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SUMMARY

The skill of numerical weather prediction depends to a large extent upon the quantity of globally available
observations. Only a fraction of the available observations (especially high-density observations) is used in current
operational assimilation systems. In this paper, the potential of high-density observations is studied in a practical
four-dimensional variational assimilation context. Two individual meteorological situations are used to examine
the impact of different observation densities on the analysis and the forecast. A series of observing-system
simulation experiments are performed. Both direct observations (temperature and surface pressure) and indirect
observations (radiance) are simulated, with uncorrelated or correlated errors. In general, it is veri!ed that a small
reduction (increase) of the initial error in a sensitive area can produce a considerable improvement (degradation)
of the targeted forecast. In particular, the results show that increasing the observation density for the uncorrelated-
error case can generally improve the analysis and the forecast. However, for correlated observation errors and the
use of a diagonal observation-error covariance matrix in the assimilation, an increase in the observation number
such that the error correlation between two adjacent observations becomes greater than a threshold value (around
0.2) degrades the analysis and the forecast. Posterior diagnostics of the sub-optimality of the assimilation scheme
for correlated observation errors are analysed. Finally, it is shown that a risk of using high-density observations
and poor vertical resolution is that de!ciencies in the background-error statistics can lead to unrealistic analysis
increments at some levels where no observations are present, and so produce a degradation of the analysis at these
levels.
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1. INTRODUCTION

The performance of current numerical weather-prediction (NWP) systems bene-
!ts to a large extent from the increasing amount of globally available remotely-sensed
observations used together with conventional observations to generate initial conditions
for forecasts. Some of these data, such as raw radiances from the Advanced TIROS†
Operational Vertical Sounder (ATOVS) on board NOAA‡ satellites, have !ne hori-
zontal resolutions. The observation spacing can be smaller than the analysis grid of
global NWP models. Not all of these observations are used in data assimilation systems
because of the following three considerations. Firstly, current computing and storage
power limits the use of all observations. This will be even more true for next genera-
tion sensors, such as AIRS (Atmospheric InfraRed Sounder) and IASI (Infrared Atmos-
pheric Sounding Interferometer), that will provide thousands of radiances in each pixel.
It will be necessary to reduce the quantity of data used in the system, for instance by
selecting the most useful channels (Rabier et al. 2002). Secondly, the vertical resolution
of current ATOVS sensors is generally thought not to be enough to allow the use of
these data at high horizontal densities. Indeed, Lindzen and Fox-Rabinovitz (1989) and
Fox-Rabinovitz and Lindzen (1993) suggested that observations with a !ne horizontal
resolution accompanied by a sparse vertical resolution might produce increased analysis
noise. The third reason (and probably the most important one) is that the errors affecting
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these remotely-sensed observations may be horizontally correlated; current assimilation
systems do not generally consider this correlation in the modelling of the observation-
error covariance, because of both a lack of accurate information on the correlation
statistics and the technical dif!culty of implementation. Alternatively, most NWP cen-
tres tend to use sub-optimal schemes for which the observation-error covariance matrix
is designed to be diagonal. At the same time, horizontal thinning of remotely-sensed
observations is performed in order to reduce their effective error correlation (Järvinen
and Undén 1997).

Liu and Rabier (2002) (denoted by LR2002 hereafter) have shown, in a simple one-
dimensional context, that using more observations with uncorrelated errors can always
improve the analysis accuracy. For observations with correlated errors and the use of a
diagonal observation-error covariance matrix, a correlation coef!cient of about 0.15 be-
tween two adjacent observations seems to correspond to a thinning which gives optimal
results. The present study attempts to verify further the above conclusion in a practical
four-dimensional variational data assimilation system (4DVAR) with simulated obser-
vations whose error character is perfectly known. To focus on forecast-performance
issues that are critical, the study concentrates on two dif!cult meteorological situations
for which the operational initial !elds failed to produce correct forecasts. The problem
of consistency of vertical and horizontal resolution is also examined. The paper is or-
ganized as follows: in the next section the assimilation and forecast systems used in
the study are brie"y described; section 3 is devoted to the examination of the effects of
observation-error correlation on the analysis and forecast performance; section 4 focuses
on the problem of consistency of vertical and horizontal resolution; the conclusion is
given in the last section.

2. THE ASSIMILATION AND FORECAST SYSTEM USED FOR THE OSSES

The assimilation and forecast system with which the observing-system simulation
experiments (OSSEs) are performed is the French ARPEGE¤ model, a global spectral
model. A speci!c feature of the model is the use of a stretched grid in the horizontal
direction to obtain increased resolution over a geographical area of interest (Courtier
and Geleyn 1988). The resolution used in the study is taken to be the same as the
operational con!guration in use in 2001. In the horizontal, it uses a triangular trunca-
tion T199. A terrain-following pressure-based hybrid vertical coordinate ´ with 31 levels
is used, with the top of the model at about 5 hPa. A stretching coef!cient 3.5 gives a
spectral resolution varying from T696 (199 £ 3:5) over France to T57 (199 ¥ 3:5) over
New Zealand. The assimilation component of the system includes a multi-incremental
4DVAR assimilation (Courtier et al. 1994; Veersé and Thépaut 1998) with a six-hour as-
similation window for the upper-air and surface-pressure !elds and an optimal interpola-
tion (OI) analysis for other surface !elds. The stretched grid leads to some dif!culties as
to the speci!cation of the background-errorcovariances, and so the incremental analysis
is performed on a regular unstretched grid in the current implementation. The mini-
mization of the incremental cost function is performed with a successively increased
resolutions, namely T42, T63 and T95. In the !rst two steps of the minimization only
the tangent-linear and adjoint of the adiabatic version of the forward forecast model
are used (with a simple diffusion scheme). In the third minimization, the tangent-linear
and adjoint of a simpli!ed and regular physical parametrization package are introduced
(Janisková et al. 1999). In addition, an incremental digital-!lter initialization (Lynch
et al. 1997; Gauthier and Thépaut 2001) is used to remove spurious gravity waves.
¤ Action de Recherche Petite Echelle et Grande Echelle.
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Our goal is to understand better the possible optimal con!gurations between the
model resolution and the observation density. It is more convenient to associate the
spectral resolution with some more direct indication of resolution, such as the smallest
resolvable wavelength. A feature of triangular truncation is that it has globally uniform
resolution on the transformed sphere. The smallest resolvable wavelength in a model
truncated at total wave number N will be 2¼a=N (a is the radius of the earth). On the
real geographical sphere, for a given stretching coef!cient C, the smallest resolvable
wavelengths are, respectively, 2¼a=.N £ C/ over France and 2¼aC=N over New
Zealand. This corresponds to a highest resolution of 57 km and the lowest resolution
of 704 km for the forecast and the computation of the innovation vector. For the
incremental analysis at T95 we have a uniform resolution of 421 km.

3. STUDY OF EFFECT OF OBSERVATION-ERROR CORRELATION STRENGTH

(a) Meteorological situation and model simulation
Two severe storms (the so-called French storms) hit Europe on 26–28 December

1999 and caused serious damage. Model forecasts from different operational centres for
both storms were generally poor even at a range of 24 hours. However, forecasts from
Météo-France veri!ed better than most others. The second storm reached its maximum
at 18 UTC 27 December. At that time, a 3DVAR assimilation system was operational
at Météo-France. The operational forecast at a range of 54 h (Fig. 1(c)) seriously
underestimated the intensity of the storm and misplaced the centre of the depression
too far in the south-west direction. This meteorological situation is also an interesting
case for which the 4DVAR assimilation signi!cantly improves the analysis and the
subsequent forecast. Figure 1(a) shows the verifying pre-operational 4DVAR analysis
at 18 UTC 27 December. Figures 1(b) and (c) are the 54-hour forecasts starting from a
pre-operational 4DVAR analysis and from an operational 3DVAR analysis, respectively,
valid at 12 UTC 25 December. One can see that the central pressure of the forecast is
reduced from 976 hPa for the 3DVAR one to 968 hPa for the 4DVAR one, although
there is still a 6 hPa difference with respect to the central pressure of 962 hPa in the
verifying analysis and a spurious depression appears at (57BN, 15BE). The position of
the depression centre is much better predicted by the forecast from the 4DVAR analysis.

(b) Truth, background and simulated observations
The OSSEs were based on this second ‘French’ storm. All the OSSEs were

performed on the six-hour time window centred at 18 UTC 25 December 1999. We chose
the six-hour forecast performed from the 4DVAR analysis at 12 UTC 25 December as the
initial ‘truth’, so that the ‘truth’ at the storm time corresponds to the result in Fig. 1(b).
Such a de!nition of the truth implies a perfect-model hypothesis, as is usual in OSSEs of
the identical-twin type (Charles et al. 1986). The veri!cation of the results of the OSSEs
was done by referring to the truth de!ned above. The background !eld was a six-hour
forecast done from the operational 3DVAR analysis valid at 12 UTC 25 December. The
48-hour forecast from it corresponds to the result in Fig. 1(c). The background error
covariance is multivariate and vertically non-separable, as described by Rabier et al.
(1998) and Derber and Bouttier (1999).

Observations were simulated only in an area critical for the forecast performance.
The rationale for this approach is that the skill of the forecast of the storm is determined
to a large extent by the analysis in a so-called ‘sensitive area’. The adjoint tools built
into the ARPEGE model allowed us to determine the sensitive areas easily. The general
procedure for determining a sensitive area using the adjoint method is as follows:
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Figure 1. Mean-sea-level pressure !elds (contour interval 5 hPa) at 18 UTC 27 December 1999 from (a) the
4DVAR analysis, (b) the 54-hour forecast starting from the 4DVAR analysis at 12 UTC 25 December 1999, and
(c) the 54-hour forecast starting from the operational 3DVAR analysis at 12 UTC 25 December 1999. The central

pressures are, respectively, 962.48 hPa, 968.17 hPa and 975.52 hPa.
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Figure 2. Gradient !eld of the cost function with respect to 700 hPa temperature at 18 UTC 25 December.
The contour interval is 5 K. The gradient value shown has been divided by 10.

(1) choose an area of interest at the target time where the forecast is to be improved;
(2) choose a cost function which measures the amplitude of the forecast errors at the
target time; (3) perform a forward-model integration to obtain the model trajectory from
the initial time to the target time which will be used in the subsequentadjoint integration;
and (4) perform a ‘backward’ adjoint-model integration, taking the gradient of the cost
function with respect to the forecast at the target time as the initial condition. The result
of this adjoint integration is the gradient !eld of the cost function at the initial time;
this is the so-called sensitivity !eld. A targeted area in a box (43BN–53BN, 12:5BW–
2:5BE) was chosen for this study. In our simulated framework the reference truth was
known perfectly; this allowed us to compute the forecast error precisely using the total-
energy-norm type of cost function de!ned by Rabier et al. (1996). Figure 2 shows the
gradient !eld for the temperature at 700 hPa. The area covered by the strong gradient
tilts gradually toward the north-west from low to high levels (not shown), a feature also
found in the study by Rabier et al. (1996). The maximum sensitivity is found in the
lower troposphere. We chose the area (30BN–55BN, 70BW–40BW), which includes the
large sensitivity values, to simulate the observations.

Only the temperature and surface-pressure observations corresponding to the mass
!eld over this area were simulated and assimilated into the system. The simulated
temperature and surface-pressure observations were obtained by adding noise to the
true !eld. All observations were supposed to be measured at 18 UTC 25 December
(at the analysis time, the centre of the six-hour time window). In addition, in order
to avoid the introduction of interpolation errors in the simulation procedure, all data
were located at the Gaussian grid points of the forecast model on all 31 model levels.
This way of simulating the observations implies that the observations have the same
resolution as the forecast model at the corresponding grid points, so that they can be
considered as some sort of remotely-sensed measurements rather than as in-situ (point)
measurements from radiosondes, for instance. The model’s spectral resolution for this
area varies from T450 to T230 (the corresponding smallest resolvable wavelength varies
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Figure 3. Correlation models of observational noise (see text).

from 89 km to 174 km). In the selected area, there are 3066 Gaussian grid points.
The interval of adjacent Gaussian grid points varies from 28 km to 78 km. Note that
the average Gaussian grid interval for the incremental analysis with a T95 truncation is
about 140 km, which is coarser than the interval of the simulated observations.

Two kinds of observational-noise model were considered: uncorrelated and hori-
zontally correlated. No vertical correlation was considered. The horizontal correlation
model is compactly supported and given by
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where s stands for the spherical separation in degrees between two data points. s0 and
s1 are, respectively, the correlation scale and the cut-off distance beyond which the
correlation becomes zero. We chose parameters in Eq. (1) so that the correlation between
two grid-points separated by 0.6B reach 0.6, 0.3, 0.15 for strong, moderate and weak
correlation models, respectively. The cut-off length s1 was set to 5B . The correlation
models are shown in Fig. 3. One sees that, even for the weak correlation model, the
correlation for a 0.3B interval can reach 0.5. The standard deviation of the temperature
error was taken as 1.5 K for all 31 model levels. The surface-pressure error corresponds
to an amplitude of 8 m in geopotential height. These values were taken from the standard
deviations of the radiosonde observation errors and are comparable to the background-
error standard deviation speci!ed in the model. In general, the correlated error is more
structured than the uncorrelated error. One can note the fact that, with a large correlation,
the noise has more chance to be of the same sign in an area. That is, the correlated error
has a similar feature to a bias in a local or short time range.
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TABLE 1. ASSIMILATION EXPERIMENTS

Experiment Correlation Interval (B)

NOE0.3 No error 0.3
NOC0.3 No correlation 0.3
NOC0.6 No correlation 0.6
NOC1.0 No correlation 1.0
WEA0.3 Weak correlation 0.3
WEA0.5 Weak correlation 0.5
WEA0.6 Weak correlation 0.6
WEA1.0 Weak correlation 1.0
MOD0.3 Moderate correlation 0.3
MOD0.6 Moderate correlation 0.6
MOD0.7 Moderate correlation 0.7
MOD1.0 Moderate correlation 1.0
STR0.3 Strong correlation 0.3
STR0.6 Strong correlation 0.6
STR1.0 Strong correlation 1.0

(c) Basic assimilation experiments
Table 1 gives the basic assimilation experiments according to the observation-error

correlation and the thinning interval. The assimilation procedure used only some subsets
of the total 3066 £ 32 observations (31 levels for temperature T , one level for surface
pressure Ps) with different thinning intervals. In the operational system, the thinning
of various observations is performed in a rather ad hoc way. The interval between
observations usually corresponds to a distance chosen to be in between the analysis
mesh and the length-scale of the background-errorcorrelations. In this study, three main
intervals corresponding to 0.3B , 0.6B and 1.0B (1B D 111:2 km along a great circle)
were chosen to test the impact of different observation densities. The corresponding
number of thinned observations in the horizontal were 2951, 1092 and 401, respectively.
Two additional experiments with thinning intervals of 0.5B and 0.7B were performed for
the weakly and moderately correlated cases (WEA0.5 and MOD0.7), respectively, for
which the adjacent observations have the same correlation value of 0.22. In addition,
after some tests, we removed the temperature observations below 970 hPa which could
yield spurious analysis increments on the surface pressure. The !rst experiment NOE0.3
used perfect observations (although a standard deviation of error equal to 1.5 K was still
speci!ed in the observation-error covariance) and the highest density of observations.
This experiment should have a better analysis quality than the experiments with noisy
observations and can be considered as the reference experiment.

(d ) Results with perfect observations
As shown by Doerenbecher and Bergot (2001), the impact of observations on the

forecast is governed by the combination of the sensitivity of the forecast to the initial
conditions and to the actual initial errors. The observations that give the maximum
impact are not necessarily located in the area with the largest sensitivities. It is, therefore,
necessary !rst to verify if the observations located in the area selected according to
the sensitivity !eld will produce a signi!cant impact in our case. To investigate this,
an assimilation experiment named NOE0.3 with perfect observations was performed.
Figure 4 shows the 48-hour surface-pressure forecast from this experiment. One can
see that the value of the central pressure (969.9 hPa) is very close to that of the ‘truth’
(968.17 hPa), and the position of the centre is perfectly predicted. The forecast of the
geopotential height (not shown) is also very close to the truth. The chosen sensitive area
is thus considered to be satisfactory and is used in the following experiments.
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Figure 4. The 48-hour mean-sea-level pressure (hPa) forecast for experiment NOE0.3 with perfect observations
(contour interval 5 hPa). See text for further details.
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Figure 5. The root-mean-square temperature error (K) of (a) the analysis and (b) the 48-hour forecast for six
experiments assuming uncorrelated errors (circles) or moderately correlated errors (no circles). The results are the

average of ten random realizations.

(e) Impact of error-correlation strength
The observations with uncorrelated and correlated errors described in section 3(b)

were assimilated into the system and then a 48-hour forecast was performed for each
assimilation experiment. In order to obtain results that are more signi!cant from a
statistical point of view, each experiment was repeated ten times using different error
realizations. The results shown are the average over ten random realizations.

Figures 5 shows the root-mean-square (r.m.s.) errors of the analysis and the
48-hour forecast for the temperature at the standard pressure levels. The !gure shows the
results for only six experiments with uncorrelated and moderately correlated observation
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Figure 6. The root-mean-square temperature error averaged over all model levels in (a) the analysis and
(b) the 48-hour forecast for experiments with weakly correlated (WEA), moderately correlated (MOD), strongly

correlated (STR), and uncorrelated (NOC) observation errors.

errors and with thinning intervals 0.3B , 0.6B and 1.0B . The r.m.s. errors of the analysis
were computed over the sensitive area where the simulated observations were located.
The r.m.s. errors of the forecast were computed over the targeted area where the storm
hit. One notes that the results for uncorrelated and correlated errors exhibit different
characteristics. For the former, the r.m.s. errors (for both the analysis and the forecast)
clearly reduce with increases in the number of observations, at all levels in the vertical.
For correlated errors, we note that the r.m.s. errors (for both the analysis and the fore-
cast) do not decrease or increase monotonically with the observation interval. At most
levels in the analysis, a minimum error appears for the observation interval equal to
0.6B . This result is consistent with those obtained in a one-dimensional study (LR2002,
Fig. 9), where a minimum error was also found at a given observation interval that was
intermediate between !ne and coarse for the sub-optimal scheme (i.e. with no modelling
of the observation-error correlation in the analysis scheme). For the correlated cases, the
variation of forecast errors with observation interval is not completely the same as that of
analysis errors. The distinction between the forecast error curves is enhanced, showing
the clear advantage of the 0.6B observation interval. Comparing the uncorrelated and
correlated cases, one can see that the r.m.s. errors of the analysis and the forecast for
the uncorrelated cases are generally smaller than for the correlated cases, as expected.
The variation of analysis errors with observation number is smaller for the correlated
cases.
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Figure 6 shows the r.m.s. temperature errors, averaged over all model levels.
The results for the mean-sea-level (MSL) pressure are very similar to those in Fig. 6
and are not shown. One can see that the analysis and forecast errors regularly increase
with an increase of the error correlation. More interestingly, the variation of error
with the observation interval exhibits a gradual transition from the uncorrelated case
to the strongly correlated case. For instance, the error decreases monotonically with
the observation interval for the uncorrelated case and increases monotonically for the
strongly correlated case. A minimum error is located at an intermediate interval for the
weakly correlated and moderately correlated cases. This intermediate interval with a
minimum error for the analysis is 0.5B for the weakly correlated case and 0.7B for the
moderately correlated case. For these two optimal intervals, the adjacent observations
have the same correlation (0.22) which is close to the value 0.15 found by LR2002.
Combining with the results found for the forecast error, it would be reasonable to
suggest that a threshold correlation of about 0.15–0.3 between adjacent observations
should be used to determine the optimal thinning interval. It is important to note that the
48-hour forecast errors may be four to !ve times larger than the initial analysis errors
for the level-averaged temperature (Fig. 6) and ten times larger for the MSL pressure
(not shown). The difference of the forecast error between different observation intervals
can be an order of magnitude larger than that of the analysis error. For example, the
reduction of 0.04 K of the temperature analysis error for the experiment NOC0.6 relative
to the experiment NOC1.0 leads to a reduction of 0.45 K of the forecast error (Fig. 6,
solid lines with circles).

Figure 7 shows the MSL pressure forecast for the same six experiments as in Fig. 5.
One can see that the three worst forecasts are from experiments MOD1.0 (Fig. 7(f)),
NOC1.0 (Fig. 7(c)) and MOD0.3 (Fig. 7(d)). Their central pressures are 974.6 hPa,
974.4 hPa and 973.4 hPa, respectively. The results for the other three experiments are
not visually very different and the difference in central pressure between them is less
than 1 hPa. These are in agreement with the corresponding r.m.s. errors.

( f ) Posterior diagnostic of the sub-optimality of the assimilation scheme
In the context of statistical linear estimation, Bennett et al. (1993) and Talagrand

(1998) showed that the cost function at the minimum obtained after minimization is
given by

Jmin D dT[HBHT C R]¡1d; (2)

where H is the observation operator, B and R are, respectively, the background and
observation-error covariances speci!ed in the cost function, and d D y ¡ Hxb is the dif-
ference between the observation y and the background xb (usually called the innovation
vector). The superscripts T and ¡1 represent, respectively, the transpose and inverse
operators. Note that a factor 1

2 has been removed in the de!nition of the cost function.
The statistical average of Jmin can be shown to be equal to the observation number N
if the analysis scheme is optimal (i.e. if the error covariances B and R are correctly
speci!ed). This fact can be used as an a-posteriori diagnostic of the statistical optimality
of the assimilation system. The assimilation scheme used in our OSSEs was sub-optimal
for the case with correlated observation error because of the use of a diagonal covariance
matrix R. This sub-optimality should be revealed in the statistics of Jmin. Figure 8 shows
Jmin=N as a function of observation interval for the uncorrelated, weakly-correlated,
moderately correlated and strongly correlated cases. We note that, for the uncorrelated
case for which the assimilation scheme is thought to be optimal, Jmin=N is slightly
larger than 1, which might be a consequence of underestimating the background-error
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Figure 7. The mean-sea-level pressure (hPa) of the 48-hour forecast for six experiments: (a) NOC0.3;
(b) NOC0.6; (c) NOC1.0; (d) MOD0.3; (e) MOD0.6; and (f) MOD1.0.
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of observation interval for experiments with weakly correlated (WEA), moderately correlated (MOD), strongly

correlated (STR), and uncorrelated (NOC) observation errors.

variance in the covariance matrix B. An important remark is that Jmin=N decreases
with the increase of the observation-error correlation. This is also revealed by the fact
that Jmin decreases with the decrease of observation interval, which also leads to the
increase of error correlation.

It should be mentioned that completely uncorrelated errors (so-called white noise),
which imply that the error power is distributed uniformly over all spectral components
in the full in!nite range, are not physically realizable (Gelb et al. 1974, p. 42). A tiny
correlation could exist for the uncorrelated-error case. This is the reason why a slight
decrease of Jmin with the observation interval can also be observed for the uncorrelated
case. The results for J o

min (the observation part of the cost function at the minimum)
is similar to those in Fig. 8 (not shown). It is known that, for the correlated case,
the drawback of the sub-optimal scheme can be partly compensated by increasing the
observation error ¾o in the matrix R. This has been veri!ed by performing additional
experiments for the strongly correlated case with a 10% increase in ¾o. The analysis
error is reduced by about the same amplitude (Fig. 9). From Eq. (2), an unavoidable
consequence of increasing ¾o is the further reduction of Jmin (also J o

min). In our case, a
reduction of about 0.2 in Jmin is observed for all three thinning intervals. This feature
suggests that one should be careful to use an algorithm for tuning the observation-error
parameters that is based on the diagnostics of Jmin or J o

min (Desroziers and Ivanov 2001)
for observations with correlated errors and when using a sub-optimal scheme. In this
case, the algorithm will tend to reduce ¾o to 1 when approaching the value of Jmin, and so
lead to an increase of the analysis error. It is also noted that the variation of Jmin=N with
the correlation strength is not very large, e.g. from 1.08 for the uncorrelated case to 0.94
for the strongly correlated case with an interval of 0.3B (corresponding to a correlation
of 0.85). This means that it is dif!cult to use Jmin to diagnose the sub-optimality of
the assimilation system resulting from de!ciencies in modelling the observation-error
correlation.
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Figure 9. The root-mean-square error of the temperature analysis (K) averaged over all vertical levels for
strongly correlated observation-error experiments with the speci!ed value of the observation error ¾o equal to

the correct value 1.5 (solid line) and 1:5 £ 1:1 (dashed line). See text for further information.

4. CONSISTENCY OF HORIZONTAL AND VERTICAL RESOLUTIONS

Note that, in the above experiments, since the simulated observations are located on
all model levels, the vertical resolution of the measurements can be regarded as perfect.
One might ask the following question: are horizontally dense observations still preferred
if there is poor vertical resolution, even when the observation errors are uncorrelated?
This was examined by assimilating observations with fewer vertical levels, namely
those that correspond to the heights of some AMSU-A channels. Only the experiments
with uncorrelated observation errors were performed. In the following, subsection 4(a)
presents the experimental results using fewer levels of temperature in the same context
as in section 3, and subsection 4(b) gives the results for simulated AMSU-A radiances
in another meteorological situation expected to have good data coverage by two NOAA
satellites (NOAA15 and NOAA16).

(a) Experiments with fewer temperature levels
It was noted by Lindzen and Fox-Rabinovitz (1989) and Fox-Rabinovitz and

Lindzen (1993) that a consistent relation exists between vertical and horizontal reso-
lution for the discretization of NWP models. Fine horizontal resolution accompanied
by a poor vertical resolution can produce increased analysis noise. They also suggested
that these consistent relations could be applied to observing systems. To investigate this
issue in our context, vertical thinning was performed to arti!cially reduce the resolution
of the observations in the vertical. The surface-pressure observations were the same as
in the previous experiments, and the temperature observations were used at only seven
model levels (600, 400, 200, 150, 100, 50 and 30 hPa) corresponding to the pressure
levels of peak values of the weighting functions for AMSU-A channels 5 to 11, which
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Figure 10. The root-mean-square temperature error (K) of (a) the analysis and (b) the 48-hour forecast for three
experiments with uncorrelated errors and fewer vertical observing levels (see text).

are currently used in the assimilation system at Météo-France. The horizontal observa-
tion intervals were also comparable with those of AMSU-A raw radiances (they vary
from 50 km at nadir to 110 km at the limb). Figure 10 shows the r.m.s. temperature
errors for the uncorrelated cases. The horizontal thinning was the same as discussed
in the previous section. One can see that the maximum analysis error reductions are at
the levels where the observations are located. It should be mentioned that the analysis
error could not show such distinct peaks for radiance measurements because of broad
channel-weighting functions. Moreover, the bene!t obtained at these levels at the initial
time is propagated in the vertical and leads to an improvement of the forecast at most
levels. Also note that, at some levels without observations (e.g. 500 hPa), the analysis
error increases for a small thinning interval, although by a small amount in this particular
experiment. This is further illustrated and explained in the next subsection for OSSEs
with radiances.

(b) Experiments with simulated AMSU-A radiances

(i) Meteorological situation and simulated observations. At 00 UTC 21 September
2001, the 96-hour forecast of the ARPEGE model has a large error over North America
(Fig. 11(b)). ARPEGE displaced the troughs so quickly that the predicted ridge/trough
system was in the opposite phase compared with the analysed ridge/trough system,
whereas the European Centre for Medium-Range Weather Forecasts (ECMWF) model
gave an almost perfect prediction (not shown). Figure 11(a) shows the forecast by
ARPEGE starting from the ECMWF analysis. This forecast is very close to the valid
ARPEGE analysis (not shown) and was considered as the truth (at forecast time)
in the OSSEs. The maximum error in the geopotential height at 500 hPa reaches
§300 m (Fig. 11(c)). At that time, both Météo-France and ECMWF operated a 4DVAR
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Figure 11. The 96-hour forecast of the 500 hPa geopotential height (m) valid at 00 UTC 25 September 2001
starting from (a) the ECMWF initial conditions, and (b) the ARPEGE initial conditions. (c) The difference (b)

minus (a).
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Figure 12. The gradient !eld, with respect to the 500 hPa temperature at 00 UTC 21 September 2001, of the cost
function that was the norm of the 96-hour forecast error valid at 00 UTC 25 September 2001. The contour interval

is 10 K and the gradient value shown has been divided by 100.

assimilation system. However, one of the major differences between the two systems
was that ARPEGE used a different set of observations than the operational system
at ECMWF. In particular, ECMWF assimilated raw radiances (McNally et al. 2000)
instead of the NESDIS pre-processed 120 km ‘cloud-cleared’ radiances that were used
in ARPEGE at that time (at 250 km resolution). This case is then possibly thought to
be a good one for testing the impact of assimilating raw radiances. At the time of this
study, only experimental runs of assimilating raw radiances had been performed with
ARPEGE.

An examination of the differences between the trajectories forecast by the ECMWF
and ARPEGE systems indicates that the large errors in the 96-hour forecast were mainly
due to initial errors in the north of North America. We also performed sensitivity
computations by means of an adjoint integration for T C 96 hours (though the condition
of linear evolution of errors was not strictly checked). Figure 12 shows the gradient
!eld for temperature at 500 hPa, the level where the gradient !eld exhibits the largest
values. The coverage area is consistent with that determined by examination of the
trajectory of forecast differences. This, therefore, helps us to determine our ‘sensitive
area’. Observations were inserted in a broader area, which we de!ned as the area north
of 50BN over North America, which includes this sensitive area.

The simulated observations were AMSU-A radiances with real orbit positions in a
six-hour assimilation window centred at 00 UTC 21 September 2001. Only channels 5
to 12 were used. Recalling section 3, the simulated radiances were obtained by adding a
random error (uncorrelated) to the ‘true’ radiances computed from the ECMWF analysis
!eld. In the context of OSSEs, observation operators, such as the radiative-transfer
model (RTM), were considered as perfect. Consequently some common quality controls
(such as cloud and land–sea checks for real radiance data) were not necessary, and only
observations having large departures from the background were rejected. This ensured
that we kept enough observations to test the impact of different observational thinning.
No other observations were used in the assimilation. The background !eld for the
assimilation experiments was the same as the ARPEGE operational one.
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Figure 13. The 96-hour forecasts (left-hand panels) and the forecast errors with respect to the ECMWF forecasts
(right-hand panels) of the 500 hPa geopotential height (m) valid at 00 UTC 25 September 2001 for experiments
(a) perfect observations without thinning (corresponding to a minimal interval of 50 km at nadir), (b) noisy
observations without thinning, (c) noisy observations with a thinning of 1B , and (d) noisy observations with a

thinning of 2B . For the experiments with noisy observations, the results are the average of ten realizations.
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Figure 14. As Fig. 13, but for the corresponding analyses at 00 UTC 21 September 2001 (left-hand panels) and
the analysis-error !elds (right-hand panels) in the sensitive area.

(ii) Experiment results. Figure 13 indicates that the improvement of the forecasts
(compared with Fig. 11(b)) is considerable. For the two cases without thinning, the
maximum forecast error is reduced from about 300 m to 79 m for perfect observa-
tions and 119 m for noisy observations. The forecast is degraded with a decrease in
observation number. The corresponding analysis !elds and analysis-error !elds in the
sensitivity area are shown in Fig. 14. The variation of the analysis error with observation
interval is consistent with that of the 96-hour forecast error. This suggests that retaining
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Figure 15. Cross-sections along the line from (85BN, 120BW) to (64BN, 88BW) (m) of (a) the background errors
of the geopotential height, and (b) the analysis errors with perfect observations (m).

a large number of observations is essential for a reduction of the main error in some
sensitive areas. Note the fact that only simulated radiances, which are associated with
the temperature and humidity pro!les as well as with the surface pressure by the RTM
in a complex way, are assimilated in the experiments. This demonstrates the capability
of indirect measurements, such as radiances, to recover the atmospheric state and thus
improve the subsequent forecast, consistent with operational experiments (English et al.
2000; Bouttier and Kelly 2001).

However, we also note from the computation of the r.m.s. analysis error that,
unlike the result in section 4(a), the analysis error is not systematically reduced with an
increase in the observation number in the entire region of observation coverage and at all
vertical levels. The reasons might be complex, and possibly linked to the speci!cation
of the structure functions used in the analysis. The inconsistency of the vertical analysis
error can be illustrated by a cross-section of the geopotential-height error along a line
crossing the sensitive area from (85BN, 120BW) to (64BN, 88BW) at the initial time, as
shown in Fig. 15. One can see that the background error is signi!cantly reduced above
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500 hPa by the assimilation of radiance observations, but below 500 hPa the analysis
error is much larger than the background error from 120BW to 110BW. One recalls
that the height of the peak value of the weighting function for channel 5 (the lowest
channel) is about 600 hPa. The corrections of the background !eld at low levels are
expected to come mainly from the propagation of analysis increments by the structure
functions at high levels. Clearly, the negative background errors in the lower-left part
of the !gure is further increased by negative analysis increments that are produced by
observations between 300 hPa and 600 hPa. From this point of view, it is necessary to
retain a certain balance of observations between the horizontal and vertical directions
to reduce the in"uence of incorrect propagation of analysis increments. However, this
does not mean that there is an internal consistency-relation between the horizontal and
vertical resolutions of the observations. We think that the problem is essentially due
to the weakness of the structure functions used in the analysis. In general, the 4DVAR
assimilation can bene!t from the implicit dynamical structure functions (Thépaut et al.
1996). However, most operational centres currently use a constant background-error
covariance matrix obtained from the statistics of the differences between different
ranges of forecasts (Parrish and Derber 1992), which constrains the advantage of the
4DVAR assimilation, particularly when using a six-hour assimilation window (Rabier
et al. 2000). A perfect structure function, by de!nition, should statistically be able
to propagate information correctly from one place to another or from one variable to
another. This can only be achieved by introducing "ow-dependent background-error
covariances and cycling them from one analysis to the next one.

5. CONCLUSIONS

In this paper, the potential of high-density observations on NWP has been stud-
ied by examining two ‘dif!cult’ meteorological situations for which the operational
ARPEGE model failed to produce the correct forecasts. Simulated observations with
different error features and different thinning intervals were used in the study. The results
con!rm some remarks found by LR2002 in a simple 1D context: for observations with
uncorrelated errors, increasing the observation density generally improves the analysis
and the forecast; even for observations with correlated errors and using a sub-optimal
scheme (i.e. no modelling of this error correlation), the assimilation system can still ex-
tract some useful information, and a minimum error for the analysis and forecast is also
found for some intermediate observation interval; the threshold value of the error corre-
lation for optimal thinning interval is around 0.2. Each OSSE was performed ten times
with different random-error realizations. The results are then expected to be meaningful
in a statistical sense, although the study was directed at only two particular meteorologi-
cal situations. Recently, Bormann et al. (2003) have shown that atmospheric motion vec-
tors derived from geostationary satellite imagery exhibit statistically-signi!cant spatial
error correlations. However, one should be careful in applying the threshold correlation
value to guide the determination of an optimal thinning interval for atmospheric motion
vectors since the results in this paper have been obtained from experiments using sim-
ulated temperatures. We should also recognize the limitation of the identical-twin type
OSSE methodology used in this study. In the identical-twin experiment context only
forecast errors due to initial conditions are represented, and the assimilation system can
extract more information about the ‘truth’ than about the real atmosphere with the same
amount of simulated and real observations. It is thus expected that, in this OSSE, data
saturation will tend to occur at lower data densities than in practice. This could lead to
an underestimation of the impact of observations with extensive data coverage.
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Moreover, it is shown that a small improvement in the analysis !eld in a sensitive
area can considerably improve the subsequent forecast, and retaining a high density
of observations (the corresponding observation interval may be much smaller than the
analysis grid and the background-error correlation-scale) is essential for reducing the
key initial error. It is also shown that the sub-optimality of the assimilation scheme
for correlated observation errors leads to a decrease in the cost function normalized by
the observation number at minimization, Jmin=N , as the observation-error correlation
strength increases. This suggests that tuning the observation-error parameters (e.g. the
error standard deviation) according to Jmin=N is problematic for correlated observa-
tions, and should be applied with caution and in conjugation with other criteria.

A risk of using high-density observations is that it might produce false large
increments and degrade the analysis in some levels with no observations, although this
degradation might not necessarily in"uence the forecast in the interesting area, as shown
for the second case. We think that this problem comes mainly from the weakness of the
background-error covariance which, in current operational practice, is often taken as a
constant matrix and can, in some situations, propagate information incorrectly from one
place to another, or from one variable to another. The introduction of a "ow-dependent
background-error covariance in the future is expected to be able to overcome this kind
of problem. From the point of view of improving forecasts in regions of interest, a high
observation density in sensitive areas is preferred (e.g. upstream) even if it only extends
to a limited number of vertical levels. Gelaro et al. (2000) have shown in an experiment
during a three-week period that high-density geostationary-satellite wind data provided
substantial improvements in 48-hour forecast skill, and that the improvements resulted
mainly from the reduction of the key analysis error in the middle and lower troposphere
where more satellite wind data are located.

LR2002 and Bergman and Bonner (1976) also showed that, for correlated obser-
vations, increasing the observation density beyond a threshold value yields little or no
improvement in analysis accuracy, even when the error correlation is correctly modelled
in the observation-error covariance. It would be interesting to test further the impact
of modelling the observation-error correlation in a practical 4DVAR assimilation con-
text. Lorenc (1992) suggested approximating the inverse of the error covariance matrix
using !lters, which is a potential method of treating the correlated observation errors.
The statistics of observation errors (in particular their correlation) is important both for
the purpose of their modelling and of optimal observation thinning, and it constitutes a
challenging task. Finally, it should be mentioned that another possible option for using
high-density observations is to assimilate them as ‘super-observations’ (Lorenc 1981)
produced by combining the innovations in a neighbouring area. This process has the
advantage of being able to increase the representativity of the observation and to reduce,
to some degree, the observation error. It is still not clear whether thinning or super-obing
observations is better. This should be studied in the future.

ACKNOWLEDGEMENTS
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