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[1] The capability of assimilating surface PM10 (particulate matter with diameters less than
10 mm) observations has been developed within the National Centers for Environmental
Prediction Gridpoint Statistical Interpolation three-dimensional variational (3DVAR) data
assimilation (DA) system. It provides aerosol analyses for the Goddard Chemistry Aerosol
Radiation and Transport aerosol scheme within the Weather Research and Forecasting/
Chemistry model. Control and assimilation experiments were performed for June 2011 over
China to explore in detail the impact of assimilating surface PM10. In the assimilation
experiment, analyses were produced every 6 h to adjust the mass concentrations of different
aerosol species. The statistical results from two parallel experiments demonstrate that the
assimilation of surface PM10 observations can significantly reduce the uncertainty of initial
aerosol fields and effectively improve the subsequent aerosol forecasts for at least 12 h.
However, the benefit from the assimilation of PM10 diminishes rapidly with forecast range.
Process analysis for PM10 formation indicates that the rapidly diminishing DA impact on
aerosol forecasts, especially in early forecast hours, was dominated by vertical mixing with
an additional contribution from advection. Both processes were mainly related to
unbalanced aerosol fields in the horizontal and vertical after assimilating surface
observations. These findings illustrate the importance of adjusting aerosol emission rates
and the initial aerosol vertical profile.

Citation: Jiang, Z., Z. Liu, T. Wang, C. S. Schwartz, H.-C. Lin, and F. Jiang (2013), Probing into the impact of 3DVAR
assimilation of surface PM10 observations over China using process analysis, J. Geophys. Res. Atmos., 118, 6738–6749,
doi:10.1002/jgrd.50495.

1. Introduction

[2] Considerable progress has been made in recent years to
reduce large uncertainties involved with numerical predic-
tion of atmospheric aerosols [e.g., Hakami et al., 2005;
Henze et al., 2007, 2009; Yumimoto et al., 2007, 2008a,
2008b; Dubovik et al., 2008; Benedetti et al., 2009;
Pagowski et al., 2010; Pagowski and Grell, 2012; Liu
et al., 2011; Schwartz et al., 2012]. These uncertainties can
usually be attributed to inaccurate aerosol emissions and
initial conditions (ICs) and deficiencies in the modeling
system (e.g., nonlinear physical processes such as advection,
diffusion, radiative effects, and cloud and precipitation
formation). Data assimilation (DA), as a method to improve
the model ICs, has been widely applied to operations and
research in numerical weather prediction [e.g., Parrish and

Derber, 1992; Lorenc et al., 2000; Rabier et al., 2000;
Gauthier et al., 2007; Kalnay, 2010] for decades.
[3] However, aerosol DA remains in its infancy. Similar to

meteorological DA, a variety of algorithms such as optimal
interpolation (OI), two-dimensional variational (2DVAR),
three-dimensional variational (3DVAR), four-dimensional
variational (4DVAR), and ensemble Kalman filter (EnKF)
DA techniques have been used in aerosol DA. Several
attempts have recently been made to assimilate aerosol obser-
vations into numerical models with the purpose to improve
the ICs. However, most of them have focused on assimilating
satellite-derived aerosol products, due to their global cover-
age, especially aerosol optical depth (AOD) (e.g., OI
[Collins et al., 2001; Yu et al., 2003; Generoso et al., 2007;
Adhikary et al., 2008], Newtonian-nudging [Wang et al.,
2004], 2DVAR [Zhang et al., 2008; Schroedter-Homscheidt
et al., 2010], 3DVAR [Liu et al., 2011; Schwartz et al., 2012],
and 4DVAR [Benedetti et al., 2009]). For instance, Liu
et al. [2011] developed a 3DVAR algorithm to assimilate
AOD retrievals from Moderate Resolution Imaging
Spectroradiometer (MODIS) sensors while studying a dust
storm in East Asia.
[4] Comparatively less work has been done to assimilate

surface aerosol observations into ICs. Lin et al. [2008a] as-
similated surface PM10 (particulate matter with diameters
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less than 10 mm) observations in North China with an EnKF.
Using the OI method, Tombette et al. [2009] assimilated sur-
face PM10 over Europe and Lee et al. [2013] assimilated
PM10 over South Korea. Pagowski et al. [2010] applied a
3DVAR approach to assimilate surface PM2.5 (particulate
matter with diameters less than 2.5 mm) observations over
the continental United States (CONUS), and Pagowski and
Grell [2012] used an EnKF for PM2.5 DA over the
CONUS. Moreover, both MODIS AOD and surface PM2.5

observations were assimilated separately and together over
the CONUS to illustrate the synergistic effect of assimilating
different aerosol observations on aerosol forecasts [Schwartz
et al., 2012]. These studies mostly demonstrated that along
with successful DA of aerosol-related observations from both
ground networks and satellite platforms, the adjusted aerosol
ICs substantially improved subsequent aerosol forecasts at
short ranges (~1–2 day) but not at extended periods. Also,
when solely assimilating surface particulate matter observa-
tions, the DA impact on aerosol forecasts fades very quickly
in the early forecast hours [Tombette et al., 2009; Pagowski
et al., 2010; Schwartz et al., 2012; Lee et al., 2013].
[5] However, the studies mentioned above did not provide

quantitative explanations regarding the rapidly diminishing
DA impact of surface aerosol observations. Process analysis
(PA) [e.g., Jeffries and Tonnesen, 1994; Jang et al., 1995;
Tonnesen, 1995, Tonnesen and Dennis, 2000a, 2000b;
Jiang et al., 2003; Huang et al., 2005; Zhang et al., 2009b;
Liu et al., 2010], a mass balance analysis technique, may
identify the main sources contributing to the rapidly
diminishing DA impact by providing quantitative informa-
tion on the formation mechanisms of gaseous and PM pollut-
ants from various chemical and physical processes. Fewer
PA studies have been undertaken that examine the formation
of PM pollutants compared to those of gaseous pollutants.
Previous studies [e.g., Zhang et al., 2009b; Liu et al., 2010]

indicated that emissions, horizontal transport (including
horizontal advection and diffusion), aerosol processes (e.g.,
gas-to-particle conversion processes), and cloud processes
contribute the most to PM production and removal in the
atmospheric boundary layer. However, at most surface sites,
emission processes and vertical transport (including vertical
advection and diffusion) are the predominant contributors
to PM accumulation and loss. The contribution from dry
deposition is relatively small.
[6] An aerosol 3DVAR DA framework has been devel-

oped by Liu et al. [2011] (hereafter L11) within the
National Centers for Environmental Prediction (NCEP)
Gridpoint Statistical Interpolation (GSI) 3DVAR DA system
[Wu et al., 2002; Kleist et al., 2009], coupled to the Goddard
Chemistry Aerosol Radiation and Transport (GOCART)
aerosol scheme [Chin et al., 2000, 2002; Ginoux et al.,
2001] within the Weather Research and Forecasting/
Chemistry (WRF/Chem) model [Grell et al., 2005]. L11 first
implemented MODIS AODDA and applied it to a dust storm
event over East Asia. Schwartz et al. [2012] (hereafter S12)
further extended the system to allow the simultaneous assim-
ilation of bothMODIS AOD and surface PM2.5. In this study,
surface PM10 assimilation capability is implemented within
the same framework. To the author’s knowledge, this is the
first attempt to assimilate the hourly ground-based PM10 ob-
servations within a 3DVARDA system. Furthermore, PA ca-
pability for PM10 is also added into WRF/Chem to better
understand the mechanisms of the fast-fading DA impact
on aerosol forecasts.
[7] The next section provides a brief description of the

WRF/Chemmodel and GSI DA system. The technical imple-
mentation of PM10 DA in the GSI 3DVAR system is given in
section 3. The experimental design is described in section 4.
The impact of PM10 DA and PA is detailed in section 5 be-
fore concluding in section 6.

2. Modeling and DA Systems

[8] The modeling and DA systems used here were described
by L11 and S12. Therefore, generally brief descriptions follow,
and important differences are noted.

2.1. WRF/Chem Model Configurations

[9] In this study, version 3.3.1 of the WRF/Chem model
[Grell et al., 2005] was used to simultaneously predict
weather and atmospheric composition. WRF/Chem is an
“online” model, as its chemical and meteorological compo-
nents are fully coupled. Same as L11 and S12, GOCART
was chosen as the aerosol option. The original GOCART
simulates 14 tropospheric aerosol types including sulfate,

Figure 1. The model domain and the observation network
with model topography (m). The open circles depict loca-
tions of measurement sites used for PM10 assimilation cycles
and PM10 forecast verification.

Table 1. Statistics Comparing the Lowest Model Level PM10 Mass
Concentrations From the Control and Assimilation Experiments,
Calculated Against Observations From the MEP Network Over
All 0000 and 1200 UTC Analyses During 01 to 28 June 2011

Exp. Name
Analyses Mean Obs. Mean Sim. BIAS RMSE

CORRTime (UTC) (mg/m3) (mg/m3) (mg/m3) (mg/m3)

Control 0000 77.16 54.66 �22.50 52.94 0.414
1200 68.88 83.68 14.80 54.70 0.395

Assimilation 0000 77.16 69.31 �7.84 21.32 0.944
1200 68.88 71.30 2.43 21.19 0.887
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organic carbon (OC), black carbon (BC), mineral dust in five
particle-size bins (effective radii of 0.5, 1.4, 2.4, 4.5, and 8.0
mm), and sea salt in four particle-size bins (effective radii of
0.3, 1.0, 3.25, and 7.5 mm for dry air). For OC and BC, hy-
drophobic and hydrophilic components are considered.
However, for the GOCART module built in WRF/Chem,
two additional variables “p25” and “p10” are also included
to account for fine (effective diameter< 2.5 mm) and coarse
(effective diameter 2.5 ~ 10 mm) mode unspeciated aerosols.
Model-output PM10 is diagnosed from 14 of 16 prognostic
aerosol variables (see section 3).
[10] The model configurations mostly follow L11 for the

model domain (Figure 1), grid spacing (27 km), horizontal
grid points (261� 222), vertical levels (45, with the model
top at 50 hPa), physical parameterizations, and chemistry
suite. Aerosol direct effects are allowed through the coupling
between GOCART and the Goddard shortwave radiation
scheme [Fast et al., 2006; Barnard et al., 2010].
Anthropogenic emissions were supplied offline from an
Asia emissions inventory [Streets et al., 2003; Zhang et al.,
2009a], and biogenic emissions were calculated online from
the U.S. Geological Survey land use classification by using
the Guenther scheme [Guenther et al., 1994; Simpson et al.,
1995]. In addition, dust emissions [Ginoux et al., 2001],
dimethylsulfide, and sea salt emissions [Chin et al., 2000,
2002] were also computed online. Lateral boundary condi-
tions (LBCs) and ICs for meteorological fields were pro-
vided by the NCEP Global Forecast System (GFS).
Aerosol and chemical ICs originated from previous WRF/
Chem forecasts and chemical and aerosol LBCs are based
upon an idealized, northern hemispheric, midlatitude, clean
environmental vertical profile from the NOAA Aeronomy
Lab Regional Oxidant Model [McKeen et al., 1991; Liu
et al., 1996].

2.2. Incorporation of PA Within WRF/Chem

[11] To determine the roles of individual physical and
chemical processes in species formation, PA has been widely
applied to separate rates of change of species’ concentrations
into various contribution terms. The WRF/Chem model
adopts the K-theory form of the scalar conservation equation
to describe the tendency due to each process, given by
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where the term on the left side is the concentration (C) ten-
dency of species i with respect to time; the first term on the
right-hand side represents horizontal and vertical advections
in the x, y, and z directions, and u, v, and w are the mean wind
speeds in the three directions, respectively; the second term
denotes the vertical turbulent diffusion process (the horizon-
tal diffusion terms are neglected), and Ke is turbulent diffu-
sivities; the latter three terms are dry deposition (D), net
chemical reactions (R), and source emission rate (E),
respectively.
[12] We incorporated the PA capability within WRF/Chem

by modifying the model source code to diagnose the ten-
dency of each species concentration due to each process ev-
ery time step by differencing species’ concentrations before
and after each process. The accumulated tendency, integrated

during a period of time in each grid cell, is commonly re-
ferred to as the integrated process rate (IPR) [Huang et al.,
2005; Zhang et al., 2009b; Liu et al., 2010]. In this paper,
the PM10 IPR is examined every hour to explore the relative
contributions of major atmospheric processes in PM10 forma-
tion. Positive values of IPR indicate PM10 production from
various processes, and negative values indicate PM10 losses.
Thus, the contribution of each process may be compared
directly between parallel experiments, especially for the
near-surface layer, to further examine the DA impact on
subsequent WRF/Chem aerosol forecasts.

2.3. GSI 3DVAR System

[13] The GSI 3DVAR DA system produces an analysis in
model grid space. The analysis is obtained through the mini-
mization of a scalar objective function J(x) given by

J xð Þ ¼ 1

2
x� xbð ÞTB�1 x� xbð Þ

þ 1

2
H xð Þ � y½ �TR�1 H xð Þ � y½ �; (2)

where x is the model state and the subscript b denotes the
background state, y is the observation vector,H is the observa-
tion operator that computes the observation estimates from the
model state vector,B denotes the background error covariance
(BEC) matrix, and R represents the observation error covari-
ance matrix, including contributions from measurement and
representativeness errors (see section 3.2 for details). The error
covariance matrices determine the relative contributions of the
background and observation terms to the final analysis.
[14] In our case, GSI was used to assimilate surface PM10

observations without meteorological DA. Similar to L11
and S12, the 3-D mass mixing ratios of the 16 GOCART
aerosol species at each grid point comprised the analysis (or
control) variables in the GSI 3DVAR minimization proce-
dure. This speciated approach to aerosol DA was introduced
by L11 and further applied by S12. Different from L11 and
S12, an additional variable P10 (coarse-mode unspeciated
aerosols) was introduced into the analysis vector here as it
is an important contributor to PM10. However, a total of 14
control variables were used to diagnose the model estimate
PM10 at the observation locations within the GSI 3DVAR
system, as detailed in section 3. Thus, only 14 GOCART
aerosol variables were updated in the aerosol DA.
[15] As in L11 and S12, the latitude-dependent BEC statis-

tics for each aerosol species were estimated using the
National Meteorological Center (now known as NCEP)
method [Parrish and Derber, 1992; Rabier et al., 1998],
which takes differences between forecasts of different
lengths valid at common times. Utilizing the differences of
24 and 12 h WRF/Chem forecasts of the analysis variables
valid at the same time for 59 pairs valid at either 0000 and
1200 UTC over the experimental period (June 2011), stan-
dard deviations and horizontal and vertical length scales for
each aerosol species’ BEC were calculated. No cross correla-
tion between different aerosol species was considered be-
cause of the incapability of the current GSI 3DVAR to
directly model the cross correlations in the B matrix. Work
is underway to take into account cross correlation between
species through the ensemble-based DA techniques
[Pagowski and Grell, 2012].
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3. Implementation of PM10 DA

3.1. PM10 Observation Operator

[16] To assimilate PM10, it was necessary to derive
model-simulated PM10 at the observation locations.
Following the WRF/Chem GOCART aerosol module, the
diagnostic variable PM10 is obtained from the 14 of 16 aero-
sol species, mineral dust and sea salt in the largest particle-
size bins were excluded. To assimilate a surface PM10

observation, a model estimate of PM10 is diagnosed at the
lowest vertical level by summing mass mixing ratios of
aerosol particles, given as

PM10 ¼ rd ½ P1 þ P2ð Þ þ D1 þ D2 þ D3 þ 0:87D4ð Þ
þ1:8 O1 þ O2ð Þþ B1 þ B2ð Þ þ S1 þ S2 þ S3ð Þ þ 1:375U �;

(3)

where P1 and P2 represent fine- and coarse-mode unspeciated
aerosol contributions to PM10, respectively; D1, D2, and D3

(S1, S2, and S3) are mineral dust (sea salt) aerosols in three
smallest particle-size bins, and D4 denotes mineral dust in
the fourth smallest particle-size bin (effective radius of 4.5

mm); O1 and O2 (B1 and B2) are hydrophobic and hydrophilic
OC (BC), respectively; andU denotes sulfate. Similar to S12,
coefficients <1 in equation (3) account for the 10 mm diame-
ter cutoff of GOCART aerosols for PM10, and coefficients
>1 empirically account for additional fine particulate mass
not predicted explicitly by GOCART, such as oxygen
contained in organic aerosols (associated with OC) and
ammonium (typically associated with sulfate aerosols). The
dry air density rd converts the units from mg/kg to mg/m3 for
consistency with the observations. Before equation (3) is
applied within GSI, the aerosol analysis variables and rd are
bilinearly interpolated in the horizontal to the observation lo-
cations. Since altitudes of some measurement sites are not
available, differences between model topography and reality
were neglected, and no vertical extrapolation was performed.
Observations taken within 1 h of the analysis were assimilated.

3.2. PM10 Observation Data and Errors

[17] Hourly averaged surface PM10 concentrations for June
2011 were obtained from the Ministry of Environmental
Protection (MEP) of China. At each measurement site, the
samplings are heated to measure the mass of dry particulate

Figure 2. Scatter plots of simulated versus observed PM10 mass concentrations over all (a) 0000 and (b)
1200 UTC initializations from the control (red) and assimilation (blue) experiments.

Figure 3. PM10 mass differences (assimilation minus control) at the lowest model level averaged over all
(a) 0000 and (b) 1200 UTC initializations.
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matter using the tapered element oscillating microbalance
(TEOM) method [Green et al., 2001; Charron et al., 2003].
Figure 1 shows the locations of 112 measurement sites used
for the PM10 assimilation experiment and forecast verifica-
tion. Observation sites span most of central and eastern
China and are primarily located in urban and suburban areas.
[18] MEP PM10 data were provided without information

regarding data quality. To ensure data reliability before DA,

PM10 observations were subject to quality control (QC).
Two QC checks were performed, including value-range and
time-continuity checks. First, PM10 observational values that
fell outside of subjectively chosen lower (6 mg/m3) and upper
(425 mg/m3) limits were deemed unrealistic and rejected.
Second, time continuity was checked to eliminate gross out-
liers. Similar to the “buddy check” used in meteorological
DA [e.g., Dee et al., 2001], any measurement O(t) will pass

Figure 4. Vertical profiles of simulated PM10mass concentrations from the control (red) and assimilation
(blue) experiments, and the difference (black), averaged over all 0000 and 1200 UTC initializations for
locations where there are (a) positive and (b) negative differences at the lowest model level. Note that
the legend in Figure 4a differs partly from that of Figure 4b.

Figure 5. Evaluation statistics of surface PM10 forecasts as a function of forecast range calculated against
observations: (top) mean bias (mg/m3), (middle) root-mean-square error (mg/m3), and (bottom) correlation
coefficient. The forecasts are produced from the 0000 (left) and 1200 (right) UTC initializations during 1 to
28 June 2011.

JIANG ET AL.: PM10 ASSIMILATION AND PROCESS ANALYSIS

6742



the time-continuity check if it satisfies |O(t)�O(t� 1)| ≤m
(t), where the function m(t) is determined empirically (e.g.,
m(t) = 50 + 0.15O(t) for this study).
[19] As mentioned in section 2.3, the observation error co-

variance matrixR in equation (1) contains both measurement
and representativeness errors. However, observation errors
are not provided with observations, and no general formula-
tion is available to estimate such errors. Similar to S12, the
measurement error eo is defined as eo = 1.5 + 0.0075*Πo,
where Πo denotes PM10 observational values (units: mg/
m3). Thus, higher PM10 values were associated with larger
measurement errors. The representativeness error, also fol-
lowing Elbern et al. [2007] and S12, depended on the model
resolution and the characteristics of the observation loca-
tions. The observation errors are assumed uncorrelated so
that R is a diagonal matrix.

4. Experimental Design

[20] Two parallel experiments were performed to evaluate
the impact of PM10 DA on analyses and forecasts of aerosols
over China. One experiment served as the control and did not
employ any DA, while PM10 DA was implemented in the
other. Both experiments began from the same set of ICs valid
at 0000 UTC 01 June 2011 that were spun-up over 5 days
beginning 27 May, similar to Pagowski et al. [2010] and
S12. Each experiment initialized a new WRF/Chem forecast
every 6 h between 0000 UTC 01 June and 0000 UTC 28 June
2011. All 0000 and 1200 UTC initializations produced 12 h
forecasts, while 6 h forecasts were produced from the 0600
and 1800 UTC initializations. Each initialization, both
LBCs and ICs for meteorological fields were updated by
interpolating GFS analyses onto the model domain, and
gaseous chemical variables were initialized from the previ-
ous cycle’s 6 h forecast.
[21] As described by L11 and S12, both experiments only

differed regarding initialization of the 16 GOCART aerosol
species contained in the GSI analysis. In the control

experiment, the initial GOCART aerosol fields were simply
taken from the previous cycle’s 6 h forecast. However, the
PM10 assimilation experiment implemented a 3DVAR aerosol
analysis every 6 h, using the GOCART aerosol fields from the
previous cycle’s 6 h forecast as the background. The analyses
were then used as aerosol ICs for subsequent WRF/Chem
forecasts. Thus, the experiments only differed in that
3DVAR DA updated the GOCART aerosol species in one
experiment but not the other. Both experiments used the same
physical and chemistry options outlined in section 2.1.
[22] The analyses and forecasts from the two experiments

were compared to surface PM10 measurements. The results
of these comparisons are now described.

5. Results

[23] This section presents results from the control and as-
similation experiments outlined above. Since surface PM10

DA had a very small impact on AOD (not shown), we only
performed verification against MEP PM10 data and surface
PM2.5 observations from two sites in Nanjing and
Shanghai. Although forecasts were produced every 6 h, we
focus on examining the PM10 DA impact on aerosol ICs at
0000 and 1200 UTC (local time =UTC+ 8 h) before evaluat-
ing the subsequent WRF/Chem forecasts and then discuss the
IPR differences in PM10 formation. Here, three basic statisti-
cal measures, mean bias (BIAS), root-mean-square error
(RMSE), and correlation coefficient (CORR), as described
in Zhang et al. [2006], are applied to evaluate the results.
When compared with surface PM10 and PM2.5 observations,
the model values at the lowest vertical level were horizon-
tally interpolated to the observation sites.

5.1. Impacts on Aerosol ICs

[24] The model evaluation statistics (Table 1) from the
control and assimilation experiment for the lowest model
level PM10 mass concentrations were calculated against ob-
servations from the MEP network over all 0000 and 1200

Figure 6. (top) Mean concentration (mg/m3) and (bottom) root-mean-square error (mg/m3) of surface
PM21.5 forecasts as a function of forecast range, verified against observations from Nanjing and
Shanghai during 1 to 28 June 2011. The forecasts are produced from the 0000 (left) and 1200 (right)
UTC initializations.
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UTC initializations during 01 to 28 June 2011. There are sig-
nificant systematic biases and large RMSEs for the control.
The negative model bias of �22.5 mg/m3 at 0000 UTC
(morning) indicates a significant underestimation, about

29.1% lower than the observed PM10 concentrations.
Conversely, a positive bias of 14.8 mg/m3 at 1200 UTC (eve-
ning) indicates a significant overestimation, about 21.5%
higher than the observed PM10 values. Additionally, the

Figure 7. Spatial distribution of average differences of hourly PM10 IPRs (mg/m3/h) between the two
experiments (assimilation minus control) advection processes (horizontal and vertical) at the lowest model
level, aggregated over all 0000 (left) and 1200 (right) UTC initializations.
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mean RMSE and CORR between the control and the obser-
vations is about 53.8 mg/m3 and 0.4, respectively. These
magnitudes are similar to those of PM10 forecast error statis-
tics over the Yangtze River Delta region [Wang et al., 2012]
and the Pearl River Delta region [Chen et al., 2009].

[25] After assimilating surface PM10 observations, the sta-
tistics show much better agreement with observations than
the control. Overall biases are dramatically reduced;
RMSEs are decreased by about 60%, and CORRs are greatly
increased from about 0.4 to 0.9. Scatter plots of simulated

Figure 8. Same as Figure 7 except for vertical diffusion processes.
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PM10 mass concentrations over all 0000 and 1200 UTC ini-
tializations from the control and assimilation experiments
against observations are also illustrated in Figure 2. These
results indicate that initial PM10 fields can be adjusted effec-
tively by our DA approach.
[26] Figure 3 depicts the spatial distribution of time-averaged

PM10 differences (assimilation minus control) at the lowest
model level over all 0000 and 1200 UTC initializations. The
patterns closely match the measurement sites in Figure 1.
Consistent with Table 1, at 0000 UTC, the positive differences
indicate PM10 DA primarily increased the model PM10, and
the largest value (greater than 60 mg/m3) occurs in Shandong
province (Figure 3a). At 1200 UTC, the negative differences
indicate PM10 DA primarily decreased the model PM10, and
the lowest value (less than �50 mg/m3) appears in South
Hebei province (Figure 3b). The differences imply model
errors were present, likely from inaccurate emission rates in
time and space. For instance, some underestimation may come
from crop residue burning due to summer harvest [Yang et al.,
2008], not properly represented in the emissions.
[27] The vertical profiles of simulated PM10 mass concen-

trations from the control and assimilation experiments are
given in Figure 4 separately for locations where the surface
PM10 differences were positive and negative. The extent of
the vertical impact of PM10 DA is mainly determined by
the vertical correlation of BECs [Benedetti and Fisher,
2007]. Although the DA impact extended up to model level
18, ~3.2 km above ground level (AGL), the biggest impact
was confined below model level 8 (~0.8 km AGL). The
change of total aerosol mass due to PM10 DA diminished rap-
idly as a function of height, which is consistent with S12.
[28] It is also interesting to examine how DA impacted the

PM10 vertical gradients below 1 km.Where aerosol mass was
increased by PM10 DA, the vertical gradient of difference
was negative, indicating after DA vertical aerosol mass gra-
dient became stronger (Figure 4a). Conversely, PM10 DA
produced far weaker mass gradients in the vertical where
aerosol mass decrease occurred (Figure 4b). These results
show that PM10 DA greatly changed vertical structures of
aerosol mass at near-surface model levels, which were also
found by S12 when solely assimilating PM2.5. Vertical gradi-
ent controls the vertical diffusion term in equation (1).

5.2. Forecast Verification

[29] To better understand the performance of the control
and assimilation experiments, the BIAS, RMSE, and
CORR of surface PM10 forecasts as a function of forecast
range were calculated against MEP observations separately
for the 0000 and 1200 UTC initializations.
[30] The control experiment had biases (~�30 to 20 mg/

m3) that were characterized by the diurnal cycle (Figures 5a
and 5b). The positive (negative) biases spanned 1100
(1700) to 1600 (1000) UTC, indicating that WRF/Chem
overpredicted (underpredicted) the surface PM10 in this time
range. DA impact on systematic biases of aerosol forecasts
depended greatly on sign of the initial and subsequent fore-
cast biases from the control. Where the signs were same (op-
posite) between the initial and subsequent forecast biases,
improvement (deterioration) on subsequent forecast biases
was produced by PM10 DA. Both forecasts from 0000 and
1200 UTC initializations had the same behaviors, which

were primarily driven by overall increase or decrease of
model aerosol mass after DA.
[31] Even though the assimilation experiment had larger

biases at times, PM10 DA produced consistently lower
RMSEs and higher correlations for the entire 12 h forecasts,
reflecting the overall benefit of assimilating surface PM10 ob-
servations (Figures 5c–5f). However, the differences be-
tween the experiments diminished with forecast lead time,
likely due to model processes and emissions dominating at
later periods [Kahnert, 2008]. Also, the forecast accuracy
from the assimilation experiment decreased with time, as
RMSEs increased and CORRs decreased. For instance, the
relative RMSE reduction due to DA is 59.7% at 0000 UTC
initialization and then decreases to 30.8%, 17.4%, 9.9%,
and 0.5% for the first, third, sixth, and twelfth of forecasts, re-
spectively (Figure 5c). Similarly, the relative correlation in-
crease due to DA is 128.0% at 0000 UTC initialization and
then decreases to 96.6%, 76.1%, 33.1%, and 11.5% for the
corresponding forecast ranges (Figure 5e). Tombette et al.
[2009] and Lee et al. [2013], who assimilated surface PM10

observations over Europe and South Korea, respectively,
also noticed a small DA impact beyond about 12 h forecast.
[32] In addition, we also evaluated PM2.5 forecasts at

Nanjing and Shanghai (two megacities over Eastern China)
for the whole experimental period. The model-simulated
PM2.5 was diagnosed within WRF/Chem, as described in
S12, and the surface PM2.5 mass concentration was measured
using the TEOMmethod. Figure 6 shows statistics, as a func-
tion of forecast range, of mean PM2.5 mass concentrations
from observation, control, and PM10 DA experiments (top
two panels) and RMSEs for the control and DA experiments
verified against surface PM2.5 observations (bottom two
panels). As in Figure 5, statistics were calculated separately
for 0000 (left) and 1200 (right) UTC initializations. These
results are overall consistent with Figure 5, even though the
error magnitudes and variation with forecast range differed
slightly. The rapidly decreasing DA impact is also evident
in PM2.5 verification.
[33] This behavior of the short-lasting DA impact with the

forecast lead time has also been found by Tombette et al.
[2009] and Lee et al. [2013] when assimilating surface
PM10 observations and Pagowski et al. [2010] and S12 when
assimilating surface PM2.5 data. S12 gave a qualitative dis-
cussion on this issue and concluded that advection and verti-
cal mixing are the main causes for the lack of long-lasting
surface observation impact. Likewise, Elbern et al. [2007]
also remarked that optimizing the emission rate is far more
important than improving ICs by assimilating surface ozone
observations through the EnKF and 4DVAR approaches, in-
dicating that the long-range forecast is much less sensitive to
the initial state than the emissions. We implemented PA ca-
pability within the WRF/Chem model, which provides a
method to quantify the contributions of various processes to
PM10 formation from both experiments, as detailed in the
next subsection.

5.3. PA for PM10 Formation

[34] As stated in section 2.2, while the IPR deals with the
net effect of all the physical and chemistry processes on
model simulation, the IPR differences between parallel ex-
periments represent various process-contribution differences.
The IPR diagnosed from the control experiment showed that
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the emission process (vertical diffusion) was the predominant
contributor to PM10 production (loss) at the lowest model
level. Advection (including horizontal and vertical) and dry
deposition only played secondary roles in PM10 formation,
and the contribution from other processes (such as chemical
reactions) was very small (not shown). These findings are
consistent with Chen et al. [2009], Zhang et al. [2009b],
and Liu et al. [2010], who examined the relative importance
of major atmospheric processes in PM formation.
[35] In this study, the IPR differences, originated mainly

from adjusted aerosol ICs due to PM10 DA, were examined
to identify the main cause of the short-lasting DA impact of
surface observations. Figure 7 depicts the time-averaged spa-
tial distribution of PM10 IPR differences (assimilation minus
control) of advection processes at the lowest model level for
various forecast hours separately for 0000 and 1200 UTC ini-
tializations. The IPR differences have no significant change
in the first three hours (up to �4 mg/m3/h) and become
smaller beyond the fifth forecast hour. Differences were
mainly caused by localized increment structures around the
measurement sites (Figure 3). The PM10 IPR differences of
vertical diffusion process are also presented in Figure 8.
The largest differences occur in the initial hour (up to �20
mg/m3/h on minimum and 8 mg/m3/h on maximum) and then
are reduced dramatically and rapidly with forecast hour,
more intense at day (0000 to 1200 UTC) than at night
(1200 to 0000 UTC). Note that negative values indicate more
loss or less production of PM10 in the assimilation experi-
ment and vice versa. In particular, the negative (positive) dif-
ferences for vertical mixing indicate the enhanced (reduced)
upward diffusion from the ground or downward dilution
from above.
[36] Compared to advection process, the differences of

vertical mixing are larger in value and wider in area within
the same time, dominating the IPR differences between the
two experiments. Clearly, vertical diffusion was more impor-
tant than advection, causing the rapidly diminishing DA im-
pact. The IPR differences are relatively small for the other
processes, and the time-averaged values are lower than
�1.5 mg/m3/h for all forecast ranges (not shown).
[37] Recall that the same GFS analyses were used in both

experiments for meteorological ICs. Therefore, initial aerosol
fields primarily determine the strength of advection and dif-
fusion processes. We note that a good spatial coherence is
shown between PM10 mass differences and PM10 IPR differ-
ences of vertical mixing at the lowest model level, where pos-
itive (negative) surface PM10 differences mostly correspond
to negative (positive) IPR differences (Figures 3 and 8).
This further indicates that, where aerosol mass increase (de-
crease) occurred, enhanced (reduced) upward diffusion pro-
duces more dilution (accumulation) of surface aerosol
mass. Thus, surface PM10 differences weaken continuously,
leading to rapidly diminishing DA impact with time, espe-
cially in the early forecast hours.
[38] As evidenced in Figure 4, vertical gradients of aerosol

mass at initializations were markedly changed after assimilat-
ing surface PM10 observations, also found by S12 when
solely assimilating PM2.5. Thus, whenever surface PM10 ob-
servations are assimilated, sharper (weaker) vertical gradient
due to DA enhanced (lessen) vertical mixing and quickly
diluted (accumulated) surface aerosol mass, leading to the
fast-fading DA impact especially in the early forecast hours.

Furthermore, Tombette et al. [2009], Pagowski et al. [2010],
S12, and Lee et al. [2013] also noted that fast-fading DA im-
pact was generated in the early forecast hours when assimi-
lating surface PM observations. Conversely, L11 and S12
found that AODDA refines the total aerosol mass throughout
the column, maintaining similar vertical structures, which al-
lows a longer-lasting DA impact. These results all underline
the importance of a correct vertical profile of aerosol mass,
implying some limitation of assimilating the surface observa-
tions into ICs.

6. Summary and Discussion

[39] The ability of assimilating hourly averaged surface
PM10 observations from the MEP network was added into
the aerosol DA framework within the GSI 3DVAR analy-
sis system. This system was applied to daily aerosol
forecasts produced in June 2011 over China. In the assim-
ilation experiment, an aerosol analysis was performed
every 6 h to update the WRF/Chem aerosol variables. To
evaluate the effectiveness of DA, a control experiment
without DA was also performed. Results revealed that
aerosol analyses matched PM10 observations much better
than the control, which improved the surface PM10 fore-
casts up to at least 12 h in terms of RMSE and correlation.
However, the forecast bias can be enlarged by DA when
its sign is opposite to that at initial time. Overall, our find-
ings suggest that model-driven aerosol biases [e.g.,
McKeen et al., 2007; Misenis and Zhang, 2010; Lin
et al., 2008b; Zhang et al., 2010] can be mitigated by
aerosol DA. Further studies are needed to further docu-
ment the processes leading to aerosol bias.
[40] As also found in earlier work, the DA impact

diminished rapidly with forecast range when solely
assimilating surface aerosol observations. PA was carried
out within WRF/Chem to probe into the differences in
PM10 formation between the control and assimilation
experiments. The results show that fast-fading DA impact
on aerosol forecast, especially in the early forecast hours,
mostly came from vertical mixing, with minor contribu-
tions from horizontal and vertical advections. This
behavior is mainly related to unbalanced aerosol fields in
the horizontal and vertical after assimilating surface obser-
vations into the initial model state. This implies the need
for aerosol observations with vertical information for more
accurate 1–2 day forecast of surface aerosols.
[41] In the current assimilation experiment, only the initial

state of aerosol fields was adjusted by cyclic PM10 DA,
which limited the DA impact on long-range aerosol forecasts.
There are some indications that emission sources appear to be
the primary cause of the PM production [e.g., Chen et al.,
2009; Zhang et al., 2009b; Liu et al., 2010], implying that
emission adjustments are critical to the model forcing needed
to maintain aerosol profile adjustments due to the assimila-
tion of surface PM10 observations. As emission uncertainty
is widely recognized as a major factor limiting the accuracy
of aerosol forecasts, especially in areas with air quality prob-
lems [Dubovik et al., 2008], it should be particularly promis-
ing to analyze sources of aerosols and their precursors.
Recently, adjoint inverse modeling systems [e.g., Hakami
et al., 2005; Elbern et al., 2007; Yumimoto et al., 2007,
2008a; Henze et al., 2009; Ku and Park, 2011] have allowed

JIANG ET AL.: PM10 ASSIMILATION AND PROCESS ANALYSIS

6747



a “top-down” emission optimization at the model grid scale,
providing constraints on emissions from surface aerosol
observations. It can be expected that emission optimization
will produce better forecast results than simply adjusting
the initial model state by assimilating surface observations
[e.g., Henze et al., 2009]. Furthermore, more desirable
forecast improvements will likely be achieved by the joint
adjustment of ICs and emission inventories. These issues will
be addressed in future work.
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