
The Model for Prediction Across Scales: meshes and software
framework

Michael Duda∗1, Todd Ringler2, and William Skamarock1

1National Center for Atmospheric Research†

2Los Alamos National Laboratories

1. Introduction

The Model for Prediction Across Scales (MPAS)
is a collaborative effort between LANL (COSIM)
and NCAR (MMM) to develop climate, regional cli-
mate, and numerical weather prediction components
within a common framework. Currently, a non-
hydrostatic atmosphere model and an ocean model
are under development in MPAS, and there are plans
to develop an ice sheet model in the near future.
Although the physical domains over which each
of these models simulate are quite distinct, all of
the models have in common their use of centroidal
Voronoi tessellations (CVT) with a C-grid stagger-
ing, i.e., with the prognosed velocity field defined
in terms of velocities normal to grid cell faces, as
their horizontal meshes. The consequent need for
software infrastructure to support finite volume-type
modeling on CVT meshes has motivated the devel-
opment of a common software framework for MPAS.
Of particular interest to the scientific goals of MPAS
is the ability of CVT meshes to provide smooth mesh
refinement according to a user-defined density func-
tion, though with this flexibility come challenges for
software infrastructure, and, most likely, for model
couplers as well. In this presentation, we first de-
scribe the construction and use of CVTs in MPAS,
and we then outline the MPAS software architecture,

∗Corresponding author e-mail address:duda@ucar.edu
†NCAR is sponsored by the National Science Foundation

pointing out how we anticipate interacting with cou-
pling packages.

2. CVT meshes in MPAS

As their name implies, centroidal Voronoi tessella-
tions are tessellations of a domain where each of the
cells is a Voronoi region for some generating point;
when the generating points are also the mass cen-
troids of the Voronoi regions with respect to a spec-
ified density function, the Voronoi tessellation is a
centroidal Voronoi tessellation. A detailed review of
CVTs is given in Ju et al. (2010). It is precisely the
flexibility to specify the density function that enables
MPAS meshes to possess smoothly-changing resolu-
tion, and the centroidal requirement of CVTs leads to
meshes — both uniform and variable-resolution —
of high quality. Figure 1a provides an illustration of
an SCVT1 mesh with higher resolution targeted over
a region of the Northern Hemisphere; it is worth not-
ing that the mesh is unstructured, since the cells are
not constrained to have a specified number of sides.

For any CVT mesh, the dual mesh, or Delau-
nay triangulation, provides a connectivity graph of
the cells of the mesh, and by applying existing graph
partitioning algorithms to the connectivity graph, we
arrive at a partition of the cells among processors.

1An SCVT is is a spherical centroidal Voronoi tessellation,
where the generating points are constrained to lie on the surface
of a sphere

1



Figure 1: (a) An example of an SCVT with refinement targeted over a region in the Northern Hemisphere. (b)
A parallel decomposition of the SCVT into 64 bocks of cells.

The collection of cells in a partition is referred to
as a block, and each block is assigned to a parallel
task; the parallel decomposition of an SCVT into 64
blocks is illustrated in Figure 1b. In the MPAS ar-
chitecture, blocks represent the basic level of mesh
decomposition.

3. The MPAS software architecture

At the coarsest level, the MPAS architecture contains
three main parts: a driver layer, a model core, and
software infrastructure. Figure 2 illustrates the con-
nections between components of the MPAS architec-
ture. As in the figure, the driver layer is divided into
two distinct parts. The top-level driver essentially
calls init, run, andfinalizeroutines, which are imple-
mented in the sub-driver. In turn, the sub-driver inter-
acts with both the model core and the infrastructure
in the course of performing work appropriate to the
init, run, andfinalizeroutines. The rationale behind
the division of the driver layer into a top-level driver
and a sub-driver is heavily influenced by the desire
to run MPAS models as components of larger sys-
tem models. The top-level driver may be removed,
and its role fulfilled by a coupler or a component
driver in another Earth system model. The routines
implemented by the sub-driver may need to be aug-

mented, depending on the requirements of the driver,
though the sub-driver should remain independent of
any particular MPAS core. With this split between
top-level driver and sub-driver, as much driver-level
code can be shared between cores as possible, while
the amount of code that needs to be replaced by an-
other high-level driver layer is minimized.

The MPAS core, which lies between the driver and
infrastructure, contains all computational work that
is specific to a particular model. This work can ob-
viously include that of a dynamical core and physics
parameterizations; however, it can also be envisioned
as the work of creating initial conditions or of post-
processing simulation output, for example. In this
way, most of the MPAS data flow — from the gen-
eration of initial conditions, to model simulation, to
post-processing — can reuse the MPAS software in-
frastructure, gaining access to parallelism, I/O, and
fundamental data types.

The infrastructure part of the MPAS architecture
is roughly divided into four parts: definitions of de-
rived types, input and output, parallelism, and op-
erators. A domain type encapsulates the complete
computational state for an MPAS task, including in-
formation for distributed-memory parallelism (prin-
cipally, an MPI communicator), as well as the data to
be operated upon by the task. The data for a task is
comprised of one or more blocks, with each block

2



CORE

INFRASTRUCTURE

I/O PARALLELISM OPERATORS DDTsDDTs

REGISTRY

TOP-LEVEL DRIVER

SUBDRIVER

Figure 2: The high-level MPAS architecture with its three main components: the driver layer, a model core, and
model infrastructure; the Registry is a CASE tool used to generate customized DDTs as well as code that would
be otherwise tedious to write and maintain.

constituting the fields defined on the partitions of
the mesh assigned to the task plus information about
which grid cells of the blocks need to be communi-
cated. The operators in the MPAS architecture rep-
resent, e.g., differential operators for CVT meshes,
interpolation routines, advection operators, and other
code that can be re-used by different MPAS cores.

In order to generate customized infrastructure and
other code that would ordinarily require tedious work
from the developer of a core, MPAS has adopted
a computer-aided software engineering (CASE) tool
called the Registry, which is modeled on a tool by the
same name in the Weather Research and Forecasting
model (Michalakes et al. (2004) ). At compile time,
the Registry program is first built; then, the Registry
parses a text file — called a registry file — specific
to each MPAS core, and, based on the contents of the
registry file, generates Fortran code for core-specific
data types, data allocation and deallocation calls, and
I/O calls.

4. Coupling in MPAS

With the MPAS software in a relatively immature
state — the current working framework is still con-
sidered a first prototype, in fact — we have at-
tempted to maintain architectural flexibility so that
MPAS models can be coupled using the largest pos-
sible range of coupling packages. One method for
coupling MPAS models might involve wrapping the
MPAS model core and its supporting infrastructure
code into a component; coupled fields would be ex-

changed through import and export states of com-
ponents, and the control of MPAS execution would
be delegated to a higher-level coupler or coupled-
system driver; this approach is facilitated by, e.g.,
the Earth System Modeling Framework. To support
coupling in this manner, we envision replacing the
top-level driver in MPAS by an external coupler or
driver, and augmenting the implementation of the
MPAS sub-driver with routines for importing and ex-
porting coupled fields. The adaption of the MPAS
driver layer to this approach is shown in Figure 3a.

Another approach to coupling might involve run-
ning MPAS as an independent executable, with new
calls to send and receive coupled field placed at ap-
propriate points in the MPAS code. If coupled fields
are exchanged at most once per MPAS time step, a
flexible implementation of the MPAS I/O subsystem
to handle the sending and receiving of coupled fields
in the same manner as the input and output of fields
may be feasible; this approach is illustrated in Fig-
ure 3b. Of course, other paradigms for model cou-
pling also exist, and these will need to be considered
as we continue to evaluate the design of the MPAS
software.

5. Conclusions

Given that all MPAS models share the same CVT
mesh technology, the development of a common
software framework to support modeling on CVT
meshes is a logical step. From a coupling perspec-
tive, this common framework implies that, if the soft-

3



MPAS

DRIVER

MPAS

SUBDRIVER

mpas_init() mpas_run() mpas_finalize()

COUPLER

MPAS

SUBDRIVER

mpas_init() mpas_run() mpas_finalize()

mpas_import_state() mpas_export_state()

io_init io_write_field io_finalize

n
e
tC

D
F

M
P
I-

IO

c
o
u
p
le

r

MPAS I/O API

compute I/O-only

diagnostic fields

U
N

D
E
R

LY
IN

G

I/
O

 

S
U

B
-S

Y
S
T
E
M

(a) (b)

Figure 3: (a) Coupling with MPAS as a component may be accomplished by replacing the top-level driver with
a coupler or driver from a larger Earth-system model, and implementing additional routines in the sub-driver.
(b) Coupling via sends and receives of fields could be accomplished by implementing these calls as I/O.

ware challenges of coupling one of the MPAS mod-
els can be worked out, then coupling any of the other
MPAS models comes at virtually no additional cost,
at least from a technical standpoint; we recognize
that coupling each model comes with its own sci-
entific issues. The flexibility of CVT meshes poses
challenges for the MPAS software infrastructure, and
any model coupler used by MPAS must also sup-
port horizontally unstructured meshes. To the cou-
pling community, MPAS may present opportunities
to test couplers in areas such as re-gridding, since the
meshes for MPAS models could be either configured
to have coincident cells or completely independent
meshes at different resolutions.

References

Ju, L., T. Ringler, and M. Gunzburger, 2010: Voronoi
tessellations and their application to climate and
global modeling. Chapter to appear inNumerical
Techniques for Global Atmospheric Models, Lec-
ture Notes in Computer Science, draft.

Michalakes, J., J. Dudhia, D. Gill, T. Henderson,
J. Klemp, W. Skamarock, and W. Wang, 2004:
The weather research and forecast model: Soft-
ware architecture and performance.Proceedings
of the 11th ECMWF Workshop on the Use of
High Performance Computing in Meteorology,
G. Mozdzynski, ed., Reading, U.K.

4


