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ABSTRACT

The impact of assimilating radiance observations from the Advanced Microwave Sounding Unit-A

(AMSU-A) on forecasts of several tropical cyclones (TCs) was studied using the Weather Research and

Forecasting Model (WRF) and a limited-area ensemble Kalman filter (EnKF). Analysis/forecast cycling

experiments with and without AMSU-A radiance assimilation were performed over the Atlantic Ocean for

the period 11 August–13 September 2008, when five named storms formed. For convenience, the radiance

forward operators and bias-correction coefficients, along with the majority of quality-control decisions, were

computed by a separate, preexisting variational assimilation system. The bias-correction coefficients were

obtained from 3-month offline statistics and fixed during the EnKF analysis cycles. The vertical location of

each radiance observation, which is required for covariance localization in theEnKF, was taken to be the level

at which the AMSU-A channels’ weighting functions peaked.

Deterministic 72-hWRF forecasts initialized from the ensemble-mean analyses were evaluatedwith a focus

on TC prediction. Assimilating AMSU-A radiances produced better depictions of the environmental fields

when compared to reanalyses and dropwindsonde observations. Radiance assimilation also resulted in sub-

stantial improvement of TC track and intensity forecasts with track-error reduction up to 16% for forecasts

beyond 36 h. Additionally, assimilating both radiances and satellite winds gavemarkedly more benefit for TC

track forecasts than solely assimilating radiances.

1. Introduction

Tropical cyclone (TC) track forecasts have steadily

improved in the past two decades, but TC intensity

forecast error has changed little over the same period

(Rappaport et al. 2009). Substantial track error re-

duction can be attributed to general improvements in

numerical weather prediction (NWP) modeling (dy-

namics, physical parameterizations, and higher spatial

resolution), advancements in initialization and data

assimilation (DA) techniques, and the assimilation

of more observations, particularly those from satel-

lite platforms. Since TCs are intense, isolated fea-

tures, errors in short-range TC forecasts typically vary

substantially in space and depend strongly on the loca-

tion of the TC. Moreover, the fastest-growing errors are

often associated with large gradients in the wind and

mass fields (Puri et al. 2001). Therefore, accurate anal-

yses of TC vortex structures and environments can be

difficult and suboptimal with DA techniques using

‘‘climatological’’ background error covariances (BEC;

e.g., Parrish and Derber 1992). However, ensemble-

basedDA techniques, such as the ensemble Kalman filter

(EnKF; Evensen 1994; Burgers et al. 1998; Houtekamer

and Mitchell 1998), may lead to better forecasts of TC

intensity and a continued reduction of track error be-

cause of the use of flow-dependent error statistics es-

timated from short-term ensemble forecasts, which

should represent spatial correlations and mass–wind

balances better than static BECs in both the TC core

and environment.

Several studies have focused on EnKF analyses of TC

state with individual short-period case studies (e.g., Torn

and Hakim 2009; Zhang et al. 2009, 2010; Li and Liu

2009; Liu and Li 2010) and extensive studies of multiple

TCs in quasi-operational environments (e.g., Torn 2010;
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Hamill et al. 2011a,b). They all showed that NWPmodel

forecasts initialized with EnKF systems are competi-

tive with or better than operational TC track and in-

tensity forecasts. Among these studies, Li and Liu

(2009) and Liu and Li (2010) demonstrated the posi-

tive impact of assimilating satellite retrievals of high-

resolution (;15 km) temperature and moisture profiles

from the Atmospheric Infrared Sounder (AIRS) on TC

track and intensity forecasts.

Satellite radiance data are currently assimilated in

many operational NWP centers with mostly variational

DA algorithms and are one of the most important ob-

servation types for global NWP performance, especially

over areas with sparse conventional observations (e.g.,

Derber and Wu 1998; McNally et al. 2000; Zapotocny

et al. 2008). Several studies have directly assimi-

lated radiances using an EnKF for global NWP

models, but without the examination of radiance im-

pact (Houtekamer et al. 2005; Buehner et al. 2010b;

Miyoshi et al. 2010; Hamill et al. 2011a,b). Radiance

assimilation efforts within the EnKF have been pri-

marily devoted to better treatment of vertical error

covariance localization (Houtekamer et al. 2005; Fertig

et al. 2007; Miyoshi and Sato 2007; Campbell et al. 2010;

Buehner et al. 2010a; Aravéquia et al. 2011) and bias

correction (Fertig et al. 2009; Miyoshi et al. 2010;

Aravéquia et al. 2011).

Although some studies have assimilated synthetic in-

frared radiances in cloudy conditions using ensemble-

based methods with a limited-area model (e.g., Zupanski

et al. 2011; Otkin 2010, 2012), real radiance data have

rarely been assimilated with limited-area EnKF systems

because polar-orbiting satellite coverage is nonuniform

in a limited-area domain and bias correction is more

challenging than in a global model. The recent study by

Schwartz et al. (2012, hereafter SLCH) was the first

attempt to assimilatemicrowave radianceswith a limited-

area EnKF and used the Weather Research and Fore-

casting Model (WRF; Skamarock et al. 2008) and the

Data Assimilation Research Testbed (DART;Anderson

et al. 2009), a system that we will hereafter term WRF/

DART. Their results showed that assimilating micro-

wave radiances with a limited-area EnKF produced

overall improved forecasts of Typhoon Morakot (2009),

although the precise effect differed among track, in-

tensity, and rainfall forecasts. Following SLCH, this

work further enhances radianceDAcapability developed

within WRF/DART and provides a robust second look

at assimilating microwave radiances with a limited-

area EnKF. Instead of a one-week case study as in

SLCH, the impact of assimilating Advanced Micro-

wave Sounding Unit-A (AMSU-A; Smith et al. 1979;

Goodrum et al. 1999) radiances was evaluated for five

Atlantic TCs for a month-long period during the sum-

mer of 2008.

A brief introduction to the EnKF algorithm is pro-

vided in section 2, followed by details of the radiance

assimilation methodology in section 3. Section 4 gives

an overview of the TC cases and section 5 describes

the WRF configurations and experimental setting.

Results are presented in section 6 before concluding

in section 7.

2. Ensemble Kalman filter algorithm

Several variants of EnKF analysis algorithms exist.

These fall into two categories: stochastic (Houtekamer

andMitchell 1998) and deterministic, based on whether

perturbed observations are used to obtain the en-

semble analysis. Deterministic filters can be further

categorized as ensemble adjustment Kalman filter

(EAKF; Anderson 2001), ensemble transform Kal-

man filter (Bishop et al. 2001), ensemble square root

filter (Whitaker and Hamill 2002), and local ensemble

transform Kalman filter (LETKF; Hunt et al. 2007).

As noted by Tippett et al. (2003), the first three of

these deterministic filters yield analysis ensembles

with identical means and covariances when beginning

from the same forecast ensemble (at least in the ab-

sence of covariance localization, discussed at the end

of this section).

The EAKF algorithm is employed in this study and its

implementation in WRF/DART follows the two-step

approach of Anderson (2003), which updates the

observation-space ensembles in the first step and then is

followed by a regression step to update the model-space

ensembles from the observation-space ensembles. The

appendix derives the vector-matrix form of Eq. (6) of

Anderson (2003), which expresses the EAKF as a re-

gression. This has not been published elsewhere to the

best of the authors’ knowledge.

Like many other EnKF algorithms, the vector-matrix

form of the EAKF equations (see the appendix) can be

solved by serially assimilating observations in any order

as long as the observation error covariance matrix is

diagonal (Parrish and Cohn 1985), a common assump-

tion in operational centers. Therefore, only one single

observation is assimilated at a time. Anderson and Collins

(2007) developed a scalable parallel algorithm, in which

the observation prior ensembles are computed in par-

allel all at once at the beginning of assimilation, rather

than serially after intermediate state updates. The key

modification in the parallel algorithm is to adopt a joint

state-observation space approach, in which the obser-

vation prior ensembles are updated exactly like the state

variables.
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A finite ensemble leads to sampling errors when

computing the statistical relationship (covariance) be-

tween an observation and a state variable (or another

observation). The sampling error, along with other error

sources, tends to produce a systematic underestimate of

ensemble variance that can result in poor filter perfor-

mance or filter divergence. Two common methods to

reduce this tendency are covariance localization and

multiplicative inflation. In covariance localization, the

covariance is multiplied by a localization factor r(d)

(separately in the horizontal and vertical) where d is the

physical distance between an observation and a state

variable (or another observation). In this study, r(d) is

the compactly supported correction function of Gaspari

and Cohn (1999) with half-width c. For d$ 2c, the ob-

servation has no impact on the state variable. For d, 2c,

r approximates a Gaussian. In multiplicative inflation,

the deviations of prior ensembles about the mean are

multiplied by a factor greater than or equal to 1 imme-

diately before the forward observation operator is ap-

plied for computing prior observation ensembles. The

DART implemented an adaptive covariance inflation

scheme that allows spatially and temporally varying in-

flation (Anderson 2009).

3. Radiance assimilation with an EnKF

Many satellite instrumentsmeasure radiation at the top

of atmosphere (TOA) emitted by the earth–atmosphere

system. TOA radiation is usually observed in different

electromagnetic spectral bands (channels) in the quan-

tity of radiance or brightness temperature. Remotely

sensed radiance observations are sensitive to earth sur-

face characteristics and several atmospheric variables

(temperature, humidity, clouds, and precipitation, etc.)

within a broad layer through radiative transfer equa-

tions (Liou 2002).

For assimilating radiance data within the EnKF de-

scribed in section 2, the Community Radiative Transfer

Model (CRTM; Han et al. 2006; Liu and Weng 2006)

built in the WRF’s DA (WRFDA; Barker et al. 2012)

system is used as the radiance forward operator for

computing radiance prior ensembles. The same strategy

of using forward operators from a variational DA sys-

tem was also adopted in other studies (e.g., Houtekamer

et al. 2005; Hamill et al. 2011a,b; SLCH) to assimilate

radiances (and other observations) within EnKF sys-

tems. In contrast to SLCH, where the prior ensembles of

all observation types (including radiances) were com-

puted from the WRFDA system, in this study only ra-

diance prior ensembles come from WRFDA’s forward

operators and the prior ensembles of all other obser-

vation types are computed using the DART built-in

forward operators to make use of observations from an

existing WRF/DART experiment.

Like other observations, covariance localization is

needed to reduce the sampling error for radiances, and

the distance-based localization employed here requires

an observation to have a defined location. But, radiance

observations have no explicitly defined vertical loca-

tions owing to the nonlocal nature of the measurements.

Houtekamer et al. (2005) assigned fixed pressure levels

that corresponded to the approximate peaks of the

AMSU-A weighting functions as the vertical locations.

This approach was followed by Hamill et al. (2011a,b)

but with the flow-dependent weighting functions and

also applied to instruments other than AMSU-A. The

Japan Meteorological Agency (JMA) uses the flow-

dependent normalized weighting function itself to de-

fine the localization function in their global LETKF

system, as proposed by Miyoshi and Sato (2007) and

followed by Miyoshi et al. (2010). At the time of this

work, the DART uses the same localization function

(section 2) for all observation types. To fit the DART

framework, we adopt the same vertical localization

approach employed by Hamill et al. (2011a, b) and

SLCH (i.e., use the peak levels of the flow-dependent

weighting functions as they vary geographically and

temporally).

The AMSU-A is a cross-track, line-scanned micro-

wave sensor of 15 channels whose primary goal is the

retrieval of temperature profiles. It has a 2343-km swath

width and measures 30 pixels each swath with a;48-km

diameter footprint at nadir. In this study only a subset

of temperature-sensitive AMSU-A channels are assim-

ilated. Channels 1–4 and 15 were not assimilated here

because of their large sensitivities to uncertain sur-

face parameters (emissivity and skin temperature). The

20-hPa model top (see section 5) also prevents high

peaking channels from being assimilated. Therefore,

only channels 5–7 were assimilated, which correspond

to weighting functions peaking around 700, 400, and

250 hPa, respectively.

Radiances are prone to systematic errors (i.e., biases)

that must be corrected before they are assimilated. The

radiance bias is often expressed by a linear combina-

tion of ‘‘predictors,’’ which leads to a modified forward

operator ( ~H),

~H(x,b)5H(x)1b01 �
N

p

i51

bipi , (1)

where H is the original forward operator (before bias

correction); x is the model state vector; b0 is a constant

component of total bias; and pi and bi are the ith of Np
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predictors and corresponding bias-correction coefficients,

respectively. Predictors can be separated into those re-

lated to the model state, such as surface temperature and

layer thickness, and those related to the measurement,

such as scan position (Eyre 1992). The bias-correction

coefficients b are usually assumed channel dependent

and can be estimated offline (Harris and Kelly 2001) or

updated adaptively within a variational minimization

process by including them in the state (Derber and Wu

1998). The latter method is referred to as variational

bias correction (VarBC; Dee 2004).

The EnKF can use radiance bias correction produced

by a variational DA system (e.g., Houtekamer et al.

2005; Miyoshi and Sato 2007; Buehner et al. 2010b) with-

out additional cost if operational centers run variational-

and ensemble-based DA systems simultaneously, as

at the Canadian Meteorological Centre (CMC). Fertig

et al. (2009) proposed and tested in an idealized setting

an adaptive bias-correction method within a LETKF

scheme by augmenting the state vector of each member

with the bias-correction coefficients. Aravéquia et al.

(2011) evaluated this ensemble bias-correction strategy

with real observations. Alternatively, Miyoshi et al. (2010)

and Hamill et al. (2011a) used the ensemble mean anal-

ysis to adaptively update deterministic bias-correction

coefficients within the EnKF. SLCH used constant bias-

correction coefficients (b) generated by the VarBC from

cycling WRFDA for one week.

Herewe employ a simpler approach and runWRFDA’s

VarBC in an ‘‘offline’’ mode, in which the background

term and all nonradiance observations are excluded.

Therefore, the variational cost function J is reduced to

J(b)5
1

2
(b2bb)

TBb(b2bb)1
1

2
[y2 ~H(xr,b)]

T

3R21[y2 ~H(xr,b)] , (2)

where y is the observations; R is the observation error

covariancematrix; xr is a reference field and considered

unbiased; and bb and Bb are the background bias-

correction coefficient vector and the associated error

covariance, respectively. The b can be easily obtained

with few iterations of the minimization algorithm for this

linear problem. Similar to SLCH, the ‘‘spunup’’ b at the

end of the offline update cycles is held fixed in the EnKF

assimilation for the entire experimental period. Note that

if the reference field is taken from the EnKF ensemble

mean analysis and b is updated adaptively with bb from

the previous analysis cycle, this offline ‘‘VarBC’’ mode is

identical to that proposed by Miyoshi et al. (2010).

To implement this approach, we choose the Na-

tional Centers for Environmental Prediction (NCEP)

operational global analysis, which assimilates radiances

from many satellite sensors, as the reference field. The

predictors of Eq. (1) used in the WRFDA VarBC in-

clude seven parameters: the scan position, the square

and cube of scan position, 1000–300- and 200–50-hPa

layer thicknesses, surface skin temperature, and total

column water vapor, which are similar to those used in

the European Centre for Medium-Range Weather

Forecasts (ECMWF) global analysis. Here Bb is a di-

agonal matrix, with the variance values s2/N on the di-

agonal controlling the adaptivity of a specific predictor

coefficient for a specific radiance channel, where s2 is an

estimate of the radiance error variance for the associ-

ated channel. As explained in Dee (2004), this means

that the weight given to the background parameter es-

timate is equivalent to that of N additional radiance

observations. In the ECMWF global DA system,N is set

to 104 (Dee and Uppala 2009). In this regional DA set-

ting, we take a smaller value, 5000, to give more weight

to the latest observations.

Liu et al. (2011) demonstrated over an Arctic-centered

domain that a month-long offline WRFDAVarBC run is

necessary to obtain stable bias-correction coefficients.

Poli et al. (2010) also reported slow adjustment (up to two

months) of radiance bias correction due to the removal of

global positioning system (GPS) radio occultation

(GPSRO) data in the ECMWF global DA system. In this

study, we ran WRFDA offline VarBC mode over the

computational domain for a three-month (May–July

2008) period prior to the EnKF assimilation to obtain

a set of spunup bias-correction coefficients.

The usual practice with an EnKF would be to apply

the forward operator ~H given by Eq. (1) to eachmember

to obtain bias-corrected radiance prior ensembles, with

no adjustment of the raw radiance observations. How-

ever, we found that the ensemble spread of bias cor-

rection was usually small [O(1021)] relative to the

ensemble spread in brightness temperature. Thus, we

neglect the spread in bias correction and take the pre-

dictors p from the prior ensemble mean; that is, bias

correction is based on the ensemblemean only and is not

specific to each member. This greatly simplifies the ob-

servation handling, as we can adjust the raw radiance

observations while keeping the radiance prior ensem-

bles uncorrected.

We follow SLCH and adopt radiance quality-control

(QC) procedures in WRFDA that consist of numerous

checks to ensure that only ‘‘good’’ radiance observations

are assimilated. The AMSU-A QC procedures include

checks on (i) gross values, which removes observations

with brightness temperatures smaller than 150 K or

larger than 450 K; (ii) observing geometry, which re-

moves three pixels with large scan angles on the swath
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edges; (iii) surface types, which removes pixels with

mixed surface types; and (iv) weather conditions, which

removes observations over precipitating pixels. These

checks are applied to each member and the observation

is rejected if any member fails any check. In SLCH, an

‘‘outlier’’ test was also performed within WRFDA,

where a radiance observation was rejected if the bias-

corrected innovation (observation minus prior) ex-

ceeded 3so, where so is the observation error standard

deviation. However, here the outlier check is performed

within the EnKF using the prior ensemble mean

yb 5H(xb) and ensemble variance s2
b for each ob-

servation yo. The observations were rejected when

jyo 2 yb j . 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

b 1s2
o

q
. The above QC checks, together

with a 72-km thinning mesh, reject ;70% of the total

radiance observations over the computational domain.

4. Overview of tropical cyclone cases

Before describing the EnKF experiments, a brief

overview of the five named storms (Fay, Gustav, Hanna,

Ike, and Josephine) is provided. Figure 1 shows the

National Hurricane Center (NHC) best tracks of the

storms.Among the five, Fay and Josephine were tropical

storms, Hanna became a hurricane, and Gustav and Ike

reached major hurricane status and had at least one

rapid-intensification period. All storms except Josephine

made landfall. The lifetime of the storms ranged from

8 days (Josephine) to 13 days (Ike). This period was

devastating for Haiti, where over 800 people were killed

by four consecutive storms (Fay, Gustav, Hanna, and

Ike). Ike was themost destructive and strongest storm of

the 2008 hurricane season, devastating Cuba as a major

hurricane and later making landfall near Galveston,

Texas, at category 2 (nearly category 3) intensity. As

it zigzagged from water to land, Fay became the first

storm in recorded history to make landfall in Florida

4 times.

5. Experimental setup

To test the assimilation of AMSU-A radiances with

WRF/DART, we performed cycled forecast-analysis

experiments for the period 0000 UTC 11 August, some

four days before Fay was declared a tropical depression,

to 0000 UTC 13 September 2008, after Ike’s landfall.

The model domain (Fig. 2) covers the track of all five

storms during this period. In the two principal experi-

ments, WRF/DART assimilated either a control set of

observations that excluded satellite radiances or the

control observations plus AMSU-A radiances. Here, we

document the details of those experiments.

All forecasts employ version 3.2.1 of the Advanced

Research WRF Model (ARW-WRF, hereafter WRF;

Skamarock et al. 2008). In all experiments, the hori-

zontal grid spacing is 36 km, there are 45 vertical levels

FIG. 1. NHC best track for the five named storms during 11 Aug–13 Sep 2008. See legend for meanings of colors and symbols used in the

depictions of tracks.
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up to the model top at 20 hPa, and the following pa-

rameterizations are used: the WRF Single-Moment

5-Class Microphysics scheme (WSM5; Hong et al. 2004);

the Goddard shortwave (Chou and Suarez 1994) and

Rapid Radiative Transfer Model (RRTM) longwave

(Mlawer et al. 1997) radiation schemes, including the

refined upper boundary condition for RRTM (Cavallo

et al. 2011) that is necessary when cycling with model

tops above 50 hPa; the Yonsei University (YSU)

boundary layer scheme (Hong et al. 2006); the Noah

land surface model (Chen and Dudhia 2001); and the

Kain–Fritsch cumulus parameterization (Kain and

Fritsch 1990).

The WRF/DART assimilation system consists of the

EAKF implemented in DART and WRF-specific inter-

faces, observation operators, and observation-processing

tools. Overall, the system configuration follows Torn

(2010). There were 96 ensemble members in all experi-

ments. Two other important aspects are the covariance

localization, which greatly reduces the detrimental ef-

fects of sampling error in the assimilation, and the

multiplicative inflation, which counteracts the tendency

for the ensemble forecasts to have too little spread owing

especially to sampling error and unrepresented model

error. The maximum half-width c of the covariance lo-

calization function (see section 2) is set to 1000 km in the

horizontal and 12.8 km in the vertical, but is adaptively

reduced at each analysis time where observations are

dense. For typical observation coverage in this study, c

varies between;320 and;1000 km in the horizontal and

;3.9 and ;12.8 km in the vertical. The multiplicative

inflation is calculated separately for each element of the

state vector with the adaptive technique of Anderson

(2009), assuming a prior standard deviation of 0.6 in the

update of the inflation and reducing the deviation of the

inflation from one by 10% before each update.

In the cycling system, ensemble analyses are gener-

ated every 6 h (at 0000, 0600, 1200, and 1800 UTC). The

6-h ensemble forecasts require an ensemble of lateral

boundary conditions; we take their mean to be the 6-h

forecast from NCEP’s Global Forecast System (GFS)

and construct the deviations about that mean following

Torn et al. (2006) by using WRFDA to generate re-

alizations of spatially correlated, balanced noise whose

covariance is specified by the WRFDA background-

error covariance. The initial ensemble at 0000 UTC

11 August has mean equal to the GFS analysis at that

time and perturbations constructed similarly to those

for the lateral boundary conditions. Additionally, a de-

terministic 72-h WRF forecast was initialized from the

0000 and 1200 UTC ensemble-mean analyses, with

lateral boundary conditions also taken from the ap-

propriate GFS forecasts. These deterministic forecasts

are used for the verification statistics shown later in

section 6.

Two parallel experiments using 96-member ensem-

bles were configured to evaluate the impact of assimi-

lating AMSU-A radiances with an EnKF on the forecasts

FIG. 2. Snapshot of observations assimilated at 0000 UTC 16 Aug 2008.
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of Atlantic TCs. The first experiment (hereafter

‘‘NoAMA’’) assimilated conventional observations from

radiosondes, aircraft, satellite-derived winds, and land

and oceanic surface stations, together with GPS drop-

windsonde observations released from the National

Oceanic and Atmospheric Administration (NOAA)

G-IV aircraft in the synoptic environment surrounding

TCs (e.g., Aberson 2010) and GPS refractivity obser-

vations from the Constellation Observing System for

Meteorology Ionosphere and Climate (COSMIC; Liu

et al. 2007). The preprocessing of the conventional ob-

servations followed Torn and Hakim (2008); in partic-

ular, both aircraft and satellite winds are averaged over

volumes of 36 km by 36 km horizontally and 25 hPa

vertically. The NoAMA experiment also assimilates

storm position and intensity as in Chen and Snyder

(2007), where the latitude, longitude, and minimum sea

level pressure are taken from NHC advisories and the

model-predicted storm position is diagnosed from the

location of maximum 850-hPa circulation as in Cavallo

et al. (2013).

The second experiment (hereafter ‘‘AMA’’) assimi-

lated all observations from NoAMA, but also included

AMSU-A radiances from NOAA-18 and METOP-2

satellites, using the procedure outlined in section 3. The

raw radiance data were thinned on a 72-km grid to avoid

potential correlations between adjacent observations

(Liu and Rabier 2002). In both experiments, observa-

tions within 61.5 h of the analysis times were assimi-

lated and all observations were assumed to be valid at

the analysis times. In WRF/DART, the main observa-

tionQC is the innovation check as described in section 3.

Figure 2 shows a snapshot of observations assimilated at

0000 UTC 16 August. Clearly, satellite-derived winds

and radiances are the two major data sources over the

Atlantic Ocean.

6. Results

The TC track and intensity forecast performance

from the two experiments was evaluated by comparing

model output to the NHC best-track data. The envi-

ronmental fields surrounding the TCs were assessed by

comparing them to GPS dropwindsonde observations

and ECMWF Re-Analysis Interim (ERA-Interim)

reanalyses.

a. Single forecast verification

To provide examples of how assimilation of radiances

affects the TC forecasts, Fig. 3 shows the 72-h forecast

tracks of four TCs (Fay, Gustav, Hanna, and Ike) ini-

tialized about 3 days before their landfalls in the United

States for the experiments AMA (open circle) and

NoAMA (filled circle). The best-track positions (star)

are also plotted. The vortex positions at the initial times

from both experiments are very close to the best-track

locations, which was noted for almost the whole exper-

imental period (not shown) and is likely related to the

assimilation of NHC advisory vortex positions.

Forecast track errors varied among the different TCs.

The forecast track from the AMA experiment agreed

more closely with the best track than the NoAMA ex-

periment for Fay (initialized at 0000 UTC 16 August;

Fig. 3a) and Gustav (initialized at 1200 UTC 29 August;

Fig. 3b). The beneficial impact of assimilating AMSU-A

radiances is more pronounced for Gustav, which rapidly

intensified to a category-4 hurricane before it made

landfall on the eastern coast of the Isle of Youth, Cuba,

near 1800 UTC 30 August. The NoAMA experiment

had a significant westward bias and slower vortex move-

ment, missing the landfalls in Cuba late 30 August and

Louisiana around 1500 UTC 1 September. The forecast

track from AMA, however, passed over Cuba, even

though it was slightly too far west and fast. At the end of

the forecast (1200 UTC 1 September), 3 h before Gustav

made landfall in Louisiana, the AMA’s vortex position

was in close agreement with the best track.

Forecast tracks for Hanna (initialized at 0000 UTC

3 September; Fig. 3c) and Ike (initialized at 1200 UTC

10 September; Fig. 3d) were similar between AMA and

NoAMA. Both experiments reasonably forecasted

Hanna’s track, though the model storms moved too fast,

making landfall;6 h earlier and too far west. From the

best track, Hanna moved southward in the first 6-h and

then turned northeast, followed by a northwestward

recurvature 12 h later. Both experiments missed the

southward movement, contributing to faster northward

movement and an earlier landfall.

The worst track forecast occurred for Ike, with a sig-

nificant westward bias in both experiments. After ex-

amining Ike track forecasts initialized at other analysis

times, we found that this left-of-track bias persisted

beginning from the 0000 UTC 8 September analysis and

was similar for both experiments. However, even in

these poor forecasts, assimilating AMSU-A radiances

did not degrade the track forecasts compared to the

NoAMA experiment. Note that most global and re-

gional operational models featured a similar persistent

westward bias over the western Gulf of Mexico several

days before Ike’s landfall in Texas (see Berg 2009). In-

terestingly, Zhang et al. (2011) reported amuch-improved

track forecast of Ike using a convective-permitting EnKF

system with the assimilation of airborne Doppler radar

observations, andWang (2011) demonstrated the ability of

a hybrid variational/ensemble DA system to correct this

westward bias.
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b. Accumulated track and intensity error statistics

Figure 4 shows the mean absolute track errors of the

two experiments from the analysis to 72-h forecast lead

times for the lifetime of each TC. Sample sizes for each

lead time are also displayed in the plots. To ensure

a homogeneous comparison between the two experi-

ments, a forecast is used in the statistics only if both

experiments diagnosed the existence of a TC. The

overall track-error reduction due to radiance assimilation

is evident for all five TCs. For Fay, nearly uniform im-

provement (;30 km smaller track error) is achieved

beyond 24 h. A slight degradation for short lead times

(,24 h) occurs for Gustav, Ike, and Josephine when ra-

diances are assimilated. However, radianceDA improves

the track forecasts beyond 48 h. The relative track error

reduction at 72 h (48 h for Josephine) varies from;10%

for Hanna and Josephine to ;35% for Gustav.

Figure 5 shows the mean absolute error averaged over

all storms as a function of forecast lead time for track,

maximum 10-m wind speed, and minimum sea level

pressure (SLP). Statistical significance of the error dif-

ference between the two experiments was assessed by

applying a bootstrap resampling technique (Hamill

1999). Specifically, the difference between the experi-

ments’ errors was calculated for each forecast. Random

samples (with replacement) were drawn from the dis-

tribution of differences for each forecast hour, and the

mean difference was calculated. This process was re-

peated 10 000 times. The 90% confidence interval for

the average difference between the two experiments

was estimated from the distribution of the resampled

mean differences. If zero was not contained within the

bounds of the confidence interval, then the difference

between the experiments’ errors was statistically sig-

nificant at the 90% level.

The gain by assimilating AMSU-A radiances is evi-

dent for both track and intensity forecasts, particularly

beyond 48 h. Lower track errors of the AMA experi-

ment are statistically significant from 36 to 72 h. The

FIG. 3. Forecast tracks of 4 TCs initialized about 3 days before making landfall in the United States. (a) Fay: initialized at 0000 UTC 16

Aug and landfall near Key West, Florida, at 2030 UTC 18 Aug; (b) Gustav: initialized at 1200 UTC 29 Aug and landfall near Cocodrie,

Louisiana, at 1500 UTC 1 Sep; (c) Hanna: initialized at 0000 UTC 3 Sep and landfall near North Carolina/South Carolina border at 0720

UTC 6 Sep; (d) Ike: initialized at 1200 UTC 10 Sep and landfall at north end of Galveston Island, Texas, at 0700 UTC 13 Sep.

4024 MONTHLY WEATHER REV IEW VOLUME 140



track error is reduced by ;16% from 48 to 72 h. The

improvement of maximum wind speed forecasts is lim-

ited, while for minimum SLP, assimilating AMSU-A

yields a;13%–20% reduction of SLP errors from 48 to

72 h that is statistically significant and consistent with

SLCH. RadianceDA also led to a statistically significant

increase of error at the analysis time, despite the im-

provement evident at 48 h and beyond.

FIG. 4. Mean absolute track errors for each of the

five TCs as a function of forecast lead time (every

6 h from analysis to 72-h forecast). Solid lines from

the NoAMAexperiment and dashed lines denote the

results from the AMA experiment.
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The AMA experiment tends to produce weaker low

pressures and lower maximum wind speeds than the

NoAMA experiment (not shown). This is likely at-

tributed to the large AMSU-A footprint that varies

from ;48 km 3 48 km at nadir to ;80 km 3 150 km

at limb (Bennartz 2000), and more investigation is

needed to understand this. Despite encouraging re-

sults regarding the TC intensity forecast improve-

ment, intensity errors remain large because of coarse

(36 km) model resolution used for the forecast. Similar

results were also found by Torn (2010), who showed

a pronounced weak bias for most intense storms. We

expect that more realistic intensity forecasts can be

achieved by increasing model resolution (Davis et al.

2010; Cavallo et al. 2013).

c. Forecast verification against dropwindsonde
observations

Recall that the current system is incapable of assimi-

lating rain-affected microwave radiances, and the QC

procedure prohibits the use of AMSU-A data in the

precipitating TC core area. Thus, the improved track

forecasts by assimilating AMSU-A radiances are likely

due to a better depiction of large-scale environmental

flow in the analyses and subsequent forecasts. To test

this hypothesis, we verified the forecasts against GPS

dropwindsonde observations released from NOAA

G-IV aircraft (Aberson 2010). The G-IV dropwindsondes

sample the atmosphere below flight level (near 150 hPa)

at 150–200-km horizontal intervals. G-IV dropwindsondes

were deployed in the synoptic environments sur-

rounding the storms and did not penetrate the inner

cores of TCs, making the dropwindsondes an ideal data

source to evaluate the environmental fields from the

two experiments.

Figure 6 shows bias and root-mean-square error

(RMSE) of 48-h forecasts verified against dropwind-

sonde observations taken within 61.5 h of 0000 and

1200 UTC during the experimental period. The corre-

sponding dropwindsonde distribution is provided in

Fig. 7. A total of 208 dropwindsondes were collected for

verification.

The AMA experiment agrees more closely with the

dropwindsondes than the NoAMA experiment consis-

tently for all variables (U, V, T, andQ), except for some

degradation in terms of bias for V-wind component be-

low 300 hPa and specific humidity at 850 hPa. The

RMSE reduction for wind is nearly uniform at all levels

and is greater than the error reduction for temperature

and specific humidity. Note that AMSU-A channels mea-

sure atmospheric temperature, and the impact on the wind

and moisture fields likely result from multivariate correla-

tions implied in the EnKF analyses. The large wind impact

from the assimilation of temperature-sensitive radiances

is consistent with McNally (2007), who found that with-

holding the temperature information provided by AIRS

retrievals significantly degraded the analyzed and short-

range forecast wind fields at high-latitude regions.

d. Comparison with ERA-Interim reanalyses

To obtain more insight on the differences between the

NoAMA and AMA experiments, the EnKF mean

analyses were compared to the ECMWF’s ERA-Interim

reanalyses (Dee et al. 2011). ECMWF has produced

operational TC forecasts since October 2004 (Van der

Grijn et al. 2005) and is one of the best operational

centers for TC track forecasts (Fiorino 2009). Therefore,

ERA-Interim reanalyses (;79-km resolution) are as-

sumed to be a good reference for the assessment of

large-scale flow.

FIG. 5.Mean absolute errors as a function of forecast lead time for (a) track, (b)maximumwind speed, and (c) minimum sea level pressure

for all storms. Solid lines denote the results from the NoAMA experiment and dashed lines denote the results from the AMA experiment.

Bounds of the 90% confidence interval based upon differences between the two experiments’ errors (see section 6b) are also shown.
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The mean differences between the experiments’

0000 UTC analyses and corresponding ERA-Interim

fields (modelminusERA-Interim) over the experimental

period are displayed in Fig. 8 for 500-hPa temperature

(left panels) and 250-hPa geopotential height (right

panels). The NoAMA analyses exhibit significant warm

biases (Fig. 8a) relative to the ERA-Interim over most of

the domain,with bias values larger than 1 K in theGulf of

Mexico, Caribbean Sea, and off the west coast of Africa.

Consistent with the warm bias at 500 hPa, the 250-hPa

heights were generally higher than in the ERA-Interim

analyses (Fig. 8b). Assimilating AMSU-A radiances re-

sulted in a net cooling over the Atlantic Ocean, with both

temperatures and heights (Figs. 8c,d) agreeing more

closely with the ERA-Interim.

The mean analysis differences at 0000 UTC between

the two experiments (AMAminus NoAMA) are shown

in Fig. 9. RadianceDA clearly cooled temperatures over

the Atlantic Ocean and lowered the heights, with an

associated weakening of the flow around the subtropical

FIG. 6. Bias and RMSE of 48-h forecasts verified against dropwindsonde observations for the experiments with and

without the assimilation of AMSU-A radiances.
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high. This weaker steering flow in the AMA experiment

is consistent with a synoptic pattern that would allow

TCs to recurve to the northwest and north, as was ob-

served in many TC tracks (see Fig. 3).

It is unclear whether the WRF or DA was the pri-

mary cause of this warm bias when radiances were not

assimilated. We suspect that a WRF deficiency plays

some role in the generation of the warm bias, as in

FIG. 7. Dropwindsonde distribution at 0000 and 1200 UTC used for the 48-h forecast verifi-

cation in Fig. 6. A total of 208 dropwindsondes are available for verification.

FIG. 8. Mean differences between the EnKF 0000 UTC analyses and corresponding ERA-Interim reanalysis fields (model minus ERA-

Interim) over the experimental period for (a),(c) 500-hPa temperature and (b),(d) 250-hPa geopotential height. (a),(b) NoAMA ex-

periment and (c),(d) AMA experiment.
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a similar setting of the EnKF for real-time TC fore-

casts, the magnitude of warm bias appeared to be

sensitive to the choice of WRF cumulus parameteri-

zation scheme (R. Torn 2011, personal communica-

tion). At the ECMWF, the reformulation of convective

entrainment in November 2007 resulted in the record-

setting performance of TC track prediction in the 2008

season (Fiorino 2009).

e. Importance of synergistic assimilation of AMSU-A
radiances and satellite winds

Radiances and satellite winds are the two major ob-

servations sets over the Atlantic Ocean (Fig. 2), mea-

suring the temperature and wind fields, respectively.

Two additional EnKF cycling experiments were con-

ducted to evaluate the extent to which these observa-

tions are redundant or complementary for TC track

prediction. In one experiment, denoted as ‘‘GTS,’’ nei-

ther satellite winds nor AMSU-A radiances were assim-

ilated. In another experiment, named ‘‘GTS1RAD,’’

AMSU-A radiances were assimilated but not satellite

winds. To ease the comparison for four experiments,

the experiments NoAMA and AMA are renamed as

‘‘GTS1SAT’’ (i.e., include satellite winds, but not

AMSU-A radiances) and ‘‘GTS1SAT1RAD’’ (i.e.,

include both satellite winds and AMSU-A radiances),

respectively. The WRF and EnKF configurations are

identical for all four experiments.

Figure 10 displays the absolute mean track errors as

a function of forecast lead time for the four experiments.

Compared to Fig. 5a, the sample sizes in the track error

statistics are smaller, because the GTS experiment (no

DA of satellite winds or AMSU-A radiances) overall

missed more TCs (Fig. 11) in the forecasts and the other

three experiments’ sample sizes were adjusted down-

ward to ensure a homogeneous comparison. However,

the track error curves in Fig. 10 for GTS1SAT and

FIG. 9. As in Fig. 8, but for the mean 0000 UTC analysis differences between AMA and NoAMA (AMA minus NoAMA).

FIG. 10. As in Fig. 5a, but for the comparison of four experiments

(see section 6e).
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GTS1SAT1RAD (i.e., previous NoAMA and AMA)

are very similar to those in Fig. 5a, even though larger

samples were used in the latter. Moreover, satellite

winds appear to have a larger positive impact than

AMSU-A radiances within 30 h. The smaller radiance

impact in the short range could likely be overcome by

adding more sensors from more satellites. The track

errors are comparable beyond 36 h for the GTS,

GTS1SAT, and GTS1RAD experiments. The most

remarkable observation is that assimilating both satel-

lite winds and AMSU-A radiances in the experiment

GTS1SAT1RAD produced the lowest track errors for

nearly all forecast ranges and especially beyond 36 h.

This may imply that the synergistic assimilation of

thermal and wind observations is crucial to obtain well-

balanced mass and wind fields in the TC environments,

thus, maximizing the benefits of assimilating both ob-

servation types for medium-range TC track forecasts.

Hartung et al. (2011) also found that the best forecasts

for a midlatitude extratropical cyclone were obtained

when both wind and temperature observations were

assimilated.

Figure 11 shows the number of missed storms for the

four experiments. It is apparently overall consistent

with Fig. 10; that is, larger track errors in Fig. 10 cor-

respond to more misses in Fig. 11. Comparing the

sample sizes in Figs. 5a and 10 with the number of

misses in Fig. 11 reveals an apparent inconsistency. For

instance, the number of misses at 72 h is similar (;34–

37) for all experiments, but the sample sizes (i.e.,

number of storms caught) in Figs. 5a and 10 are sub-

stantially different at 72 h. The reason is that the

different experiments miss different storms, and a ho-

mogeneous comparison is taken into account in the

sample size counting. To see if the conclusions drawn

from Fig. 10 are sensitive to the cases used in the track

error statistics, we additionally compared the track er-

rors between two-pair experiments: GTS1RAD versus

GTS1SAT and GTS1RAD versus GTS1SAT1RAD,

while following the same rule for homogeneous com-

parison. We obtained the same indication as in Fig. 10

(not shown).

7. Summary and future perspectives

This study further enhanced the radiance DA capa-

bility developed by SLCH within an EnKF system. The

QC procedure and bias-correction strategy were re-

vised to better use radiance data. The updated EnKF

system also allows a blended use of externally com-

puted forward operators for radiances and internally

calculated forward operators for other observation

types. Moreover, the impact of assimilating AMSU-A

radiances from the NOAA-18 and METOP-2 satel-

lites onAtlantic TC forecasts was evaluated thoroughly

during a month-long experimental period when five

TCs formed.

The environmental fields surrounding the storms

agreed more closely with dropwindsonde observations

and ECMWF ERA-Interim reanalyses when assimi-

lating AMSU-A radiances in addition to nonradiance

observations. More specifically, both analyses and fore-

casts had a tropospheric warm bias over much of the

domain when no radiances were assimilated, but as-

similating AMSU-A radiances reduced the warm bias

over a large portion of the Atlantic. Furthermore, the

RMSE reduction appeared to be more pronounced

for environmental wind fields than temperature and

moisture fields with the assimilation of temperature-

sensitive AMSU-A channels, consistent with McNally

(2007).

The better depiction of environmental flow by as-

similating AMSU-A radiances likely contributed to

the substantially more accurate TC track predictions,

particularly for forecast ranges beyond 36 h with the

overall track error reduction up to 16%. A similar

error reduction also occurred for intensity forecasts

both in terms of maximum wind speed and minimum

SLP, consistent with SLCH. However, TC intensity

still remains too weak because of the use of coarse

FIG. 11. As in Fig. 10, but for the number of missed storms for four

experiments.
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resolution (36 km) in the WRF forecasts. Another im-

portant finding is that AMSU-A radiances apparently

have to be assimilated together with satellite winds to

maximize the benefit on the TC track forecast.

Radiance assimilation within the EnKF is still in its

infancy even though a number of studies have focused

on this topic and some NWP centers have already as-

similated radiances in operational EnKF systems. More

efforts are needed for the optimal use of radiance data.

In this study, during the whole experiment period we

applied a set of fixed radiance bias-correction co-

efficients that were obtained through offline statistics

generated over a 3-month spinup period. Satisfactory

results were achieved with this simple bias-correction

strategy. Nevertheless, more practical strategies of ra-

diance bias correction can be easily implemented in the

same framework as our offline statistics. For example,

we can adaptively update, during the cycling EnKF,

bias-correction coefficients using the EnKF mean anal-

yses or other global analyses as reference fields. Dif-

ferent bias-correction strategies will be assessed in

future studies.

Another important aspect is radiance vertical co-

variance localization. Current observation space co-

variance localization method in the EnKF, which uses

either the peaks of channels’ weighting functions or the

full weighting functions to define the vertical localiza-

tion function, may lead to suboptimal assimilation of

radiance channels sensitive to both temperature and

moisture, and could be more problematic for assimilat-

ing cloud/precipitation-affected radiances (e.g., Otkin

2012). Alternatively, the hybrid variational/ensemble

technique (e.g., Lorenc 2003; Wang et al. 2008) uses

model space covariance localization, which was proven

more suitable than observation space covariance local-

ization in the EnKF for radiance vertical localization

(Campbell et al. 2010).

We plan to assimilate more radiance data from both

microwave and infrared sensors and test different bias-

correction and vertical covariance localization strategies

using both pure ensemble Kalman filters and hybrid

DA techniques in future work.
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APPENDIX

Vector-Matrix Derivation of Ensemble Adjustment
Kalman Filter

Wewant to show that the scalar-form regression Eq. (6)

in Anderson (2003) can be written in full vector-matrix

form. The two-step EAKF algorithm begins with a n-

member ensemble of short-range (background) forecasts

xbi , i 5 1, . . . , n, and an ensemble of predicted observa-

tions ybi 5Hxbi with the observation operator H trans-

forming the model variables to observed quantities. The

arguments that follow are restricted to the case that H is

linear. (Nonlinear observation operators can also

be handled if the EAKF is written in terms of an ‘‘ex-

tended’’ state, in which the observed variables are con-

catenated to the state vector.) Denote the ensemble

mean by an overbar and deviations from that mean by

a preceding d; that is, xbi 5 xb 1 dxbi and ybi 5 yb 1 dybi .

Given the observation vector yo, we update this ensemble

to obtain an ensemble of analyses xai whose mean and

covariance are consistent with the Kalman filter.

The updated mean is

xa5 xb1K(yo 2 yb) , (A1)

with the Kalman gain K5BHT(HBHT 1 R)21, where B

and R are the background and observation error co-

variances, respectively. In the EnKF algorithms, BHT is

approximated by 1/(n2 1)�n
i51dx

b
i (dy

b
i )

T, the sample

covariance of xb and yb, and similarly HBHT is approx-

imated by 1/(n2 1)�n
i51dy

b
i (dy

b
i )

T. The updated de-

viations are given by

dxai 5Fdxbi , (A2)

where the adjustment matrix F is chosen so that the

sample analysis covariance satisfies

1

n2 1
�
n

i51

dxai (dx
a
i )

T 5A5 (I2KH)B: (A3)

The update Eqs. (A1) and (A2) each have the obser-

vation-space counterparts

ya 5 yb1HK(yo 2 yb) , (A4)

and

dyai 5Fydy
b
i , (A5)

where Fy is the observation-space adjustment matrix.

Combining Eqs. (A1) and (A2), the change in the

model state vector for the ith member is given by

xai 2 xbi 5K(y2 yb)2 (I2F)dxbi . (A6)

Similarly, combining Eqs. (A4) and (A5), the change in

the observed variables for the ith member is given by
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yai 2 ybi 5HK(yo2 yb)2 (I2Fy)dy
b
i . (A7)

We restrict consideration to the case that dxai 5 dxbi
when dybi 5Hdxbi 5 0, so the analysis and forecast

perturbations are equal when the forecast perturba-

tion does not affect the observed quantities. In this

case, the adjustment matrix F in Eq. (A2) can be

written as

F5 I2 ~KH , (A8)

for some ~K that will play the role of the gain in the up-

date of the perturbations. Restricting to this case is

crucial; otherwise, the update of perturbations in the

null space of H is arbitrary and the relation between

Dxi 5 xai 2 xbi andDyi 5 yai 2 ybi , which we seek to derive,

will not hold.

Whitaker and Hamill (2002) quote the result of

Andrews (1968) for an explicit form for ~K:

~K5BHTD21/2(D1/21R1/2)21 , (A9)

where we have written D5HBHT 1R for brevity. A

similar expression holds in observation space for the

adjustment matrix Fy 5 I2 ~Ky with ~Ky 5H~K.

Given the form for F and Fy, Eqs. (A6) and (A7) can

be rewritten as

Dxi [ xai 2 xbi 5K(y2 yb)2 ~KHdxbi , (A10)

Dyi [ yai 2 ybi 5Ky(y2 yb)2 ~Kydy
b
i , (A11)

where Ky 5HK.

The remaining steps are simply algebra. Rearranging

Eq. (A11) to solve for y2 yb and applyingK to the result

yields

K(y2 yb)5KK21
y Dyi 1KK21

y
~Kydy

b
i .

Substituting this result into the rhs of Eq. (A10) then

gives

Dxi5KK21
y Dyi 1 (KK21

y
~Ky2

~K)dybi . (A12)

Now,

KK21
y 5BHTD21(BHTD21)215BHT(HBHT)21

Thus,

KK21
y

~Ky 5BHTD21/2(D1/21R1/2)21 5 ~K

and Eq. (A12) becomes

Dxi5BHT(HBHT)21Dyi . (A13)
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