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[1] Assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) total
aerosol optical depth (AOD) retrieval products (at 550 nm wavelength) from both Terra
and Aqua satellites have been developed within the National Centers for Environmental
Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) three-dimensional
variational (3DVAR) data assimilation system. This newly developed algorithm allows,
in a one-step procedure, the analysis of 3-D mass concentration of 14 aerosol variables
from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module.
The Community Radiative Transfer Model (CRTM) was extended to calculate AOD
using GOCART aerosol variables as input. Both the AOD forward model and
corresponding Jacobian model were developed within the CRTM and used in the 3DVAR
minimization algorithm to compute the AOD cost function and its gradient with respect to
3-D aerosol mass concentration. The impact of MODIS AOD data assimilation was
demonstrated by application to a dust storm from 17 to 24 March 2010 over East Asia. The
aerosol analyses initialized Weather Research and Forecasting/Chemistry (WRF/Chem)
model forecasts. Results indicate that assimilating MODIS AOD substantially improves
aerosol analyses and subsequent forecasts when compared to MODIS AOD, independent
AOD observations from the Aerosol Robotic Network (AERONET) and Cloud-Aerosol
Lidar with Orthogonal Polarization (CALIOP) instrument, and surface PM10 (particulate
matter with diameters less than 10 mm) observations. The newly developed AOD data
assimilation system can serve as a tool to improve simulations of dust storms and general
air quality analyses and forecasts.
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1. Introduction

[2] Monitoring the distribution of atmospheric aerosols is
crucial to understanding how aerosols impact regional air
quality and human health [Pope et al., 2002]. Moreover, it
has been shown that a correct description of aerosols can
improve global weather forecasts by reducing errors in pre-
cipitation and wind [Rodwell, 2005]. Aerosols have also
been under the spotlight of climate research for a number of
years because of their direct and indirect impact on radiative
balance and interaction with other radiatively/dynamically
active components of the earth system, such as clouds
[Forster et al., 2007].

[3] Yet, uncertainty still remains on the net radiative
effect of aerosols, and research is ongoing to quantify
aerosol properties and impact on weather and climate using
both observational and numerical approaches. Regarding
observational methods, ground-based observing networks
such as the Aerosol Robotic Network (AERONET) [Holben
et al., 1998], European Aerosol Research Lidar Network
(EARLINET) [Amiridis et al., 2005], and Micro-Pulse Lidar
Network (MPLNET) [Welton and Campbell, 2002], have
been important in improving understanding of aerosols
within the entire earth system. However, ground-based plat-
forms only cover relatively small spatial areas. Observations
from satellite platforms [Kaufman et al., 2002] offer a more
global view of aerosol distribution. Since 1988, the National
Oceanic and Atmospheric Administration (NOAA) has pro-
vided operational aerosol optical depth (AOD) retrieval
products from the Advanced Very High Resolution Radi-
ometer (AVHRR) on board NOAA satellites [Ignatov
et al., 2004]. Furthermore, a number of other space-borne
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instruments, such as the Moderate Resolution Imaging Spec-
troradiometer (MODIS) [Remer et al., 2005], Multiangle
Imaging Spectroradiometer (MISR) [Kahn et al., 2010],
Total Ozone Mapping Spectrometer (TOMS) [Torres et al.,
2002], and Ozone Monitoring Instrument (OMI) [Torres
et al., 2007] provide multispectral and multiangle aerosol
measurements. An overview of various aerosol retrieval
techniques is given by King et al. [1999].
[4] Efforts have also focused on numerical modeling and

prediction of aerosols, which is usually associated with a
large degree of uncertainty related to aerosol emission,
transport, and interaction with nonlinear physical processes
(e.g., radiative effects, cloud and precipitation formation).
Data assimilation (DA), a statistically optimal approach
combining observations and numerical model output, offers a
means to reduce uncertainties of the model initial conditions
of the aerosol fields. Despite wide use of variational DA
techniques in most operational numerical weather prediction
(NWP) centers [e.g., Parrish and Derber, 1992; Rabier et al.,
2000; Lorenc et al., 2000;Gauthier et al., 2007] to assimilate
conventional meteorological observations, satellite retrieval
products [e.g., Bormann and Thépaut, 2004], and direct
satellite radiances [e.g., Derber and Wu, 1998; McNally
et al., 2000], the assimilation of aerosol observations has
only recently garnered attention.
[5] Nonetheless, several studies have focused on aerosol

DA. For example, Collins et al. [2001] introduced assimi-
lating AVHRR AOD in a three-dimensional (3-D) chemical
transport model while studying the INDOEX (Indian Ocean
Experiment) aerosols. They used an optimal interpolation
(OI) technique initially developed for meteorological appli-
cations [Lorenc, 1981]. Since then, several other studies
have assimilated satellite-derived aerosol products in global
and regional chemical transport models using similar OI
techniques [Yu et al., 2003; Generoso et al., 2007; Adhikary
et al., 2008]. Additionally, Zhang et al. [2008] adopted a
two-dimensional variational (2DVAR) approach to assimi-
late MODIS gridded level 3 AOD products over the global
ocean with the Naval Research Laboratory (NRL) Aerosol
Analysis and Prediction System (NAAPS). Note that the
NRL MODIS level 3 AOD products are generated from
NASA MODIS level 2 AOD data [Zhang and Reid, 2006].
Furthermore, Niu et al. [2008] used a 3DVAR method to
assimilate dust loading retrieved from Chinese geostationary
satellite FY-2C into the Chinese Unified Atmospheric
Chemistry Environment–Dust (CUACE/Dust) forecast sys-
tem. More recently, the European Centre for Medium-Range
Weather Forecasts (ECMWF) extended its four-dimensional
variational (4DVAR) meteorological assimilation system
to include an aerosol component [Morcrette et al., 2009;
Benedetti et al., 2009; Mangold et al., 2011]. Benedetti
et al. [2009] adopted the total aerosol mixing ratio as a
control variable and made some assumptions to partition the
total aerosol mass into mass concentration of individual
species. Their application to a 2 year (2003 and 2004)
reanalysis using MODIS AOD data showed the analyses
were skillful at fitting the observations and improving AOD
forecasts.
[6] We note that most of the aerosol DA methods (OI,

2DVAR, and 3DVAR) mentioned above used a two-step
process: 2-D AOD or 3-D DM40 (dust particle matter with
diameter less than 40 mm) [Niu et al., 2008] is first analyzed

from aerosol observations and then partitioned using a post-
processing procedure into 3-D mass concentrations of
different aerosol species, making assumptions regarding
vertical distribution and relative ratio of individual species’
mass to total aerosol mass. We acknowledge that some
choices in the design of an aerosol assimilation system are
constrained by operational feasibility. In this study, we
develop a single-step aerosol DA capability within the
National Centers for Environmental Prediction (NCEP) oper-
ational Gridpoint Statistical Interpolation (GSI) 3DVAR
meteorological DA system [Wu et al., 2002;Kleist et al., 2009]
coupled to the Weather Research and Forecasting/Chemistry
(WRF/Chem) model [Grell et al., 2005]. We then use this
system to assimilate MODIS AOD data while modeling a
dust storm that occurred in March 2010 over East Asia.
Different from previous studies, the newly developed
3DVAR aerosol DA system uses individual aerosol species
of the WRF/Chem built-in GOCART module as “control
variables.” Therefore, 3-D mass concentrations of the aerosol
species are analyzed in a one-step minimization procedure,
obviating the need for a second-step postprocessing required
by previous studies. To the best of our knowledge, this is the
first attempt to use individual aerosol species as analysis
variables in a truly 3DVAR DA system. It should be men-
tioned that several aerosol assimilation studies based on the
Ensemble Kalman Filter (EnKF) technique used individual
aerosol species as analysis variables [e.g., Sekiyama et al.,
2010, 2011; Schutgens et al., 2010]. Furthermore, Yumimoto
et al. [2007, 2008] adopted the adjoint model-based 4DVAR
method to retrieve dust emission over East Asia using ground-
based lidar observations.
[7] Section 2 briefly describes the WRF/Chem model

and built-in GOCART aerosol module. Section 3 presents
the methodology of aerosol DA, including a description of
the aerosol background error covariance (BEC) statistics,
MODIS AOD observations, and CRTM-AOD observation
operator. The experimental design and impact of AOD
assimilation applied to a dust storm are described in section 4
before concluding in section 5.

2. WRF/Chem Model and GOCART Aerosol
Module

[8] In this study, the WRF/Chem model was used to pre-
dict the transport of aerosols and gaseous chemical species
in a limited area domain. WRF/Chem is an “online” model,
as the chemistry and meteorological components are fully
coupled. Both components use the same transport scheme,
horizontal and vertical grid, time step, and physical para-
meterizations for subgrid-scale transport. The chemistry
component consists of dry deposition and several choices for
gas phase chemical mechanisms, photolysis processes, and
aerosol schemes. Aerosol direct and indirect effects through
interaction with radiation, photolysis, and microphysical
processes are allowed for certain combinations of aerosol
and physical options. WRF/Chem also provides tools to
utilize several biogenic and anthropogenic emissions data
sets in combination with certain chemistry and aerosol
schemes.
[9] For this aerosol DA study with WRF/Chem, we chose

the Goddard Chemistry Aerosol Radiation and Transport
(GOCART) aerosol scheme [Chin et al., 2000, 2002;
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Ginoux et al., 2001] coupled with the Regional Atmospheric
Chemistry Mechanism (RACM) [Stockwell et al., 1997] for
gaseous chemical mechanism. The GOCART was originally
designed as an “offline” global transport model run at low
resolution and driven by meteorological fields from the
Goddard Earth Observing System Data Assimilation System
(GEOS-DAS) [Schubert et al., 1993]. However, now that
GOCART has been implemented as an aerosol module
within the WRF/Chem model, GOCART numerics can be
applied at varying resolution and meteorological fields are
simply taken from the WRF/Chem grids.
[10] The GOCART model simulates several tropospheric

aerosol types, including sulfate, dust, organic carbon (OC),
black carbon (BC), and sea salt. For OC and BC, hydro-
phobic and hydrophilic components are considered. Many
processes regarding the aerosol species’ evolution are
represented, including emission, advection, convection, dif-
fusion, dry deposition and wet deposition, as well as chem-
ical reactions using prescribed OH, H2O2, and NO3 fields for
gaseous sulfur oxidations [Chin et al., 2002]. Dry deposition
includes sedimentation (gravitational settling) as a function
of particle size and air viscosity and surface deposition as
a function of surface type and meteorological conditions
[Wesely, 1989]. When GOCART is selected as the aerosol
module within WRF/Chem, forecasts of 3-D mass concen-
tration of 14 aerosol species are produced: hydrophobic and
hydrophilic OC and BC; sulfate; sea salt in four particle size
bins (effective radii of 0.3, 1.0, 3.25, and 7.5 mm for dry air)

and dust particles in five particle size bins (effective radii of
0.5, 1.4, 2.4, 4.5, and 8.0 mm). The 3-D fields of these 14
aerosol species are central to our implementation of 3DVAR
AOD DA (see section 3.2).
[11] To simulate the dust storm that impacted eastern

Asia between 19 and 22 March 2010, the WRF/Chem
model was run over a computational domain (Figure 1)
with 27 km horizontal grid spacing. There were 261 west–
east and 222 south–north horizontal grid points and 45 ver-
tical levels. The model top was 50 hPa. The following
physical parameterizations [see Skamarock et al., 2008, and
references therein] were included: the WRF single-moment
5 class (WSM5) microphysics scheme; the Rapid Radiative
Transfer Model (RRTM) longwave and Goddard shortwave
radiation schemes; the Mellor-Yamada-Janjic (MYJ) bound-
ary layer scheme; the Noah land surface model; and Grell-3D
cumulus parameterization. Lateral boundary conditions
(LBCs) for meteorological fields were provided by the NCEP
Global Forecast System (GFS). Aerosol and chemical initial
conditions (ICs) and LBCs came from the National Center for
Atmospheric Research (NCAR) global CAM-Chem model
[Lamarque et al., 2005]. The online calculation of bio-
genic emissions using the U.S. Geological Survey (USGS)
land use classification was adopted as by Simpson et al.
[1995] and Guenther et al. [1994]. Two anthropogenic
emissions inventories were used: gaseous chemistry emis-
sions from the global (0.5° � 0.5°) RETRO (REanalysis
of the TROpospheric chemical composition over the past

Figure 1. Computational domain. Small dots depict locations where PM10 (particulate matter with
diameters less than 10 mm) verification occurred and large dots with letters indicate Aerosol Robotic
Network (AERONET) sites used for aerosol optical depth (AOD) verification. Station identifiers corre-
sponding to the AERONET sites are also listed.
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40 years) inventory (http://retro.enes.org/) and gridded
0.5° � 0.5° aerosol emissions from an Asia emissions
inventory [Streets et al., 2003; Zhang et al., 2009]. The dust
emission flux is computed as a function of probability source
function and surface wind speed [Ginoux et al., 2001].
Similar to dust uplifting, sea salt emissions from the ocean
are highly dependent on the surface wind speed and calcu-
lated as a function of wind speed at 10 m and sea salt particle
radius [Chin et al., 2002].

3. Methodology of Aerosol Data Assimilation

3.1. Formulation of Three-Dimensional Variational
Data Assimilation

[12] Following the vector–matrix notation of Ide et al.
[1997], consider a state vector x of dimension m and an
observation vector y of dimension p (usually p � m). At a
given time, x and y are connected by an observation operatorH,

y ¼ H xÞ þ ɛo;ð ð1Þ

where ɛo is an observation error vector. In a meteorological DA
framework, x usually consists of various atmospheric variables
such as temperature, humidity, and wind. The observation
operator can be a simple horizontal or vertical interpolation
from the model grid points to irregular observation locations for
those observations that directly measure the model state vari-
ables. However, for certain observation types, H can be a
complex and highly nonlinear transformation from the model
variables to indirect measurements, such as satellite radiances.
[13] In addition to observations, we also possess “a priori”

information about x, which usually comes from a short-
range NWP model forecast and is commonly referred to as
the background (xb) with

xb ¼ xþ ɛb; ð2Þ

where ɛb is the background error vector. The goal of DA is
to find a best estimate of x, the analysis, given the obser-
vations and background to initialize a NWP model forecast.
[14] To find a best estimate of x in the sense of minimum

analysis error variance, a 3DVAR algorithm [Lorenc, 1986;
Parrish and Derber, 1992; Rabier et al., 1998] is employed.
A 3DVAR DA technique minimizes a cost function (J) that
measures the distance of the state vector to the background
and observations, given by

J xð Þ ¼ 1

2
x − xbð ÞTB−1 x−xbð Þ þ 1

2
H xð Þ−y½ �TR−1 H xð Þ−y½ �; ð3Þ

where B and R are the background and observation error
covariance matrices of dimensions m � m and p � p,
respectively. B and R determine the relative contributions of
the background and observation terms to the final analysis.
As x and y are column vectors, J(x) is simply a scalar.
[15] Most operational NWP centers adopt an incremental

implementation [Courtier et al., 1994] of equation (3),

J dxð Þ ¼ 1

2
dxTB−1dxþ 1

2
Hdx − dð ÞTR−1 Hdx − dð Þ; ð4Þ

where the analysis depends on the “increment,” dx
(dx = x − xb), and “innovation vector,” d [d = y − H(xb), the

difference between the observation and background]. H is
the linearized version (or Jacobian, a p � m matrix) of the
nonlinear observation operator H in the vicinity of xb. J(dx)
is minimized when its gradient (the first-order partial deriv-
ative) with respect to dx is equal to zero, i.e.,

rJdx ¼ B−1dxþHTR−1 Hdx−dð Þ ¼ 0: ð5Þ

For most current NWP models, the dimension m is usually
on the order of 107 and it is impossible to invert the very
large matrix B and solve equation (5) analytically. Thus, an
iterative minimization algorithm [Navon and Legler, 1987]
is typically used to find the minimum of J(dx).
[16] Our development for MODIS AOD DA is based upon

the NCEP GSI analysis system. The use of recursive filters
in GSI permits a spatially inhomogeneous BEC matrix B
[Wu et al., 2002]. Only standard deviation and horizontal
and vertical length scales of the background error for GSI
analysis variables are needed to apply recursive filters both
horizontally and vertically. Originally, a preconditioned con-
jugate gradient minimization algorithm [Derber and Rosati,
1989] was implemented in GSI. However, a recent GSI ver-
sion also contains a variable storage quasi-Newton algorithm
[Gilbert and Lemaréchal, 1989] that was used in our AOD
DA experiments. Sections 3.2–3.4 detail our extension of GSI
to assimilate AOD.

3.2. Aerosol Analysis Variables and the Background
Error Covariance Statistics

[17] For our implementation of AOD DA, the 3-D mass
concentrations of the 14 WRF/Chem GOCART aerosol
species within the entire domain and at all model levels
comprised the analysis variables (or “control variables”) in
the GSI 3DVAR minimization procedure. Since we assimi-
lated only AOD to analyze the 3-D mass concentration of
14 aerosol species, the 3DVAR problem defined here is
under constrained in the sense of observational information
content. However, the problem is well constrained in the
mathematical sense because of the use of prior information
from the model background.
[18] As individual aerosol species were the analysis vari-

ables, it was necessary to calculate BEC statistics for each
aerosol variable. We accomplished this task by using the
NMC method [Parrish and Derber, 1992], which calculates
BECs by taking differences between forecasts of different
lengths valid at common times. While the NMC method is
typically used to produce BECs for traditional meteorologi-
cal fields (e.g., wind, temperature), it can be applied to
forecasts of mass concentration of aerosol species [Benedetti
and Fisher, 2007; Benedetti et al., 2009]. Differences of
24 and 12 h WRF/Chem forecasts of the aerosol species
valid at the same time for 62 pairs valid at either 00:00 and
12:00 UTC over the whole month of March 2010 were used
to compute the aerosol BECs. ICs and LBCs for each fore-
cast came from the NCAR global CAM-Chem model. In
this first implementation, no cross correlation between
different aerosol variables was considered because of the
incapability of the current GSI 3DVAR to directly model the
cross correlation in the B matrix. In the future, cross corre-
lation of aerosol species could be introduced using the
hybrid variational/ensemble technique [Wang et al., 2008].
Standard deviations and horizontal and vertical length scales
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for each aerosol variable were calculated using the method
described by Wu et al. [2002].
[19] The domain average standard deviations and hori-

zontal length scales at each model level are shown for all
14 species in Figures 2 and 3. Standard deviations varied
substantially across the species, spanning several orders of
magnitudes, which corresponded to different magnitude of
the species’ mass concentrations. Benedetti and Fisher
[2007] also used the NMC method to calculate BEC statis-
tics for the sum of the mixing ratios of all aerosol species
from the ECMWF global model. The shape of the standard
deviation profile in their statistics [Benedetti and Fisher,
2007, Figure 3a] is consistent with our statistics for dust.
[20] The values of the horizontal length scale were

comparable for all the species, generally spanning �1.5–

2.5 times the grid spacing, consistent with the statistics
reported by Kahnert [2008], who used an offline transport
model at 0.4° resolution over Europe. However, the vertical
variation of the horizontal length scale differs among the
species. The vertical patterns are seemingly related to the
particle size. For instance, fine mode species such as Sea-
Salt1, SeaSalt2, DUST1, and DUST2 exhibit similar vertical
structures of the horizontal length scales.

3.3. MODIS Aerosol Optical Depth Retrieval Product

[21] AOD data from MODIS sensors on board Terra and
Aqua satellites are widely used in aerosol studies. For this
study, we used the most recent release (collection 051) of
level 2 total AOD retrievals from both Terra and Aqua. To
maximize the observation coverage within �3 h data

Figure 2. Domain-averaged background error standard deviation (mgkg−1) for each model level (y axis)
for (a) BC1 (solid line) and BC2 (dashed line), (b) OC1 (solid line) and OC2 (dashed line), (c) sulfate,
(d–g) sea salt aerosol species with different effective diameters (see text and Table 1), and (h–l) dust
aerosol species (see text and Table 1).
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assimilation time window, we used AOD retrievals over land
and sea derived from the dark target product [Remer et al.,
2005] and “deep blue” product over bright land surface
[Hsu et al., 2004, 2006]. The dark target ocean and land AOD
products were available from both Terra and Aqua, but deep
blue retrievals were only available from Aqua. MODIS
retrieved AODwas provided at seven wavelengths: 470, 550,
660, 870, 1240, 1630, and 2130 nm. However, only the
optical depth at 550 nm was assimilated in this study.
[22] MODIS AOD products are in HDF-EOS format and

separated by “granules” (a 5 min segment of the satellite’s
orbit). However, GSI requires observations in BUFR format.
Therefore, the original AOD products were combined and
converted from the 5 min granules into a single file within
the DA time window and domain in NCEP BUFR format.
We used a simple observation error specification suggested
by Remer et al. [2005], who separately estimated the AOD

retrieval uncertainty over both ocean (5% of AOD value)
and land (15% of AOD value). Only AOD retrievals marked
with the best quality flag were assimilated. The original
MODIS AOD level 2 products are at 10 km � 10 km reso-
lution but the observations were thinned to the same reso-
lution as the model grid. Model aerosol fields were
interpolated to observation locations before applying the
AOD observation operator described in section 3.4.
[23] In our domain, MODIS AOD products provided

coverage only at 00:00 and 06:00 UTC (daytime) with gen-
erally only Terra at 00:00 UTC, and both Terra and Aqua at
06:00 UTC with more coverage. Figure 4 shows the AOD
coverage within a �3 h time window centered at 06:00 UTC
on 21 March 2010. Most data were distributed in southern
and eastern parts of the domain and the deep blue product
from Aqua had sparse coverage over Mongolia and north-
western China, typical source regions of Chinese dust storms.

Figure 3. As in Figure 2 except domain-averaged background error horizontal correlation length
scale (km) for each model level.
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3.4. AOD Observation Operator

[24] The AOD observation operator is based upon the
community radiative transfer model (CRTM) [Han et al.,
2006; Liu and Weng, 2006], developed at the United States
Joint Center for Satellite Data Assimilation (JCSDA). The
CRTM was primarily designed for computing satellite
radiances and is used in GSI for directly assimilating radian-
ces from infrared and microwave sensors. We extended the
CRTM to compute MODIS AOD using only aerosol profiles
as input. This newly developed CRTM-AOD module was
incorporated into the GSI system. Some implementation
details are described below.
[25] Aerosols can scatter and absorb radiation. The

absorption and scattering depends on the size distributions
and refractive indices of the aerosols. In this study, we
assumed spherical aerosol particles. The aerosol size distri-
bution may have multiple modes. For each mode, a typical
aerosol size function is assumed to be the lognormal distri-
bution [d’Almeida et al., 1991] for N particles within the
mode,

n lnrð Þ ¼ Nffiffiffiffiffiffi
2p

p
ln sg

� � exp −
1

2

lnr − lnrg
ln sg

� �
 !2

2
4

3
5; ð6Þ

where r is a radius, rg the geometric median radius, and sg
the geometric mean standard deviation. The kth moment
(Mk) of the distribution can be expressed as [Binkowski and
Roselle, 2003]

Mk ¼
Z∞
−∞

rkn lnrð Þd ln rð Þ ¼ r kg exp
k2

2
ln2 sg

� �� �
: ð7Þ

M0 is the number (N) of aerosol particles. M2 and M3 are
proportional to the total particulate surface area and vol-
ume, respectively. The effective radius (reff) is defined as

reff ¼ M3

M2
¼ rg exp

5

2
ln2 sg

� �� �
: ð8Þ

For sulfate, sea salt, and hydrophilic OC and BC, water
uptake effects need to be included. The particle size
increases as relative humidity of the ambient atmosphere
increases. The refractive index is calculated by considering
aerosol water content. The effective radius growth factor
for hygroscopic aerosols may be theoretically calculated or
obtained from a precalculated look-up table [Chin et al.,
2002]. Once the growth factor (ag) is evaluated, the refrac-
tive index (nr) for the hygroscopic aerosol can be calculated
using a volume mixing method as

nr ¼ nw þ no − nwð Þ � a3g; ð9Þ

where no and nw are the refractive indices for dry aerosols and
water, respectively. We adopted refractive indices no from
the software package of Optical Properties of Aerosols and
Clouds (OPAC) [Hess et al., 1998]. The water refractive
index is given by Hale and Querry [1973].
[26] After the size distribution and refractive index were

computed, we applied Mie scattering code [van de Hulst,
1957] to compute mass extinction coefficient ext (m2 g−1),
single scattering albedo, and phase function. Finally, AOD
for each aerosol type i at the jth atmospheric layer for a
wavelength l was calculated as

tij lð Þ ¼ ext l; i; reff
� �� cij; ð10Þ

where cij is aerosol column mass in g/m2. It can be seen from
equation (10) that the AOD depends linearly on the layer
column aerosol mass. The column total AOD is a sum of
equation (10) over all aerosol types and atmospheric layers.
In addition to the AOD forward model, the Jacobian of AOD
with respect to aerosol mass concentration was also derived,
which was required to calculate the gradient of the cost
function (equation (5)) in the 3DVAR analysis. As well as
outputting AOD at MODIS wavelengths, the CRTM-AOD

Figure 4. Moderate Resolution Imaging Spectroradiometer
(MODIS) AOD coverage from the Aqua and Terra satellites
at 06:00 UTC 21 March 2010. Purple: dark surface retrievals
from Aqua; gold: dark surface Terra; blue: deep blue pro-
duced from Aqua.

Table 1. Goddard Chemistry Aerosol Radiation and Transport
(GOCART) Aerosol Optical Properties at 550 nm for Dry Air

Aerosol Type
Density
(g cm−3)

Effective
Radius
(mm)

Standard
Deviation
s (mm)

Mass Extinction
Coefficient
(m2 g−1)

Sulfate 1.7 0.242 2.03 3.13
OC1 (hydrophobic) 1.8 0.087 2.20 2.65
OC2 (hydrophilic) 1.8 0.087 2.20 2.65
BC1 (hydrophobic) 1 0.036 2.0 9.16
BC2 (hydrophilic) 1 0.036 2.0 9.16
SeaSalt1 2.2 0.3 2.03 2.59
SeaSalt2 2.2 1.0 2.03 0.90
SeaSalt3 2.2 3.25 2.03 0.24
SeaSalt4 2.2 7.5 2.03 0.097
Dust1 2.6 0.5 2.0 1.61
Dust2 2.6 1.4 2.0 0.51
Dust3 2.6 2.4 2.0 0.27
Dust4 2.6 4.5 2.0 0.14
Dust5 2.6 8.0 2.0 0.076
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operator can also calculate AOD at wavelengths (500, 675,
870, 1020, and 1640 nm) required to validate forecasts with
retrieved AODs from AERONET [Holben et al., 1998].
[27] AOD also depends linearly on the extinction coeffi-

cient, which is a function of wavelength, aerosol type and
particle effective radius. Table 1 gives effective radius and
mass extinction coefficients at 550 nm of the 14 GOCART
aerosol variables for dry air. At visible wavelengths, the
mass extinction coefficient generally decreases as the size of
natural aerosols increases. Figure 5 depicts mass extinction
coefficient as a function of wavelength for five aerosol
species listed in Table 1. The wavelengths in the plot span
500–1800 nm, covering the observations’ spectrums used in
this paper, either for DA or validation purposes. Extinction
by DUST1 displays a flat spectral signature and BC extinc-
tion rapidly decreases from 500 to �850 nm, but decreases
more slowly at longer wavelengths. These spectral char-
acteristics aide determination of the composition of aerosol
types at different locations.

4. Application to a Dust Storm

[28] A dust storm that started in Mongolia blasted Beijing
on 20 March 2010 and covered large areas of China in the
following days. Several countries in East Asia were affected.
Hong Kong, Taiwan, Japan, and South Korea recorded
extremely poor visibility and air quality was hazardous to
human health. A number of residents reported health pro-
blems, while flights were canceled or delayed because of
poor visibility caused by dust. The dust was lofted by strong
winds accompanying a cold front that crossed China on
20 March. The winds passed over regions of Mongolia and
northwest China that had been suffering from an extended
drought. PM10 measurements in Beijing reached maximum
values of �800 mg/m3 on 20 March. AOD (500 nm) values
observed at the Nanjing AERONET site varied from less
than 1 on 19 March to a maximum of �2 on 21 March.
Average MODIS AOD values over most of China varied
from less than 0.5 on 18 March to more than 0.9 on 20–
21 March, when eastern China was severely affected by the
dust storm.

4.1. Experimental Design

[29] Two parallel experiments were designed to evaluate
the impact of MODIS AOD DA on analyses and forecasts of

aerosols over eastern Asia. One experiment served as the
control and did not employ any DA, while AOD DA was
implemented in the other. Each experiment initialized a
new WRF/Chem forecast every 6 h between 00:00 UTC
17 March and 00:00 UTC 24 March 2010 (inclusive). All
forecasts were integrated for 6 h and hourly model output
was archived. Every initialization, both experiments’ mete-
orological fields were updated by interpolating GFS analy-
ses onto the computational domain. Gaseous chemical
variables were initialized from the previous cycle’s 6 h
forecast, except for the first forecast (00:00 UTC 17 March),
when gaseous and aerosol ICs came from NCAR global
CAM-Chem model output.
[30] The two experiments only differed regarding initiali-

zation of the 14 WRF/Chem-GOCART aerosol species
contained in the GSI analysis. In the experiment without DA,
the GOCART aerosol fields were simply initialized from
the previous cycle’s 6 h forecast. However, the experiment
that employed DA performed a 3DVAR aerosol analysis
before each new initialization beginning 06:00 UTC 17
March, using the GOCART aerosol fields from the previous
cycle’s 6 h forecast as the background. The subsequentWRF/
Chem forecasts were initialized with the updated aerosol
fields, the meteorological fields from the GFS analyses,
and gaseous chemistry fields inherited from the previous
cycle’s 6 h forecast. Thus, the experiments only differed in
that 3DVAR DA updated the profiles of GOCART aerosol
species in one experiment but not the other, permitting a clear
isolation of the impact of cyclic AOD DA. Both experiments
used the same WRF/Chem physical and chemistry options
outlined in section 2.
[31] Note that MODIS AOD data were only present during

the day (00:00 and 06:00 UTC), and therefore, the aerosol
fields valid at 00:00 UTC should be considered as 18 h
forecasts initialized at 06:00 UTC the previous day, since no
AOD observations were present at 12:00 or 18:00 UTC to
update aerosol fields. However, meteorological fields were
still updated from GFS analyses at 12:00 and 18:00 UTC.
The analyses and forecasts from the two experiments were
compared to AOD observations from MODIS, AERONET,
and CALIOP, as well as surface PM10 (particulate matter
with diameters less than 10 mm) observations.

4.2. Results

4.2.1. Comparison to MODIS AOD
[32] Figure 6 displays the time series of domain-averaged

bias (Figure 6a) and root-mean-square error (RMSE)
(Figure 6b) of WRF/Chem forecasts and GSI analyses of
AOD when compared to MODIS AOD observations. These
statistics served as “sanity checks” to determine whether the
aerosol assimilation algorithm worked properly and assess
the quality of the first guess. Only times valid at 00:00 and
06:00 UTC, when MODIS AOD data were present, are
plotted for the period of 18–23 March 2010. Dotted green
curves show the errors of 6 h forecasts from the control
experiment without AOD DA (NoDA) and blue solid lines
represent errors of 6 h forecasts (which also served as the
background fields for AOD DA) from the AOD DA exper-
iment. Analysis errors after AOD DA are given by dashed
black curves.
[33] Both bias and RMSE give the same indication

regarding performance of the DA and NoDA experiments.

Figure 5. Mass extinction coefficient as a function of
wavelength for five aerosol species listed in Table 1.
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From the NoDA experiment, it is clear that the WRF/Chem
model underpredicted AOD (biases of −0.2 to −0.6), espe-
cially at 06:00 UTC 21 March, when the dust storm reached
its maximum intensity in eastern China. The magnitude of
bias and RMSE from WRF/Chem appears to be similar to
that reported by Morcrette et al. [2009] for AOD forecast
error statistics over Southeast Asia in April 2003. They ran
free forecasts of aerosols with the ECMWF global model and
verified forecasts against AERONET AOD observations.
[34] After AOD DA, the model low bias was substan-

tially reduced, with bias (RMSE) values consistently near
−0.1 (0.2). Overall, the bias and RMSE were reduced an
average of �20% compared to the NoDA experiment during
the dust storm period. Interestingly, the model output more
closely agreed with MODIS AOD observations valid at
00:00 UTC than at 06:00 UTC, even though forecasts valid
at 00:00 UTC had longer effective forecast lead times,
as discussed above. This behavior likely occurred because
MODIS data at 00:00 UTC covered mostly the western
Pacific Ocean, where AOD retrievals have less uncertainty
than over land [Remer et al., 2005].
[35] Figure 7a shows 550 nm MODIS AOD observations

assimilated during the 06:00 UTC 21 March analysis. The
horizontal AOD distributions from model output at 06:00
UTC 21 March are displayed in Figures 7b, 7c and 7d,
respectively, for the NoDA experiment and the analysis and
background (i.e., 6 h forecast from previous cycle’s analysis)
from the DA experiment. Consistent with Figure 6, the DA
experiment produced larger AOD values than the NoDA
experiment and agreed more closely with MODIS observa-
tions. In the eastern AOD band, few good observations were
available for assimilation and larger AOD values in the DA
experiment resulted from previous assimilation/forecast
cycles. Large differences between the NoDA and DA
experiments also occurred over southeast China, Vietnam,
Laos and Thailand, where AOD values increased after

assimilation and fit more closely to MODIS observations than
the background. Even though few observations were assimi-
lated over some regions (southeast China and Vietnam) of
this area, analysis increments were generated, indicating
the capability of our data assimilation system to transfer
observational information to nearby regions with sparse
observation coverage through the background error spatial
correlation.
4.2.2. Comparison Between the Background
and Analysis for Each Aerosol Variable
[36] A two-step approach for aerosol analysis (see section 1)

usually requires assumptions and constraints to partition the
first-step AOD analysis into profiles of individual aerosol
species in the second step. For instance, Zhang et al. [2008]
adopted a simple scaling technique for all species by
assuming the relative ratio of each aerosol species’ mass
concentration to the total aerosol mass concentration was
constant before and after the analysis. However, this
assumption can be problematic if the background field is bad.
Our one-step 3DVAR aerosol analysis does not apply any
constraints regarding relative ratio of each species’ mass
concentration to the total aerosol mass concentration. The
main constraints in our system were the specification of the
observation and background error covariances.
[37] It is interesting to see how our assimilation method

impacted the analyses of individual aerosol species. Figure 8
shows domain-averaged total aerosol mass concentration
(Figure 8a) and the species’ relative contribution to the total
mass (in terms of percentage; see Figures 8b–8f) before (solid
lines) and after (dotted lines) AOD DA for each model level
at 06:00 UTC 21 March. Only species whose concentrations
increased after DA (BC1/2, OC1/2, and DUST1/2/3) are
shown in Figure 8. Mass concentrations of Sulfate, DUST4,
DUST5, and all sea salt species were nearly unchanged by
AOD DA (not shown).

Figure 6. Time series of domain-averaged (a) bias and (b) root-mean-square error (RMSE) of AOD
Weather Research and Forecasting/Chemistry model forecasts and Gridpoint Statistical Interpolation
aerosol analyses. The x axis labels combine date and hour (DDHH). Only times valid at 00:00 UTC
and 06:00 UTC, when MODIS AOD data were present, are plotted for the period of 18–23 March 2010
(section 4.2.1).
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[38] The total aerosol mass concentration was increased
after AOD DA (Figure 8a), thus, reducing the low model
bias while preserving the shape of the profile. The profile
shapes of the individual species (Figures 8b–8f) also were
preserved, which was expected, since total AOD provides no
vertical information about aerosol optical properties. At the
lowest model level, the total mass concentration of the
analysis increased 15% over the background for this case.
Even though all species shown in Figure 8 had increased
concentrations after AOD DA, the relative ratios of indi-
vidual species’ mass concentration to the total mass con-
centration differed across the species. Relative ratios of
OC2, DUST1, and DUST2 increased in the analysis, repre-
senting a relatively large increase of mass concentration for
these species. On the other hand, BC1, BC2, OC1, and
DUST3 ratios decreased after DA because of a relatively
small increase of their mass concentrations. It is hard to
determine whether this behavior is preferable because of the
lack of available validation data for individual species.
However, when examining several AERONET AOD obser-
vations within the domain, we found that fine mode AOD
was dominant and explained �80% of the total AOD, on
average (not shown). Thus, it seems appropriate that fine
mode (particle size <2 mm, see Table 1) dust species (i.e.,
DUST1 and DUST2) contributed most to the total aerosol
mass concentration after the analysis.

4.2.3. Comparison to AERONET AOD
[39] The AERONET program, equipped with Sun photo-

meters, is a federation of ground-based remote sensing
aerosol networks [Holben et al., 1998]. The Sun photometer
measures solar radiation over a number of wavelengths in
the absence of cloudiness. AOD is then calculated from
these measurements. During the period of this study, AOD
observations were available at seven AERONET sites (see
Figure 1) and used for validating AOD forecasts and anal-
yses. In order to validate AOD at AERONET specific
wavelengths, the CRTM-AOD operator was modified to
include the AOD calculation for those wavelengths.
[40] Figure 9 depicts the hourly time series of AOD at

500 nm for the whole experimental period (00:00 UTC 17
through 06:00 UTC 24 March) at six AERONET sites in the
domain. Among those sites, Nanjing, Jhongli of Taiwan, and
Hong Kong were affected by the dust storm. The analyzed
AOD values after DA are shown only at 00:00 and 06:00
UTC, when MODIS AOD data were present. Otherwise,
hourly model forecast output is displayed. The NoDA
experiment (green lines) produced AOD values far below
AERONET observations (red lines), but assimilating
MODIS AOD (blue lines) yielded AOD values much closer
to AERONET observations, although to different extents
among the sites and dates. The peak AOD values in Nanjing
around 06:00 UTC 21 March (Figure 9a), during the dust

Figure 7. (a) 550 nm MODIS AOD observations assimilated within the �3 h data assimilation window
for the 06:00 UTC 21 March analysis and the corresponding model output at 06:00 UTC 21 March for
the (b) control experiment without AOD data assimilation (NoDA) experiment and the (c) analysis and
(d) background (i.e., 6 h forecast from the previous cycle’s analysis) from the AOD DA experiment.
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Figure 8. (a) Domain-averaged total aerosol mass concentration (mg/kg) and ratio of mass concentration
of (b) BC1 and BC2, (c) OC1 and OC2, (d) DUST1, (e) DUST2, and (f) DUST3 to the total aerosol mass
concentration before (solid lines) and after (dotted lines) AOD DA for each model level at 06:00 UTC
21 March. The model levels 10, 20, 30, and 40 correspond to heights (from sea level over water) of about
1.3, 3.9, 7.5, and 14 km.
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storm, were simulated accurately by the DA experiment.
AOD DA’s capability to capture the extreme event around
06:00 UTC 21 March was also evident in Ubon Ratchathani
(Figure 9e). The decrease of AOD values beginning 22March
in Dongsha Island was also well depicted in the DA experi-
ment. At early times of the simulation period, AOD values
at some sites (e.g., Dongsha Island and Bangkok) were
underestimated even with AOD DA, likely because of no
coverage of MODIS AOD data.
[41] Figure 10 shows AOD verification at four wave-

lengths (1640, 1020, 870, and 675 nm) at an AERONET site
in Kathmandu, the capital and largest city of Nepal. This

site was unaffected by the dust storm and typical air pollu-
tion dominated the AOD. The NoDA experiment severely
underestimated AOD compared to the AERONET observa-
tions, likely revealing the underestimated emissions from the
“Streets” 2006 Asia emissions inventory [Zhang et al.,
2009] used for emissions in our study. This issue of under-
estimated emissions might be unavoidable when applying
historical emissions inventories in developing countries
with rapidly increasing industrial activities. Zhang et al.
[2009] investigated the emissions trends of various spe-
cies in China and found that between 2001 and 2006,
SO2, NOx, CO, VOC (Volatile organic compound), and

Figure 9. Hourly time series of total AOD at 500 nm from 00:00 UTC 17 March to 06:00 UTC 24 March
at AERONET sites in (a) Nanjing, (b) Jhongli city of Taiwan, (c) Dongsha Island, (d) Hong Kong,
(e) Ubon Ratchathani, and (f) Bangkok. Model output is hourly. Red line denotes the AERONET obser-
vations, and blue and green curves represent the DA and NoDA experiments, respectively.
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PM10 concentrations increased 36%, 55%, 18%, 29%, and
13%, respectively, while there was a 14% increase for PM2.5,
BC and OC. However, assimilation of current data provides
a method to overcome shortcomings of “climatological”
emissions. The AOD values from the DA experiment (blue
line) agree more closely with AERONET observations. The
minimum AOD values around 06:00 UTC (local noon) were
captured, particularly for longer wavelengths (1640 and
1020 nm). Kathmandu is one of the most polluted cities in
Asia, partly because of high year-round traffic volume of fuel
inefficient vehicles [Sharma, 1997]. The diurnal variation of
AOD in the AERONET observations, and replicated by the
DA experiment, likely reflects changes in traffic from the
morning to evening. The DA experiment agreed less with
observations as the wavelength decreased, perhaps because
of less accurate analyses and forecasts of certain species more
sensitive to shorter wavelengths, which underscores the need
of multispectral observations to better characterize the con-
tributions of different aerosol types.
4.2.4. Comparison to CALIOP AOD
[42] We also compared forecasts to AOD retrievals from

the CALIOP instrument on board the Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations (CALIPSO)
satellite [Winker et al., 2009]. CALIPSO flies in a near-nadir
view so that CALIOP footprints nominally fall on the sat-
ellite ground track. The CALIOP AOD product is provided

at 5 km (60 m) horizontal (vertical) resolution and was
averaged to match the model horizontal resolution (27 km)
and vertical grid before comparing to the model output.
[43] Figure 11 shows the results at 532 nm of CALIOP

transects around 17:00 UTC 19 March (Figures 11a–11c)
and 20:00 UTC 20 March (Figures 11d–11f). The AOD
model output is essentially from an 11 h (14 h) forecast for
the case on 19 (20) March (see section 4.2.1 about discus-
sion of forecast range for aerosols). The model times differ
from those of the CALIOP observations by �40 min
(�15 min) for the path on 19 March (20 March). Larger
AOD values were produced by the DA experiment on both
dates, while the patterns were similar for both experiments.
As shown in Figures 11c–11f, the DA experiment agreed
more with CALIOP than the NoDA experiment for both
paths. The improvement through DA is particularly evident
in the southeast part of the domain on 20 March. We note
that CALIOP AOD measurements were retrieved only from
cloud-free layers, whereas the model AOD was obtained
from integration over all model layers, regardless of whether
clouds were present. This difference may explain some of
the discrepancies between the model-predicted and CALIOP
AODs in Figure 11.
[44] The vertical distributions of 532 nm CALIOP AOD

and 550 nm model AOD output corresponding to Figure 11f
are given in Figure 12. Both experiments well simulated the

Figure 10. As in Figure 9 but for AOD validation at the Kathmandu AERONET site for four wavelengths:
(a) 1640, (b) 1020, (c) 870, and (d) 675 nm.
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Figure 11. Model 550 nm AOD forecasts from (a, d) the NoDA experiment and (b, e) the DA experiment
overlaid with CALIPSO path, and (c, f) 532 nm AOD values along the CALIPSO path from CALIOP
observations (red) and 550 nm model AOD output from DA (blue) and NoDA (green) experiment.
Figures 11a–11c are valid around 17:00 UTC 19 March and Figures 11d–11f around 20:00 UTC
20 March.
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AOD vertical distributions within the 1 to 2 km layer in the
southern part of the CALIPSO path. Clearly, the larger AOD
values from the DA experiment agreed more closely with the
CALIOP observations.
4.2.5. Comparison to Surface PM10

[45] Model forecasts of near-surface PM10 were verified at
83 surface stations across China (see Figure 1 for coverage).
The PM10 observations at all sites represented daily averages
from 00:00–00:00 UTC, and 12:00 UTC was chosen as the
“effective” valid time for the observations. Thus, hourly
PM10 model output from the lowest vertical level was also
averaged over 24 h periods centered at 12:00 UTC for
comparison with observations.
[46] PM10 concentrations averaged over the 83 verifica-

tion sites were uniformly greater in the experiment with
AOD DA (Figure 13a), consistent with that experiment’s
higher AOD values. The mean observed values reflect the
passage of the dust storm, with a peak value on 21 March.
The average PM10 values from the DA experiment were
closer to the observed values except for 19 March, when
PM10 was grossly overestimated in the DA experiment. The
reason for this overestimation is unclear and subject to future
investigation. However, the DA experiment’s mean value on

21 March was similar to the observed mean and corre-
sponded to the peak intensity of the dust storm.
[47] Observed PM10 concentrations varied considerably

across the sites (Figure 13b), especially during the dust storm
period. Neither experiment consistently replicated the
observed standard deviation. For example, the experiment
with DA overpredicted the spread during the first several
periods but underpredicted spread at later times, and other
than the first two periods, the experiment without DA did not
forecast spread well. While there were shortcomings of both
experiments regarding spread, AOD DA produced standard
deviations that were closer to the observations during the dust
storm period, further suggesting DA added value to the
forecasts for this extreme event.
[48] Additionally, using a 2 � 2 contingency table

(Table 2), the equitable threat score (ETS) was calculated
over the 83 sites. By selecting PM10 thresholds (q; e.g.,
100 mgm−3) to define an event, the ith site (i = 1…83) was
placed into the proper quadrant of Table 2 based on the
correspondence between the forecast (F) and observations
(O) at its location. Specifically, the ith site fell into category
a if the event was correctly predicted (Fi ≥ q and Oi ≥ q); b if
the event was forecast but did not occur (Fi ≥ q and Oi < q); c
if an event occurred but was not forecast (Fi < q and Oi ≥ q);

Figure 12. Similar to Figure 11f but corresponding vertical distributions of (a) 532 nm CALIOP AOD,
(b) 550 nm AOD from NoDA, and (c) DA experiments around 20:00 UTC 20 March.
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and d if a nonevent was correctly predicted (Fi < q and
Oi < q). Using the elements of Table 2, ETS is defined as
ETS = (a − e)/(a + b + c − e), where e = (a + b)(a + c)/
(a + b + c + d) and is the number of “hits” (elements in
quadrant “a” of Table 2) due to random chance. ETS ranges
from −1/3 to 1, with a perfect forecast achieving a score of 1
and a forecast worse than random chance scoring less than 0.
Thresholds of 100 and 200 mgm−3 were chosen to evaluate
the model forecasts since these thresholds fell within the
ranges of the mean PM10 values (Figure 13a).
[49] For q = 100 mgm−3 (Figure 14a), other than the

12:00 UTC 19 March effective valid time, assimilating
AOD led to substantially higher ETSs. The improvement of
the experiment with AOD DA compared to the experiment
without DA was maximized around 12:00 UTC 21 March,
when the dust storm was near peak intensity. In terms of
ETS, the experiment with DA also produced its best forecast
at that time.
[50] When the threshold was increased to q = 200 mgm−3

(Figure 14b), both experiments sometimes struggled, with
ETSs near or below zero for the non–dust storm periods.
During these times, there were few observations that met or
exceeded this higher threshold, which may have partially
contributed to the low ETSs. However, during the height of
the dust storm, as measured by the ETS, AOD DA resulted
in improved PM10 forecasts.
[51] By altering the profiles of GOCART aerosol species

through AOD DA, surface PM10 forecasts were also modi-
fied. The overall results suggest that AOD DA yields a
modest improvement of surface PM10 forecasts, although the
benefits of DA were not evident each day. Additional

improvement of PM10 predictions is likely to be gained by
directly assimilating surface PM10 observations.

5. Conclusions and Future Perspectives

[52] The GSI 3DVAR DA system was expanded to
assimilate MODIS AOD observations using 3-D mass con-
centrations of 14 GOCART aerosol species as analysis
variables. The CRTM was extended to serve as the AOD
observation operator (both forward operator and Jacobian)
and computed model-simulated AOD from the aerosol pro-
files. Some developments, such as adding aerosol analysis
variables in the GSI and the corresponding background error
statistics, are applicable to the assimilation of any aerosol
related observations. Our one-step procedure did not impose
any constraints or assumptions about the relative contribution
of each species’ mass concentration to the total aerosol mass
concentration, in contrast to traditional two-step approaches.
Thus, AOD observations could directly impact the analysis
profiles of individual species. The aerosol analyses were
used to initialize WRF/Chem forecasts.

Figure 13. (a) Average PM10 values (mgm−3) and (b) standard deviation (mgm−3) over 83 stations
(see Figure 1) for each “effective” valid time (section 4.2.5). The experiments with and without DA are
indicated by the solid and long-dashed lines, respectively, while the observations are denoted by the
short-dashed line. The x axis labels represent the day and hour (UTC) in March 2010 (i.e., 1712 means
12:00 UTC 17 March).

Table 2. Standard 2 � 2 Contingency Table for Dichotomous
Events

Forecast

Observed

Marginal TotalYes No

Yes a b a + b
No c d c + d
Marginal Total a + c b + d
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[53] The impact of the newly developed AOD DA system
was demonstrated by application to a dust storm that
occurred in March 2010 over eastern Asia. Aerosol analyses
and forecasts were validated against AOD observations from
various sources (MODIS, AERONET, and CALIOP) and
surface PM10 data. The WRF/Chem model simulation with-
out AOD DA severely underestimated the dust storm inten-
sity, and, thus, the corresponding AOD values. However,
AODDA reduced the model low bias for aerosol forecasts by
inflating the initial 3-D aerosol mass concentrations, partic-
ularly for fine mode dust species (DUST1 and DUST2). The
results indicate that our one-step 3DVAR method of assimi-
lating MODIS AOD permits concentrations of individual
aerosol species to change while maintaining similar vertical
structures before and after DA.
[54] Aerosol analyses and forecasts with AOD DA were

substantially improved when compared to independent AOD
observations from AERONET sites and CALIOP as well as
surface PM10 observations. The maximum dust intensity at
AERONET sites were well captured by the WRF/Chem
model simulation with AOD DA. Therefore, the AOD DA
system developed here could be used as a tool to generate
better dust storm forecasts. Moreover, we also illustrated the
potential of AOD DA to improve general air quality analyses
and forecasts by examining AOD from the model output and
observations at the Kathmandu AERONET site, which was
unaffected by the dust storm but suffers from major air
pollution.
[55] The AOD DA capability we developed here is just

the first step toward a more comprehensive aerosol DA
system. It is fairly straightforward to expand the system
to assimilate additional aerosol-related observations (e.g.,

surface measurements of particle matter, multispectral and
multiangle AOD retrievals from different satellite instru-
ments, vertical extinction profiles from ground-based and
space-borne Lidar), and, thus, refine vertical structures of
individual species and better quantify each species’ contri-
bution to the total aerosol mass. New aerosol variables can
be added to the state vector and the corresponding BECs
determined easily. Moreover, our 3DVAR system can
simultaneously assimilate MODIS AOD and meteorological
observations typically used in GSI. This capability will be
tested in future work to study the interaction between
meteorological and aerosol assimilation.
[56] Further investigation is needed to more effectively

use available aerosol-related observations. For instance, the
model background can be biased for aerosols, which makes
3DVAR DA suboptimal. Therefore, developing a more
advanced method considering the forecast bias [Dee, 2005] is
desired and expected to extract observation information more
optimally. Additionally, direct assimilation of raw radiances
for aerosol analysis [Weaver et al., 2007] may prove fruitful.
More advanced DA techniques, such as 4DVAR and
ensemble-based DA (EnDA) may be superior to 3DVAR by
using orbital satellite observations at appropriate times,
implicitly or explicitly using model dynamic and physical
constraints, and calculating multivariate and flow-dependent
forecast error correlations. However, 4DVAR and EnDA
approaches are more computationally expensive and possibly
impractical in cases for general chemistry assimilation with
hundreds of prognostic variables. Moreover, a significant
amount of work may be required to develop the tangent linear
and adjoint of chemistry models in the case of 4DVAR, even

Figure 14. Equitable threat score determined over 83 stations (see Figure 1) for PM10 forecasts for each
“effective” valid time (section 4.2.5) using thresholds of (a) 100 and (b) 200 mgm−3. The experiments with
and without DA are indicated by the solid and long-dashed lines, respectively. The x axis labels represent
the day and hour (UTC) in March 2010 (i.e., 1712 means 12:00 UTC 17 March).
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though some tools exist for automating generation of adjoint
code [Sandu et al., 2003].
[57] Last, it should be recognized that DA is a supple-

mental tool and not the only way of improving aerosol
analyses and forecasts. Chemical and aerosol models them-
selves should continue to be improved through more accu-
rate estimations of emissions and better modeling of various
physical and chemical processes.
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