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ABSTRACT

Dual-resolution (DR) hybrid variational-ensemble analysis capability was implemented within the com-

munity Weather Research and Forecasting (WRF) Model data assimilation (DA) system, which is designed

for limited-area applications. The DR hybrid system combines a high-resolution (HR) background, flow-

dependent background error covariances (BECs) derived from a low-resolution ensemble, and observations

to produce a deterministic HR analysis. As DR systems do not require HR ensembles, they are computa-

tionally cheaper than single-resolution (SR) hybrid configurations, where the background and ensemble have

equal resolutions.

Single-observation tests were performed to document some characteristics of limited-area DR hybrid

analyses. Additionally, the DR hybrid system was evaluated within a continuously cycling framework, where

new DR hybrid analyses were produced every 6 h over;3.5 weeks. In the DR configuration presented here,

the deterministic backgrounds and analyses had 15-km horizontal grid spacing, but the 32-member WRF

Model–based ensembles providing flow-dependent BECs for the hybrid had 45-km horizontal grid spacing.

The DR hybrid analyses initialized 72-hWRFModel forecasts that were compared to forecasts initialized by an

SRhybrid systemwhere both the ensemble and background had 15-kmhorizontal grid spacing. The SRandDR

hybrid systems were coupled to an ensemble adjustment Kalman filter that updated ensembles each DA cycle.

On average, forecasts initialized from 15-km DR and SR hybrid analyses were not statistically significantly

different, although tropical cyclone track forecast errors favored the SR-initialized forecasts. Although ad-

ditional studies over longer time periods and at finer grid spacing are needed to further understand sensitivity

to ensemble perturbation resolution, these results suggest users should carefully consider whether SR hybrid

systems are worth the extra cost.

1. Introduction

Ensemble-based data assimilation (DA) methods,

such as the ensemble Kalman filter (EnKF; Evensen

1994; Burgers et al. 1998; Houtekamer and Mitchell

1998), have become popular alternatives to traditional

variational DA approaches. EnKFs use short-term en-

semble forecasts to calculate flow-dependent, multivar-

iate background error covariances (BECs), contrasting

the static, isotropic BECs typically employed in three-

dimensional variational data assimilation (3DVAR; e.g.,

Barker et al. 2004).

Flow-dependent BECs can also be incorporated

within a variational framework in a ‘‘hybrid’’ variational-

ensemble DA algorithm (e.g., Hamill and Snyder 2000;

Lorenc 2003; Buehner 2005; Wang et al. 2008a; Zhang

et al. 2009; Wang 2010; Clayton et al. 2012; Kuhl et al.

2013). Moreover, hybrid paradigms permit flexibility

regarding how much the total BECs are weighted to-

ward ensemble and static (i.e., 3DVAR) contributions.

Although hybrid analyses are deterministic, since an

ensemble is required to provide flow-dependent BECs,

hybrid systems are often coupled with EnKFs that

update the ensemble each DA cycle (e.g., Wang et al.

2008a,b; Hamill et al. 2011; Wang 2011; Zhang and

Zhang 2012; Gao et al. 2013; Schwartz et al. 2013;Wang

et al. 2013; Zhang et al. 2013; Pan et al. 2014; Schwartz

and Liu 2014).

The hybrid method has shown great promise for initial-

izing numerical weather prediction (NWP) model fore-

casts. It has been demonstrated that hybrid approaches
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typically initialize comparable or better forecasts than

purely variational methods that do not incorporate en-

semble BECs and can outperform forecasts initialized by

stand-alone EnKFs (e.g., Wang et al. 2008b; Buehner et al.

2010; Hamill et al. 2011; Wang 2011; Li et al. 2012; Zhang

and Zhang 2012; Wang et al. 2013; Zhang et al. 2013;

Schwartz et al. 2013; Pan et al. 2014; Poterjoy and Zhang

2014; Schwartz and Liu 2014; Li et al. 2015; Xu et al. 2015).

Additionally, the hybrid technique can be easily im-

plemented in preexisting variational DA systems and

may produce results similar to those of EnKFs, but with a

smaller ensemble (e.g., Wang et al. 2007a; Zhang et al.

2013; Pan et al. 2014). Moreover, as the hybrid employs

model-space covariance localization, assimilation of

nonlocal observations, such as satellite radiances, may be

more effective within hybrid frameworks than within

EnKFs that use observation-space localization (Campbell

et al. 2010). Given these attractive features and successful

hybrid-initialized forecasts, the National Centers for En-

vironmental Prediction (NCEP) Global Forecast System

(GFS) model is now initialized with a hybrid-3DVAR

system (Wang et al. 2013) and the Met Office uses a four-

dimensional variational data assimilation (4DVAR; e.g.,

Courtier et al. 1994) hybrid system to initialize their global

model (Clayton et al. 2012).

Many studies have described limited-area hybrid

systems that employ ‘‘single resolution’’ (SR) configura-

tions, where the ensemble providing flow-dependent

BECs has the same resolution as the deterministic

background and analysis (e.g., Wang et al. 2008b;

Wang 2011; Li et al. 2012; Zhang and Zhang 2012;

Zhang et al. 2013; Schwartz et al. 2013; Schwartz and

Liu 2014; Pan et al. 2014). However, a ‘‘dual resolu-

tion’’ (DR) hybrid analysis can be produced that

combines a high-resolution (HR) background with a

low-resolution (LR) ensemble to produce a HR anal-

ysis, obviating the need for a costly HR ensemble.1

Given the savings afforded by DR hybrid systems—

and out of practical necessity—several global hybrid

DA configurations have employed DR approaches

(e.g., Buehner et al. 2010; Hamill et al. 2011; Clayton

et al. 2012; Kuhl et al. 2013), including the operational

NCEP GFS hybrid-3DVAR system [as noted in Wang

et al. (2013)].

However, perhaps because of the expense of pro-

ducing HR ensembles, the relative quality of forecasts

initialized from DR and SR hybrid analysis–forecast

systems has not been thoroughly documented for either

global or regional real-data applications. Yet, the per-

formance of SR versus DR hybrid systems has both im-

portant practical and scientific consequences, and it is

important to consider whether ensemble resolution

matters for hybrid DA purposes to enable wise decisions

about allocation of computational resources of future

operational hybrid DA systems. As the most expensive

component of ensemble DA involves advancing an en-

semble of forecasts between analyses, if hybrid analyses

incorporating flow-dependent BECs provided by an LR

ensemble can initialize forecasts with comparable quality

as those initialized by hybrid analyses that ingest HR

perturbations, considerable computational savings can

be realized. Conversely, if increasing the ensemble reso-

lution improves hybrid analyses and subsequent forecasts,

increasing ensemble resolutionmay be justified.Moreover,

on a deeper level, the sensitivity of ensemble covariance

structures to resolution and how these multivariate BECs

interact with hybrid algorithms are interesting scientific

questions that may have meaningful implications.

In recognition of these considerations, this paper in-

vestigates the performance of limited-area DR and SR

hybrid systems. We primarily focus on practical aspects

regarding the sensitivity of hybrid analyses and forecasts

to the resolution of ensemble perturbations, while

delving into the complexities of ensemble correlation

structures requires further work. Specifically, we de-

scribe the implementation of a DR hybrid analysis sys-

tem within the community Weather Research and

Forecasting (WRF; Skamarock et al. 2008) Model DA

system (WRFDA;Barker et al. 2012) that is designed for

limited-area modeling applications. Single-observation

tests are performed to understand basic properties of

the DR analyses. Additionally, we assimilate real ob-

servations with the newly developed DR hybrid system

by combining 15-km backgrounds and 45-km ensem-

bles in a continuously cycling configuration over a

;3.5-week period. The DR analyses initialized 72-h

WRF Model forecasts. Similarly configured 15-km SR

hybrid analyses and forecasts were also generated and

compared to those produced by the DR system. The DR

and SR hybrid systems were coupled to an ensemble

adjustment Kalman filter (EAKF; Anderson 2001, 2003)

from the Data Assimilation Research Testbed (DART;

Anderson et al. 2009) software that updated the en-

semble each DA cycle. This work also extends that of

Schwartz et al. (2013, hereafter S13), who examined

1We note that use of multiple resolutions within DA systems is

not confined to hybrid methods. Multiple resolutions are com-

monly employed in incremental 4DVAR (Courtier et al. 1994)

systems, where an HR nonlinear model is used to calculate in-

novations based on an HR guess field and to define a trajectory

about which LR tangent linear and adjoint models are formulated.

Moreover, Gao and Xue (2008) and Rainwater and Hunt (2013)

discussed themerits ofDRnonhybrid ensembleDA systemswithin

idealized frameworks.
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45-km 3DVAR and SR hybrid analysis–forecast systems

over the same region and time period, and, to our

knowledge, represents the first time limited-area DR hy-

brid analyses assimilating real observations have been

produced in conjunction with a limited-area ensemble.

Section 2 describes the DR hybrid algorithm, while

section 3 details theWRFModel configurations andDA

settings. The experimental design is presented in section

4, and section 5 briefly discusses the observations. Re-

sults regarding single-observation experiments are de-

scribed in section 6, section 7 examines analyses and

forecasts produced by continuously cycling DR and SR

hybrid systems that assimilated real observations, and

we conclude in section 8.

2. The WRFDA dual-resolution hybrid algorithm

WRFDA’s hybrid formulation is described by Wang

et al. (2008a). The algorithm incorporates BECs from an

N-member ensemble into a variational cost function

using the extended control variable approach (Lorenc

2003; Wang et al. 2008a), where the total n-dimensional

analysis increment vector (dx) is written as

dx5 x11 �
N

i51

ai+x
0
i . (1)

In Eq. (1), x1 is the n-dimensional analysis increment

vector associated with the static BECs (i.e., 3DVAR)

and the second term on the right-hand side (rhs) is the

increment associated with the ensemble BECs. Vector x0i
is the perturbation of the ith prior (before assimilation)

ensemble member about the prior ensemble mean

normalized by (N 2 1)1/2, vector ai is an extended con-

trol variable for each ensemble member (Lorenc 2003)

that determines weighting for the ensemble perturba-

tions, and the symbol + denotes a Schur product (ele-

ment by element multiplication). The fields contained in

dx and x1 were model variables (e.g., wind, temperature,

water vapor mixing ratio, and surface pressure). How-

ever, during variational minimization, the static portion

of the analysis increment (i.e., x1) was transformed into

control variables (v)—streamfunction, pseudo–relative

humidity, and unbalanced velocity potential, tempera-

ture, and surface pressure—by the relationship x1 5 Uv,

whereU is a transformation matrix. This procedure, also

called preconditioning, is quite common (e.g., Barker

et al. 2004; Wang et al. 2007b, 2008a; Wang 2010;

Clayton et al. 2012, and many others), and delving into

the details of preconditioning x1 is unnecessary to un-

derstand the DR hybrid algorithm.

Each x0i is a vector of length nl, where nl # n, and is

composed of model variables that were not transformed

into control variable space (note: in term nl, the sub-

script l is not a free index). Necessarily, each ai is also a

vector of length nl and applied in model space. In an SR

hybrid system, nl 5 n and the ensemble and background

are at identical resolutions. But, in a DR hybrid system,

nl , n, meaning the ensemble is at coarser resolution

than the background. Therefore, DR hybrid analyses

have fewer extended control variables (i.e., ai) than SR

hybrid analyses.

Following Wang (2010), we define nl 3 nl matrix di 5
diag(x0i), where diag is an operator that converts vector

x0i into diagonal matrix di, whose pth diagonal element is

the pth element of x0i. Further, let D be the nl 3 (Nnl)

matrix defined as D 5 [d1 d2 d3⋯dN], and concatenate

each ai to form vector a of length (Nnl):

a5

2
6666664

a1
a2
a3

..

.

aN

3
7777775
. (2)

Then,

dx5 x11Da . (3)

Equations (1) and (3) are identical, but Eq. (3) is

simpler because it does not contain summations or Schur

products.When the ensemble and background are at the

same resolution (SR hybrid), Eq. (3) is valid since nl5 n

and both terms on the rhs of Eq. (3) are n-dimensional

vectors. However, if nl , n, as in a DR application, Eq.

(3) is invalid since the two terms on the rhs of Eq. (3) are

vectors of different lengths. Thus, for DR applications,

interpolation of one term is needed. Since we wish to

produce HR analyses, we introduce an interpolation

operator L to interpolate the quantity Da from LR to

HR space.

Strictly, L is an n 3 nl matrix, where each row of L

specifies how a single HR grid point is related to each

LR grid point. While, theoretically, L could be any in-

terpolation method, we defined L as the same bilinear

interpolation operator used to interpolate the model

state to observation locations to use existing WRFDA

code.

Introducing L into Eq. (3) gives

dx5 x1 1LDa . (4)

For an SR application (nl5 n), L5 I, the identity matrix,

and Eq. (3) is recovered. Thus, Eq. (4) is a general

expression for the total increment since it is valid even if

n 6¼ nl.
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The corresponding cost function (J) that is minimized

with respect to x1 and a to obtain the hybrid analysis

increment is

J(x1, a)5b1

1

2
(x1)

TB21(x1)

1b2

1

2
(a)TA21a

1
1

2
(Hdx2 y0)TR21(Hdx2 y0) , (5)

where dx is given by Eq. (4). In Eq. (5), y0 is the in-

novation vector; B and R are the background and ob-

servation error covariance matrices, respectively; matrix

H is the linearized ‘‘observation operator’’ that in-

terpolates gridpoint values to observation locations and

transforms model-predicted variables to observed

quantities; and A is an (Nnl) 3 (Nnl) block diagonal

matrix that controls the spatial correlation of a, effec-

tively performing localization of the ensemble BECs

(Wang et al. 2007b). Note that A is in the ensemble

space, while B is in the space of the background. More-

over, for a sufficiently large ensemble, A is typically de-

fined with localization length scales substantially larger

than the horizontal grid spacing, which constrains a to

be spatially smooth (e.g., Wang 2010) and motivates

the potential for successful DR hybrid systems. The

terms b1 and b2 determine how much weight is given to

the ensemble and static BECs and are constrained such

that

1

b1

1
1

b2

5 1. (6)

Following Wang (2010), Eq. (5) is minimized by tak-

ing its gradient with respect to x1 and a and equating

with zero, which yields

$x
1
J5b1B

21x11HTR21(Hdx2 y0)5 0 (7)

and

$aJ5b2A
21a1DTLTHTR21(Hdx2 y0)5 0. (8)

In Eq. (8), LT is the adjoint of L, which transforms

HTR21(Hdx 2 y0) from HR to LR space. Within the

context of variational minimization, for DR hybrid ap-

plications, each iteration,LT, is applied toHTR21(Hdx2 y0)
and L is applied to Da. It is unclear how much represen-

tativeness error is introduced by interpolating quantities

from LR to HR (and vice versa) each iteration, although

representativeness errors should increase as the ratio

of LR to HR horizontal grid spacing increases. How-

ever, since the interpolated quantities are the ensemble

contribution to the increment (Da) and the adjoint

vector [HTR21(Hdx 2 y0)], which are spatially smooth

compared to the deterministic hybrid background, these

representativeness errors may be somewhat diminished.

3. WRF Model and data assimilation
configurations

The WRF Model and DA configurations were very sim-

ilar to those in S13. Thus, generally brief descriptions follow.

a. Forecast model

Weather forecasts were produced by version 3.3.1 of

the nonhydrostatic Advanced Research core of the

WRF (Skamarock et al. 2008) Model. All experiments

ran over a one-way-nested computational domain en-

compassing the western Pacific Ocean and eastern Asia

(Fig. 1). The horizontal grid spacing was 45km (222 3
128 grid points) in the outer domain and 15 km (316 3
274 grid boxes) in the inner nest. While testing at higher

resolution is desirable, these resolutions were chosen

because of limited computational resources. Given

these resolutions, we focused on meso-a- to synoptic-

scale weather patterns and features and caution that

results regarding the relative performance of DR and

SR hybrid systems may differ for finer-scale phenomena

or modeling systems at higher resolution.

Both domains were configured with 45 vertical levels

and a 30-hPa top. The time step was 180 s in the 45-km

domain and 60 s in the 15-km nest. GFS forecasts pro-

vided lateral boundary condition (LBC) forcing for the

45-km domain every 6 h and the 45-km domain provided

LBCs for the 15-km nest. The same physical parame-

terizations as in S13 were used in both domains and are

listed in Table 1.

b. EAKF and hybrid data assimilation settings

The hybrid uses an ensemble of short-term forecasts

to incorporate flow-dependent BECs in the variational

cost function [i.e., Eq. (5)] and the ensemble needs to be

updated when new observations are available. The

EAKF from the DART was used to update a 32-

member WRF Model–based ensemble. To reduce spu-

rious correlations due to sampling error, localization

forced EAKF analysis increments to zero ;1280km

from an observation in the horizontal and;10km in the

vertical. Adaptive inflation (Anderson 2009) was ap-

plied immediately before prior model-simulated obser-

vations were computed to maintain ensemble spread. A

stochastic kinetic energy backscatter scheme (SKEBS;

Shutts 2005; Berner et al. 2011) was applied during the

ensemble of WRF Model advances between each

EAKF analysis to further preserve spread. SKEBS
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parameters were identical for each domain (Table 2),

which may be suboptimal, as different horizontal grid

lengths may necessitate different SKEBS settings for best

performance (e.g., Sanchez et al. 2014). Nonetheless,

both the 45- and 15-km ensemble spread–skill re-

lationships were reasonable (section 7a), suggesting that

our tunings had the intended effects of engendering

appropriate ensemble spread. Furthermore, in experi-

ments without application of SKEBS during ensemble

model advances, the ensemble spread was clearly

insufficient.

Localization was also applied in the hybrid to limit the

spatial extent of the ensemble contribution to the anal-

ysis increments. Horizontal localization of approxi-

mately the same length scale in DART was applied in

the hybrid (i.e., ;1280km). Vertical localization length

scales in the hybrid increased with height (see S13 for

more information). For consistency with the EAKF, the

prior ensemble perturbations were inflated before they

were ingested into hybrid analyses using the same al-

gorithm DART employed to inflate prior ensembles.

Static 45- and 15-km BECs used in the hybrid algo-

rithm were constructed using the National Meteoro-

logical Center (NMC, now known as NCEP) method

(Parrish and Derber 1992) from WRF Model forecasts

produced over this domain formultiplemonths and used

operationally by the Central Weather Bureau (CWB) of

Taiwan, as described by S13. Three outer loops

(Courtier et al. 1994) were used in the hybrid minimi-

zation. As in S13, hybrid BECs were weighted 75% to-

ward the ensemble contribution and 25% toward the

static (i.e., 3DVAR) component. We also weighted the

BECs equally between the ensemble and static contri-

butions and achieved similar results. Limited sensitivity

to BEC weightings in SR hybrid configurations has also

been noted elsewhere (e.g., Wang 2011; Wang et al.

TABLE 1. Physical parameterizations used in both WRF domains.

Physical parameterization WRF option Reference

Microphysics Goddard Tao and Simpson (1993); Tao et al. (2003)

Longwave radiation Rapid Radiative Transfer Model Mlawer et al. (1997)

Shortwave radiation Goddard Chou and Suarez (1994)

Planetary boundary layer Yonsei University Hong et al. (2006)

Land surface model Noah Chen and Dudhia (2001)

Cumulus parameterization Kain–Fritsch with modified trigger function Kain and Fritsch (1990, 1993); Kain (2004);

Ma and Tan (2009)

FIG. 1. Computational domain overlaid with observations available for assimilation during

the 0000UTC 13 Sep analysis. The inner box represents the bounds of the 15-kmdomain, which

was nested within the 45-km domain.
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2013; Zhang et al. 2013), but Wang et al. (2013) stated

that in preliminary testing, forecasts were improved in a

global DR hybrid-3DVAR system when the total BECs

were weighted equally between the static and ensemble

contributions compared to when ensemble BECs pro-

vided the total BECs (i.e., no static contribution).

4. Experimental design

Three hybrid experiments were designed to in-

vestigate the performance of limited-area DR and SR

hybrid analysis–forecast systems. All experiments began

at 0000 UTC 4 September by interpolating the de-

terministic 0.58 3 0.58 NCEP GFS analysis onto the

nested computational domain (Fig. 1). The initial 45-km

ensemble was constructed at this time by taking

Gaussian random draws with zeromean and static BECs

(Barker 2005; Torn et al. 2006) and adding them to the

GFS field. LBCs for the ensemble system were per-

turbed similarly. The initial 15-km ensemble was pro-

duced by downscaling the perturbed 45-km fields onto

the 15-km grid, similar to Ha and Snyder (2014).

The deterministic and ensemble fields produced at

0000 UTC 4 September initialized 6-h WRF Model

forecasts, which served as backgrounds for the first hy-

brid and EAKF analyses at 0600 UTC 4 September.

Thereafter, the EAKF and hybrid configurations cycled

continuously until 0000 UTC 28 September, and a new

analysis was produced every 6h. The background for

DA was always the previous cycle’s 6-h forecast. Nested

45- and 15-km 72-h WRF Model forecasts were initial-

ized every 6 h from hybrid analyses between 1800 UTC

8 September and 0000 UTC 28 September (inclusive; 78

total forecasts). Identical to S13, digital filter initializa-

tion (DFI; Lynch and Huang 1992; Huang and Lynch

1993) using a twice-DFI scheme and the Dolph filter

(Lynch 1997) with a 2-h backward integration was ap-

plied to all 72-h forecasts, but not during the 6-h cycling

between analyses. S13 examined this same period and

employed an identical experimental design, but they

only produced 45-km SR hybrid analyses. Thus, while

45-km analyses and forecasts were necessarily produced

here because of WRF nesting, we focus exclusively on

the 15-km forecasts.

When 15-km EAKF analyses were required, the

EAKF produced separate, independent 45- and 15-km

analyses. The 45- and 15-km prior ensembles produced

by cycling EAKF-WRF systems were used as input into

hybrid analyses. Like the EAKF, all hybrid experiments

produced separate, independent 45- and 15-km analyses.

The three hybrid experiments differed in the resolution

of the ensemble perturbations ingested by the 15-km

hybrid analyses (which determined whether 15-km

EAKF analyses and ensemble forecasts were needed)

and whether the EAKF analysis ensemble was recen-

tered about the hybrid analysis (e.g., Zhang et al. 2013;

Wang et al. 2013; Pan et al. 2014):

1) ‘‘Hybrid_SR’’—separate, independent SR 45- and

15-km hybrid analyses were produced each DA

cycle. The 45-km hybrid analyses incorporated BECs

from the cycling 45-km EAKF-WRF ensemble sys-

tem, while the 15-km hybrid analyses used BECs

from the cycling 15-km EAKF-WRF ensemble sys-

tem. Since 15-km ensembles were needed for the

15-km SR hybrid, each ensemble member was ad-

vanced between analysis cycles with the 15-km nest

embedded within the 45-km domain. EAKF analysis

ensembles were not recentered about hybrid analyses.

Because of the necessity of 15-km ensembles, this

experiment was the most computationally expensive.

This experiment’s procedure is illustrated in Fig. 2.

2) ‘‘Hybrid_DR_1way’’—45-km hybrid analyses were

produced as in Hybrid_SR, but ensemble BECs for

15-km hybrid analyses were provided by 45-km prior

ensembles. Thus, the same 45-km ensembles pro-

vided BECs for 45-km SR hybrid analyses and 15-km

DRhybrid analyses. Since 15-km ensembles were not

required, the EAKF-WRF ensemble system per-

formed solely 45-km analyses, allowing for the re-

moval of the 15-km nest during the ensemble of

WRF Model advances between EAKF analyses,

enabling considerable savings compared to Hybrid_

SR. EAKF analysis ensembles were not recentered

about hybrid analyses. Omission of the recentering

step in Fig. 3 yields this experiment’s methodology.

3) ‘‘Hybrid_DR_2way’’—identical to Hybrid_DR_

1way, except the 45-km EAKF analysis ensembles

were recentered about hybrid analyses. Again, 15-

km ensembles were not needed, so the EAKF-WRF

ensemble system ran solely at 45-km horizontal grid

spacing. To perform recentering, first, the 15-km

hybrid analyses were upscaled to 45km and replaced

the 45-km hybrid analyses over the 45-km geographic

region collocated with the 15-km grid. Then, each 45-

kmEAKF analysis ensemble member was recentered

about the 45-km hybrid analysis that contained the

TABLE 2. SKEBS parameters.

Parameter Value

Backscatter dissipation rate for streamfunction 6 3 1026 m2 s23

Backscatter dissipation rate for temperature 5 3 1027 m2 s23

Decorrelation time ;30min

Power law for streamfunction perturbations 21.83

Power law for temperature perturbations 21.83
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upscaled 15-km hybrid analysis information. Figure 3

exactly depicts this experiment’s procedure. The cost

of recentering was negligible, and this experiment

had a similar cost as Hybrid_DR_1way.

A fourth experiment (‘‘3DVAR’’) configured exactly

as Hybrid_DR_1way was also performed, except pure

3DVAR analyses were produced in both the 45- and

15-km domains. This experiment was a control for and

considerably cheaper than the hybrid experiments be-

cause it did not require an ensemble. However, as SR

WRFDA-hybrid analyses have been shown to regularly

initialize better forecasts than WRFDA-3DVAR ana-

lyses (e.g., Wang et al. 2008b; Wang 2011; Barker et al.

2012; Li et al. 2012; Zhang and Zhang 2012; S13; Zhang

et al. 2013; Poterjoy and Zhang 2014; Li et al. 2015; Xu

et al. 2015), this work does not emphasize the relative

performance of the 3DVAR and SR hybrid experiments

and focuses on comparing the DR and SR hybrid sys-

tems. Nonetheless, it is important to consider whether

Hybrid_DR_1way can initialize 15-km forecasts that

outperform those initialized by a pure 3DVAR system

to justify its much greater cost.2

Comparison of Hybrid_SR with Hybrid_DR_1way

assesses the sensitivity to the resolution of the ensemble

FIG. 2. Flow chart describing a cycling EAKF and single-resolution hybrid system where

separate, independent 45- and 15-km EAKF and hybrid analyses are performed.

2We recognize that different 15-km Hybrid_DR_1way and

3DVAR forecasts cannot be solely attributed to differing 15-km

analysis systems because the 45-km forecasts providing LBCs for

the 15-km domain differed. To quantify the impact of 45-km LBCs

on 15-km forecasts, an auxiliary experiment was performed where

hybrid analyses were produced in the 45-km domain (as in Hybrid_

DR_1way) but 3DVAR analyses were produced in the 15-km

domain. This mixed hybrid–3DVAR experiment cost substantially

more than the pure 3DVAR experiment because 45-km ensembles

were required, yet initialized similar quality 15-km forecasts as the

pure 3DVAR experiment. Therefore, the impact of the 45-km

LBCs was small, and we attribute 15-km forecast differences be-

tween the pure 3DVAR andHybrid_DR_1way experiments to the

15-km analysis algorithms.
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perturbations, while comparing Hybrid_DR_1way with

Hybrid_DR_2way isolates whether recentering benefits

DR hybrid systems. Wang et al. (2013) and Pan et al.

(2014) noted little practical difference between SR hy-

brid systems with and without recentering steps. Addi-

tionally, S13 performed 45-km SR hybrid analyses for

this period and domain and noted little sensitivity to

whether recentering occurred, so, here, SR analyses with

EAKF recentering were not performed.

Results from these experiments are presented in

section 7.

5. Observations

As in S13, theWRFDAandEAKF systems assimilated

different observations, as summarized in Table 3. Be-

cause of this difference, we did not compare forecasts

initialized from EAKF mean and hybrid analyses and

solely used the EAKF system to produce ensembles for

hybrid DA purposes. Observations taken within 63h of

each analysis time were assimilated and observations

were assumed to be valid at the analysis time. A typical

distribution of observations available for assimilation at

0000 UTC is shown in Fig. 1. At this time, bogus tropical

cyclone (TC) observations produced as in Hsiao et al.

(2010) were distributed around Typhoon Sinlaku, and a

similar spatial distribution of TC bogus observations was

used for other TCs. Analyses in both domains only as-

similated observations located within their bounds,

meaning the 15-km analyses assimilated fewer observa-

tions than the 45-km analyses.

All observations were subject to various forms of

quality control, as in S13. Observations above the

model top were excluded from assimilation and at

stations where multiple observations were received

during the 63-h time window, only the observation

nearest the analysis time was kept. Additionally,

‘‘outlier checks’’ were applied. In the hybrid, an ob-

servation was not assimilated if its innovation exceeded

5so, where so is the observation error standard de-

viation. As in S13, a different outlier check was applied

in DART compared to that in the hybrid to account for

FIG. 3. Flow chart describing a cycling EAKF and DR hybrid system where the EAKF analysis ensemble is

recentered about the hybrid analysis.
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ensemble spread. Specifically, the EAKF did not as-

similate an observation if the ensemble mean in-

novation was greater than 3 times the square root of the

sum of s2
o and s2

f , where s
2
f is the ensemble variance of

the simulated observation.

6. Results: Single-observation experiments

To understand hybrid analysis sensitivity to the reso-

lution of ensemble perturbations, two separate sets of

hybrid analyses were performed where solely a single

observation was assimilated. The two sets differed by

the location of the observation—onewas placed within a

strong typhoon and the other in westerly flow. Within

each set, SR and DR hybrid analyses were performed

that differed by the resolution of the ensemble pertur-

bations. The SR analyses used the 15-km ensemble

produced in Hybrid_SR to provide BECs whereas the

DR analyses used BECs provided by the 45-km en-

semble produced in Hybrid_DR_1way. To ensure that

analysis differences were solely attributable to the dif-

ferent ensembles, the background for all single-

observation experiments was the 15-km Hybrid_DR_

1way background valid at 0000 UTC 12 September. As

in the real data experiments (section 7), the ensemble

(static) BECs contributed 75% (25%) to the total BECs.

a. Single observation in typhoon core

A single 500-hPa temperature observation placed

near the center of Typhoon Sinlaku that was 2 K colder

than the background (i.e., innovation of 22 K) with an

error standard deviation of 1 K was assimilated. There

were many differences between the 15-km SR and DR

increments. For example, the SR hybrid 500-hPa po-

tential temperature (u) increments (Fig. 4a) were more

negative near the observation than the DR hybrid

analysis increments (Fig. 4b), indicating the SR analysis

more closely fit the observation. Additionally, while

both increments were positive west of the observation,

northeast of Taiwan, the DR increments were slightly

negative or neutral while the SR increments were posi-

tive. Furthermore, the DR analysis had a greater area of

negative increments north and east of the observation.

Everywhere, the SR increments had more finescale de-

tail than the DR increments, and the circulation around

Sinlaku was more prominent in the SR increments.

Similarly, near the observation location, the 15-km

500-hPa water vapor mixing ratio increments (Figs. 5a,b)

were larger in the SR analysis. While the DR and SR

moisture increments were broadly similarwest of;1238E,
there were substantial differences near and east of the

observation. Specifically, the DR increments were more

TABLE 3. Assimilated meteorological observations in the WRFDA-hybrid and DART systems. See Schwartz et al. (2013) for more

information.

Observing platform

Observation type assimilated

in WRFDA-hybrid

Observation type

assimilated in DART Notes

Radiosonde Surface pressure Surface pressure

Temperature Temperature

Specific humidity Specific humidity

Wind Wind

Aircraft Temperature Temperature DART: superobbed into 100 km 3
100 km 3 25 hPa boxesWind Wind

Global positioning system

radio occultation (GPSRO)

Refractivity Refractivity

Satellite-tracked winds Wind Wind DART: assimilated over water only

DART: superobbed in 100 km 3
100 km 3 25 hPa boxes

QuikScat Wind Not assimilated WRFDA-hybrid: assimilated over

water only

Ship and buoy Surface pressure Surface pressure

Temperature Temperature

Specific humidity Specific humidity

Wind Wind

SYNOP and METAR Surface pressure Surface pressure

Temperature

Specific humidity

Wind

Bogus Temperature DART: only assimilated at 700 hPa

Specific humidity Relative humidity

Wind Wind

3462 MONTHLY WEATHER REV IEW VOLUME 143



negative immediately west of the observation, and the SR

and DR increments had opposite signs at many locations

east of ;1258E. Both increments clearly captured the

circulation around the typhoon, illustrating the in-

corporation of flow-dependent BECs in the hybrid, but

the SR increments featured more banded structures and

greater detail than did the DR increments.

Those disparities between the SR and DR hybrid in-

crements can largely be explained by differences re-

garding the 45- and 15-km ensembles that provided the

BECs for the analyses. Figures 4c and 4d show the 15-

and 45-km ensemble standard deviations of 500-hPa

u (after inflation3) at 0000 UTC 12 September overlaid

with the ensemble mean 500-hPa height. The 15-km

ensemble had a stronger TC than the 45-km ensemble,

consistent with the expectation that HR models can

better resolve strong TCs than LR models (e.g., Xue

et al. 2013). In most areas, the 15-km ensemble had

FIG. 4. The 15-km, 500-hPa potential temperature analysis increments at 0000 UTC 12 Sep for (a) SR and (b) DR

analyses that assimilated a single observation at the location indicated by asterisks. The background 500-hPa height

(m; contoured every 40m) is overlaid. The 500-hPa potential temperature (c) 15- and (d) 45-km prior ensemble

standard deviations (after inflation) at 0000 UTC 12 Sep overlaid with the ensemble mean prior 500-hPa height (m;

contoured every 40m). The asterisks in (c) and (d) mark the locations of the single assimilated observation that

produced increments in (a) and (b). Note that the height fields in (a),(b) differ from those in (c),(d) because the

heights in (a),(b) were from the deterministic background while those in (c),(d) were from the ensemble mean.

3 Here and throughout the paper, qualitatively, examination of

the 15- and 45-km standard deviations before inflation yielded

identical conclusions compared to assessing the spreads after

inflation.
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larger u spread than the 45-km ensemble, which per-

mitted the SR analysis greater ability to adjust toward

the observation than the DR analysis. The 15-km en-

semble u spread was organized into bands associated

with the TC, while the 45-km ensemble u spread had

less-coherent spiraling structures. However, the 45-km

500-hPa ensemble water vapor mixing ratio spread (af-

ter inflation) more clearly reflected the TC, but the

15-km spread again had more banding and generally

larger standard deviations (Figs. 5c,d). Overall, the SR

and DR increments usually reflected the ensemble

spreads, as the largest increments often corresponded to

those regions where ensemble spread was greatest.

b. Single observation in midlatitude westerly flow

The second set of single-observation experiments

assimilated a 500-hPa temperature observation placed at

358N, 1208E, on the southern periphery of the jet stream.

Again, the observation error standard deviation and in-

novation were 1 and22 K, respectively. For this case, the

SR and DR 500-hPa u increments were remarkably

similar (Figs. 6a,b), although the SR increments again had

finer structures. Furthermore, the 500-hPa 45- and 15-km

u spreads (after inflation) over this region were broadly

similar (Figs. 6c,d) and small compared to spread near the

TC core. Thus, the increments were smaller than those

near the TC core. For other meteorological variables and

vertical levels, the DR and SR increments were also very

similar (not shown).

c. Discussion

The extent of the differences between the SR and DR

hybrid analysis increments depended on the nature of the

flow. These single-observation tests suggest that DR and

FIG. 5. As in Fig. 4, but for 500-hPa water vapor mixing ratio.
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SR hybrid analyses will potentially be most disparate

around small-scale features that HR ensembles can bet-

ter resolve than LR ensembles. In these cases, HR en-

sembles can be expected to better represent uncertainty,

which should lead to more spread compared to LR en-

sembles. Conversely, in regimes where synoptic-scale

flow dominates, HR and LR ensembles are more likely

to resolve features similarly, and these single-observation

tests suggest that for large-scale patterns, SR and HR

hybrid analyses may be quite similar.

The next section objectively verifies the analyses and

forecasts produced by the SR and DR hybrid systems

that assimilated real observations.

7. Results: Real-data experiments

Model output was compared to TC track, radiosonde,

and dropwindsonde observations. Aspects of the en-

semble forecasts were also examined since they are

important inputs to the hybrid. The first ;5 days of the

simulations were excluded from all verification statistics

to allow ample time for the ensemble to ‘‘spin up’’ from

the initial, randomly generated ensemble.

Statistical significance was assessed by a bootstrap

resampling technique (Wilks 2006). For each experiment

and 1000 iterations, random samples (with replace-

ment) were drawn from the distribution of daily error

statistics and aggregate error statistics were computed

from the daily resamples. The 90% confidence interval

(CI) was estimated from the distribution of the re-

sampled aggregate statistics. If the bounds of two

experiments’ CIs did not overlap, then the two exper-

iments had statistically significant (SS) differences at

the 95% level.

Bootstrap CIs were also computed based upon pair-

wise differences of two experiments’ errors (e.g., Hamill

1999; Davis et al. 2010; Schwartz and Liu 2014), which,

assuming the two distributions have similar variances, is

more robust than and yields larger significance levels

compared to bootstrapping distributions separately.

However, for metrics other than TC track errors, boot-

strap CIs based on pairwise differences yielded identical

conclusions as when CIs were computed for individual

distributions. Thus, for ease of presentation, aside from

TC track errors, we present bootstrap CIs based on

unpaired resamples.

a. Ensemble performance

A high quality prior ensemble is instrumental in per-

forming successful hybrid analyses. In a well-calibrated

FIG. 6. As in Fig. 4, but increments were engendered by assimilation of a different observation, whose location is

indicated by the asterisks.
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EnKF analysis–forecast system, when compared to ob-

servations, the prior ensemble mean root-mean-square

error (RMSE) will equal the prior ‘‘total spread,’’ de-

fined as the square root of the sum of the observation

error variance and prior ensemble variance of the sim-

ulated observations (Houtekamer et al. 2005). There-

fore, the ratio of the prior total spread to the prior

ensemble mean RMSE, called the ‘‘consistency ratio’’

(CR; Dowell andWicker 2009), should equal 1 in a well-

calibrated system. CRs, 1 indicate insufficient ensemble

spread.

To enable comparison between the 45- and 15-km

prior ensembles, verification occurred against a data-

set composed solely of radiosonde observations as-

similated by both the 15- and 45-km EAKFs. The

15- and 45-km ensembles were produced in Hybrid_SR

and Hybrid_DR_1way, respectively. The prior RMSE,

total spread, and ensemble mean additive bias (after

inflation) aggregated between 1800 UTC 8 September

and 0000 UTC 28 September are shown in Fig. 7 for

radiosonde observations. Both ensembles had com-

parable wind biases and RMSEs (Figs. 7a,b), and the

total spread agreed well with the RMSEs at most

levels. The 45-km ensemble had statistically signifi-

cantly poorer temperature biases and RMSEs (Fig. 7c)

than the 15-km ensemble at 850 and 925 hPa but per-

formed comparably to or better than the 15-km en-

semble at higher levels. For temperature observations,

both ensembles had similar total spread that was

greater than the corresponding RMSEs between;400

and 200 hPa. Regarding specific humidity, at 500,

700, and 850 hPa, both ensembles had comparable

RMSEs and dry biases (Fig. 7d). However, at and below

925 hPa, the 15-km ensemble had lower RMSEs than

the 45-km ensemble and there were moist biases, al-

though the 15-km ensemble bias was statistically

FIG. 7. Average prior total spread, ensemble mean RMSE, and ensemble mean bias (after inflation) of radiosonde

(a) zonal wind (m s21), (b) meridional wind (m s21), (c) temperature (K), and (d) specific humidity (g kg21) between

1800 UTC 8 Sep and 0000 UTC 28 Sep. The sample size at each pressure level is shown at the right of each panel.

Error bars denote bounds of 90% confidence intervals.
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significantly smaller. Throughout the column, the

15-km ensemble had more moisture spread than the

45-km ensemble, but both ensembles had insufficient

spread at most levels.

Both ensembles had CRs near 1 at most levels for

wind (Figs. 8a,b), with the 15-km ensemble performing

significantly better below 700hPa. For temperature ob-

servations (Fig. 8c), at and above 500 hPa, the 45- and

15-km ensembles had comparable CRs, but below

500hPa the 15-km ensemble had CRs closer to 1 than

the 45-km ensemble, except near 1000 hPa. Similarly,

45-kmCRs for specific humidity were significantly closer

to 1 than the 15-km ensemble near 1000hPa (Fig. 8d),

but at all other levels, the 15-km CRs for moisture were

statistically significantly nearer to 1 than the 45-kmCRs.

It is also interesting to examine the spatial distribution

of the 45- and 15-km ensemble spreads. The average

prior ensemble standard deviation (after inflation) of

500-hPa wind speed between 1800 UTC 8 September

and 0000 UTC 28 September (Figs. 9a,b) was smallest

over eastern China, where observations were plentiful,

and portions of the Pacific Ocean, where there was little

uncertainty about the location of the subtropical high

pressure system. The 15-km ensemble had slightly

higher spread in most areas. Similar patterns were evi-

dent with the mean 500-hPa potential temperature

spread (Figs. 9c,d). A local spread maximum was evi-

dent in both 500-hPa wind and potential temperature

southeast of Taiwan, where three TCs moved, reflecting

the uncertainty of TC prediction.

Consistent with Fig. 9, the 15-km ensemble typically

had more spread than the 45-km ensemble throughout

the column, as evidenced by the domain average prior

ensemble standard deviations (after inflation) between

1800 UTC 8 September and 0000 UTC 28 September

(Fig. 10). The 45-km statistics were computed solely

over the portion of the 45-km domain collocated with

the 15-km nest. At most levels for wind and water vapor

mixing ratio (Figs. 10a,b,d), the 15-km ensemble had

greater spread than the 45-km ensemble, but the 15-km

FIG. 8. As in Fig. 7, but for consistency ratios.
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ensemble spread was typically at most 10% greater than

the 45-km ensemble spread. Differences between the

15- and 45-km ensemble potential temperature spread

(Fig. 10c) were small compared to those for other vari-

ables except above model level 40.

Overall, both the 15- and 45-km ensembles were

reasonably well calibrated, as CRs were typically

within 10% of 1 for most levels and variables. The

15-km ensemble CRs were usually comparable to or

better than the 45-km CRs, and the 15-km ensemble

performed notably better than the 45-km ensemble

below ;700 hPa, particularly for temperature and

moisture. Additionally, the 15-km ensemble had

greater spread than the 45-km ensemble, which is

sensible, since errors on HR grids grow faster than

those on LR grids (e.g., Lorenz 1969). Yet, the dif-

ferences in spread were usually small, and the next

subsection assesses how these different ensemble

spreads impacted the DR and SR hybrid analysis

systems.

b. Mean hybrid background and analysis
characteristics

Fits to observations were aggregated over each

15-km hybrid background (6-h forecasts) and analysis

between 1800 UTC 8 September and 0000 UTC

28 September (78 total). All backgrounds had similar

aggregate fits to radiosonde observations at most

levels (Fig. 11), which suggests all hybrid systems had

similar quality. Additionally, there were no SS

differences regarding aggregate analysis fits to radio-

sonde observations (not shown). However, Hybrid_

SR analysis root-mean-square fits compared to

radiosondes were smaller than those of Hybrid_DR_

1way for wind and specific humidity, which is consis-

tent with the 15-km ensemble having slightly more

FIG. 9. Average prior ensemble standard deviation (after inflation) of 500-hPa (a),(b) wind speed (m s21) and (c),(d)

potential temperature (K) between 1800 UTC 8 Sep and 0000 UTC 28 Sep for the (a),(c) 45- and (b),(d) 15-km

ensembles.
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spread than the 45-km ensemble for these variables

(e.g., Fig. 10).

The mean 15-km Hybrid_DR_1way and Hybrid_SR

500 hPa potential temperature (Figs. 12a,b) and

700-hPa water vapor mixing ratio (Figs. 12c,d) analysis

increments between 1800 UTC 8 September and

0000 UTC 28 September were very similar, although

the Hybrid_SR patterns were less smooth. Further-

more, the meanHybrid_DR_1way andHybrid_SR 500

and 700-hPa heights (overlaid in Fig. 12) were re-

markably similar. The corresponding Hybrid_DR_

2way increments and heights were also similar to those

of Hybrid_DR_1way and Hybrid_SR (not shown).

Despite the 15-km Hybrid_SR analyses sometimes

fitting observations slightly closer than the other

analyses, the mean increments and prior fits to obser-

vations suggest that the three 15-km hybrid DA sys-

tems performed similarly, on average. We now assess

FIG. 10. Domain average prior ensemble standard deviations (after inflation) between 1800 UTC 8 Sep and

0000 UTC 28 Sep for (a) zonal wind (m s21), (b) meridional wind (m s21), (c) potential temperature (K), and

(d) water vapor mixing ratio (g kg21). The approximate pressures (hPa) of selected model levels are shown along the

right axes of (b) and (d). The 45-km statistics were computed solely over the portion of the 45-km domain collocated

with the 15-km domain.
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whether these similar analyses translated into compa-

rable forecasts.

c. Forecast verification

1) TROPICAL CYCLONE TRACK FORECASTS

TC track forecasts were verified as in S13 using ‘‘best

track’’ positions from the CWB as ‘‘truth.’’ TC positions

were diagnosed using a DART forward operator that

locates TCs using 800-hPa circulation (e.g., Cavallo et al.

2013). Track error statistics for each storm were com-

puted from multiple WRF Model forecasts spanning the

lifetime of each TC (Table 4), and the track of each TC is

shown in Fig. 13a. Homogeneous quantitative compari-

sons were produced based on TCs that all experiments

successfully predicted. We note that physical processes

too small to be resolved with 15-km horizontal grid

spacing impact TCmotion, and, thus, results regarding the

relative performance of higher-resolution SR and DR

hybrid systems for TC track forecastsmay differ fromours.

Figure 13b shows mean absolute track errors and

sample sizes at each forecast hour averaged over all

three TCs. Horizontal lines are ‘‘zero’’ lines for 90%

bootstrap CIs based upon pairwise differences of two

experiments’ errors, and if the CI did not include zero,

then differences between the experiments’ errors were

statistically significantly different at the 95% level. The

Hybrid_DR_1way and Hybrid_DR_2way track errors

were very similar, but track errors from Hybrid_SR

were smallest and statistically significantly better at the

95% level compared to Hybrid_DR_1way at four fore-

cast times. All TC track forecasts initialized by hybrid

analyses had smaller errors than the corresponding

3DVAR-initialized forecasts, with Hybrid_DR_1way

FIG. 11. RMSE (solid lines) and bias (dashed lines) for verification vs radiosonde (a) zonal wind (m s21),

(b) meridional wind (m s21), (c) temperature (K), and (d) specific humidity (g kg21) observations aggregated over all

15-km backgrounds (6-h forecasts) between 1800 UTC 8 Sep and 0000 UTC 28 Sep. The sample size at each level is

denoted to the right of each panel. Error bars denote bounds of 90% confidence intervals.
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having statistically significantly smaller errors at the

95% level at eight times.

2) VERIFICATION VERSUS RADIOSONDE

OBSERVATIONS

The 15-km model output was also verified against

radiosonde observations at several forecast times. Sta-

tistics were aggregated over 78 forecasts initialized every

6h between 1800 UTC 8 September and 0000 UTC

28 September.

At 24h, all hybrid experiments had similar RMSEs

and biases compared to radiosonde observations

(Fig. 14). The 3DVARRMSEswere often slightly larger

than the hybrid experiments’ RMSEs, but the differ-

ences were not SS at the 95% level. Similar patterns with

no SS differences were also noted both for verification

versus other observation types (e.g., aircraft observa-

tions) and at later forecast times (not shown).

FIG. 12. The 15-km, 500-hPa potential temperature analysis increments (K), wind vector increments (arrows),

andmean background 500-hPa height (m) averaged between 1800UTC 8 Sep and 0000UTC 28 Sep for (a) Hybrid_

SR and (b) Hybrid_DR_1way. (c),(d) As in (a),(b), but for 700-hPa water vapor mixing ratio increments (g kg21),

wind vector increments, and mean background height. Hatching in (c) and (d) indicates those areas where the

700-hPa surface was underground. Heights are contoured every 25m in (a),(b) and every 20m in (c),(d).

TABLE 4. The beginning and ending times that were verified for

each TC.

Storm Beginning time Ending time

Sinlaku 1800 UTC 8 Sep 0600 UTC 20 Sep

Hagupit 1200 UTC 19 Sep 1800 UTC 24 Sep

Jangmi 1200 UTC 24 Sep 0000 UTC 1 Oct
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3) VERIFICATION VERSUS DROPWINDSONDE

OBSERVATIONS

As inS13, forecastswerealso compared todropwindsonde

observations taken during The Observing System

Research and Predictability Experiment (THORPEX)

Pacific Asian Regional Campaign (T-PARC; Elsberry

and Harr 2008; Wang et al. 2010). These observa-

tions were not assimilated and provide an independent

dataset for model validation. Most dropwindsondes

sampled meso-a-scale environments surrounding

the TCs (see Fig. 12 in S13 for dropwindsonde locations).

At 24h (Fig. 15), consistent with verification versus

radiosondes, there were no SS differences at the 95%

level between the three hybrid experiments. Of the hy-

brid experiments, Hybrid_SR had the highest RMSEs

for zonal wind below 500hPa (Fig. 15a) and specific

humidity between 700 and 850hPa (Fig. 15d). However,

the 3DVAR RMSEs were usually largest, particularly

for wind. At later forecast times, Hybrid_SR and

Hybrid_DR_1waywindRMSEswereusuallymore similar,

and, again, there were no SS differences between the

experiments at the 95th percentile (not shown).

4) DISCUSSION

A general lack of SS differences (at the 95th percentile)

between the various hybrid experiments was consistent

across the different verificationmetrics.However, while all

verification scores indicated hybrid experiments usually

performed better than the 3DVAR experiment, the sta-

tistical significance between the 3DVAR and hybrid re-

sults differed depending on the verifying observations.

Verification against radiosondes primarily measured

forecast accuracy over land (Fig. 1). It is unsurprising that

the 3DVAR and hybrid forecasts were most similar over

land, as many land-based observations were present to

constrain analyses, lessening the importance of the BECs.

Conversely, comparing forecasts to TC center locations

and dropwindsondes measured forecast performance over

the sea, where observations were relatively sparse.

Therefore, the BECs assumed more importance in mari-

time regions, and, indeed, the hybrid and 3DVAR ex-

periments differed more over oceanic areas, with

aggregate TC track error and dropwindsonde statistics

clearly favoring the hybrid experiments (Figs. 13b and 15).

However,while aggregate 3DVARTC track errorswere

statistically significantly worse than aggregate hybrid TC

track errors at the 95% level for eight forecast times

(Fig. 13b), because of wide CIs, there were no SS differ-

ences at the 95th percentile between the 3DVAR and hy-

brid experiments for dropwindsonde verification, despite

generally superior hybrid statistics (Fig. 15). Although

temporal correlation of forecast errors may have contrib-

uted to ambiguity regarding statistical significance, wide

CIs suggested considerable forecast accuracy variability in

near-TC environments, whichwas confirmed by examining

the distributions of daily biases and RMSEs compared to

dropwindsondes (not shown). That forecast goodness var-

ied considerably aroundTCs seems reasonable, as forecasts

in these regions are sensitive to even small errors regarding

not only TC track, but also intensity and structure, because

of sharp gradients associated with TCs.

Thus, regarding dropwindsonde verification, we sug-

gest the absence of statistical significance at the 95th

FIG. 13. (a) Best track positions of TCs Sinlaku,Hagupit, and Jangmi. Locations are plotted every 6 h. See Table 4 for the starting and ending

times of each storm. (b)Mean 0–72-h absolute track errors (km) averaged over the three TCs. The sample size at each forecast hour is denoted

along the top axis.Horizontal lines are ‘‘zero lines’’ for 90%bootstrapCIs based upon track error differences between pairs of experiments. The

differences between two experiments were statistically significant at the 95% level if the bounds of the 90% CI did not include zero.

3472 MONTHLY WEATHER REV IEW VOLUME 143



percentile be interpreted as an indication of wide vari-

ability and not as evidence that the 3DVAR and hybrid

experiments performed similarly. Moreover, despite the

lack of statistical significance at the 95th percentile,

dropwindsonde verification statistics complemented TC

track error statistics by indicating the hybrid experiments

collectively performed best over ocean. Overall, our re-

sults are consistent with previous studies showing that

flow-dependent BECs often provide the greatest benefit

compared to static BECs over regions with relatively few

observations (e.g., Hamill and Snyder 2000; Whitaker

et al. 2008; Buehner et al. 2010; Kleist and Ide 2015).

8. Summary and conclusions

DR hybrid analysis capability was implemented

within the community WRFDA system. The DR hybrid

combines observations, a HR background, and an LR

ensemble to produce a deterministic HR analysis, per-

mitting considerable computational savings compared to

an SR hybrid configuration. DR and SR experiments were

performed that produced new hybrid analyses every 6h

within a continuously cycling frameworkover a;3.5-week

period and initialized 72-hWRFModel forecasts. Both the

DRandSRhybrid systems ingested flow-dependentBECs

provided by 32-member ensembles that were updated by

an EAKF, and different DR configurations examined

whether it was preferable to recenter EAKF analysis en-

sembles about DR hybrid analyses. The DR system

combined 15-km backgrounds with 45-km ensembles,

while the SR system combined backgrounds and ensem-

bles with equal, 15-km horizontal grid lengths.

On average, 15-km prior ensembles had slightly more

spread than 45-km prior ensembles. However, the mean

FIG. 14. Average RMSE (solid lines) and bias (dashed lines) vs radiosonde (a) zonal wind (m s21), (b) meridional wind

(m s21), (c) temperature (K), and (d) specific humidity observations averaged over all 24-h, 15-km forecasts. The sample

size at each level is denoted to the right of each panel. Error bars denote the bounds of the 90% confidence intervals.
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15-km SR and DR hybrid analysis increments and prior

fits to radiosonde observations were very similar.

Overall, 15-km forecasts of wind, temperature, and

moisture initialized by 15-km DR and SR hybrid anal-

yses were comparable and not statistically significantly

different. However, Hybrid_SR TC track forecast errors

were clearly—but only sometimes statistically signifi-

cantly—smaller than those of the DR experiments. That

the most consistent difference between the SR and DR

configurations involved TC forecasts agrees with the

expectation that HR and LR ensembles will be most

different around small-scale features (e.g., section 6).

Recentering EAKF analysis ensembles about DR hy-

brid analyses only had a small impact, commensurate

with previous studies (e.g., Clayton et al. 2012; S13;

Wang et al. 2013; Pan et al. 2014). As the recentering

procedure simply shifts the ensemble perturbations

without changing their amplitudes, this small impact was

not surprising. The various hybrid-initialized 15-km

forecasts improved upon those initialized by 15-km

3DVAR analyses, particularly for TC track, where

many differences were SS at the 95% level.

These collective results suggest that DR hybrid ana-

lyses can often initialize similar quality forecasts as SR

hybrid analyses, although SR systems may be preferable

for forecasting smaller-scale features, including TCs.

However, we only examined a ;3.5-week period and

thus encourage further experimentation with DR and

SR hybrid systems over longer time periods to further

understand how ensemble perturbation resolution im-

pacts analyses and forecasts.

Practically, users should carefully consider whether

any gains in forecast skill from SR systems are worth

the added computational cost. For our experiments, the

15-km DR analyses completed ;3 times faster than the

15-km SR analyses because the DR hybrid had fewer

extended control variables. Additionally, during the

ensemble of WRF Model advances between EAKF

FIG. 15. As in Fig. 14, but for 24-h forecast verification vs dropwindsonde observations.
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analyses, the DR configuration realized approximately a

sixfold savings compared to the 15-km SR hybrid because

the 15-km nest was removed in the DR configuration for

each ensemble member (e.g., Fig. 3). Moreover, the

15-km SR hybrid necessitated ;4 times more disk space

than the 15-km DR hybrid, as the 15-km SR hybrid re-

quired storage of 15-km perturbations, whereas the 15-

kmDR hybrid solely needed 45-km perturbations. These

savings could be utilized for many purposes, including

increasing the ensemble size or resolution of the de-

terministic background.

Here, the HR horizontal grid spacing was 3 times finer

than the LR horizontal grid length. As the ratio of LR to

HR horizontal grid spacing increases, so do the com-

putational savings, but a larger grid ratio may translate

into greater differences between SR and DR hybrid

analysis–forecast systems than are documented here.

Additionally, an important question regards the util-

ity of DR hybrid systems at increased resolution, par-

ticularly when the background is at sufficiently fine

resolution that convective parameterization (CP) can be

removed but the ensemble resolution is coarse enough

that CP is required. In such a configuration, the CP

scheme may engender very different bias characteristics

(e.g., Romine et al. 2013) in the prior ensemble com-

pared to those of the convection-allowing background.

It is unclear how much of an impact this disparity may

have, but this topic demands investigation as NWPmodels

continue their progression toward higher resolution.
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