12

PARALLEL DECOMPOSITION (2)

Given an assignment of cells to a process, any number of layers of
halo (ghost) cells may be added

Block of cells owned by
With a complete list of cells a process

stored in a block, adjacent
edge and vertex locations can
be found; we apply a simple
rule to determine ownership
of edges and vertices adjacent
to real cells in different blocks

Block plus one layer of

halo/ghost cells
nEdgesSolve nEdges
P Cell-, edge-, and vertex-based fields
nVerticesSolve nVertices are stored in a 1d array (2d with
T vertical dimension, etc.), with halo
cells at the end of the array

nCellsSolve ;39”5 * theta(nVertLevels,nCells)

Block plus two layers of
halo/ghost cells

MPAS-CISL Modeling Meeting, 3 October 2011 13

USE OF BLOCKS IN THE CORE

(serial or parallel)

computation on each block

—

computation on each block
(serial or parallel)

.
'

|

halo update

Currently, the infrastructure supports just
one block per MPI task

Ideally, though, we’d like the flexibility to
assign one or more blocks to each task

® Assign each block to a GPU/coprocessor
® Shared-memory parallelism
*Opportunities for load balancing

Halo updates only handle one field at a
time

® Probably benefits to aggregating
communication for fields with same stencil

®* We use non-blocking sends and recvs to
avoid difficulty of working out optimal
deadlock-free comm patterns

® Should be possible to avoid the use of a
separate read buffer

MPAS-CISL Modeling Meeting, 3 October 2011 14

AVOIDING COMPLICATIONS IN LOOPS

Divergence:

do iEdge = 1,nEdges
do k=1,nVertLevels
divergence(k,cellsOnEdge(l,iEdge)) += dvEdge(iEdge) * u(k,iEdge)
divergence(k,cellsOnEdge(2,iEdge)) -= dvEdge(iEdge) * u(k,iEdge)
end do
end do
do iCell = 1,nCells
r = 1.0 / areaCell(iCell)
do k = 1,nVertLevels
divergence(k,iCell) *= r

end do

We avoid an if-test in edge-based loops by allocating
an extra “garbage cell” in field arrays and ensuring
that cellsOnEdge(j,iEdge) = nCells+1 if the cell on
side j of iEdge doesn’t exist in a block.

nCellsSolve nCells nCells+1

MPAS-CISL Modeling Meeting, 3 October 2011

15

CELL REORDERING

e Experiments applying a Hilbert space-filling curve ordering in MPAS shallow
water core (single layer)

— Reorder cells (ZC); reorder cells and edges (ZCE); reorder cells, edges,
and vertices (ZCEV)

e Table shows % improvement in runtime over original ordering (positive
numbers designate improvement)

— 4 different problems/grid sizes
— 16 processor runs

Grid size ZC ZCE ZCEV

20962 | -0.1% -1.0% 1.1%
163842 | 134% 148% 15.6%
655362| 19.0% 19.4% 17.7%

2621442 23.0% 249% 20.6%

From Michael Wolf and Karen Devine (Sandia)

MPAS-CISL Modeling Meeting, 3 October 2011 16

FIELD ORGANIZATION

Fortran derived types are used extensively throughout MPAS core and infrastructure
®* Grouping of fields is specified in a Registry file

block mesh state
arinfo ,
P scalars time_levs(:)
mesh - scalars state scalars

scalars u index_qv=1

o index_qc=2

scalars index_qr=3
theta moist_start=1
moist end=3

® Higher-level types like state are passed
between subroutines

® Subroutines typically dereference field L av |
arrays once at the beginning: L 9¢ | =] scalars
L ar |
real, dimension(:,:), pointer :: rho qv (:, 1) = scalars (idx_qv, :, :)
rho => state % rho % array

MPAS-CISL Modeling Meeting, 3 October 2011 17

MPAS SOFTWARE STATUS AND ISSUES

® Bit-for-bit restartability (with physics in stand-alone
MPAS-A)
— Was simple to achieve
® Bit-identical results on different task counts

(currently dynamics only in MPAS-A)

— Required dealing with order-of-summation issues

nCellsSolve nCells

N /

Edge storage order

— Can be easily dealt with in ocean and hydrostatic cores, too
— Changing to highlighted code gives ~11% performance hit on

bluefire for the example loop shown below _

Reproducible sum edge order

do iEdge = 1,grid % nEdges

do iEdgel = 1,grid % nEdges
iEdge = grid % edgePermutation % array(iEdgel)

do k=1,nVertLevels
circulation(k,verticesOnEdge(1l,iEdge)) -= dcEdge(iEdge)
* u(k,iEdge)
circulation(k,verticesOnEdge(2,iEdge)) += dcEdge(iEdge)
* u(k,iEdge)
end do
end do

MPAS-CISL Modeling Meeting, 3 October 2011 18

MPAS SOFTWARE STATUS AND ISSUES

Current I/O subsystem uses serial netCDF API

® |nput: each task reads a contiguous range of nCells/mpi_size cells, cells are
then redistributed to blocks (incl. halo cells)

® QOutput: all cells are collected on master task and written

,i .

—

MPAS

core 3
—

PIO looks like an attractive option for use in MPAS

MPAS-CISL Modeling Meeting, 3 October 2011 19

MPAS SOFTWARE STATUS AND ISSUES

Misc. parallel performance issues
® Lack of provisions to update partial halos

— Currently “all-or-nothing”

* |nability to loop over subsets of halo cells/edges/vertices

— This leads to redundant calculation Below: derivative orders for a scalar
field computable with two layers of

CellsSolve ghost cells and no comm.; current
N J loops for del2 cover all edges; loops
for del4 require if-tests and only

Currently, we only distinguish
edges bordering owned cells.

between real and halo cells:

nCellsH1

nCellsSolve nCellsH2

Examples: Edge index ranges to loop over include:

® Scalar transport ® Edges bordering owned cells

® Del4 hyper-diffusion ® Edges bordering first layer of ghost cells
* All edges

MPAS-CISL Modeling Meeting, 3 October 2011 20

MPAS SOFTWARE STATUS AND ISSUES

NB: We’ve placed no bluefire performance, 163842 cells, 41 levels
emphasis on writing fast ¢ 100
90
code so far! Correctness and 33 o
. 3 4
rapid development have L 7o E
been foremost. 25 ‘60 g
Right: Initial performance for MPAS F 40 g TYTSYRD
non-hydrostatic atmosphere core 30 3 % comm
on bluefire with a ~¥60-km global 20
mesh; times for dynamical solver 10
only; SYPD assumes a 300 s time 0
step. 0 512 1024 1536 2048 2560

MPI tasks

® Experience indicates that atmospheric solvers are about 2-3x slower than, e.g., CAM
FV core

®* What is considered good scaling on bluefire? Access to other hardware may be
helpful

®* My opinion: we have quite a few opportunities for improving performance and
scalability in MPAS

MPAS-CISL Modeling Meeting, 3 October 2011 21

