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[1] Total 550 nm aerosol optical depth (AOD) retrievals from Moderate Resolution
Imaging Spectroradiometer (MODIS) sensors and surface fine particulate matter (PM2.5)
observations were assimilated with the National Centers for Environmental Prediction
(NCEP) Gridpoint Statistical Interpolation (GSI) three-dimensional variational (3DVAR)
data assimilation (DA) system. Parallel experiments assimilated AOD and surface PM2.5

observations both individually and simultaneously. New 3DVAR aerosol analyses were
produced every 6 h between 0000 UTC 01 June and 1800 UTC 14 July 2010 over a domain
encompassing the continental United States. The analyses initialized Weather Research
and Forecasting-Chemistry (WRF-Chem) model forecasts. Assimilating AOD, either alone
or in conjunction with PM2.5 observations, produced better AOD forecasts than a control
experiment that did not perform DA. Additionally, individual assimilation of both AOD and
PM2.5 improved surface PM2.5 forecasts compared to when no DA occurred. However,
the best PM2.5 forecasts were produced when both AOD and PM2.5 were assimilated.
Considering the goodness of both AOD and PM2.5 forecasts, the results unequivocally show
that concurrent DA of PM2.5 and AOD observations produced the best overall forecasts,
illustrating how simultaneous DA of different aerosol observations can work synergistically
to improve aerosol forecasts.
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1. Introduction

[2] While considerable effort over recent years has focused
on quantifying aerosol properties, transport, and distribu-
tion from numerical perspectives, aerosol modeling remains
challenging given large uncertainties related to aerosol
emission and interaction with nonlinear physical processes
(e.g., radiative effects, cloud and precipitation formation).
Further improvement of aerosol models is needed to better
predict aerosol-related impacts to regional air quality, human
health [Pope et al., 2002], and climate change [Forster et al.,
2007]. Moreover, better specification of aerosol climatolo-
gies can improve numerical weather prediction (NWP)
model forecasts of wind and precipitation [Rodwell, 2005].
[3] One method to improve model forecasts of aerosols is

data assimilation (DA), which combines observations with
numerical model output and can reduce uncertainties of ini-
tial aerosol fields. There are many DA methods, including

optimal interpolation (OI) [Lorenc, 1981], 3-dimensional
variational (3DVAR) [Lorenc, 1986; Parrish and Derber,
1992; Rabier et al., 1998], and 4-dimensional variational
(4DVAR) [e.g., Huang et al., 2009] algorithms, as well as
several flavors of ensemble DA (EnDA) techniques, such
as the ensemble Kalman filter (EnKF) [Evensen, 1994].
Although the specifics of these DA methods differ substan-
tially, all produce a statistically optimal “analysis” that can
initialize a NWP model forecast. Generally, a better repre-
sentation of initial conditions (ICs) leads to better forecasts.
[4] Meteorological DA has been used for decades in most

operational NWP centers to initialize their forecast models
[e.g., Parrish and Derber, 1992; Lorenc et al., 2000; Rabier
et al., 2000; Gauthier et al., 2007]. However, aerosol DA
remains in its infancy, with serious attempts only beginning
in the 2000s. Since then, several studies have employed
various algorithms to assimilate aerosol-related observations
from satellites, due to their high spatiotemporal resolution
and broad geographic coverage. For example, aerosol optical
depth (AOD) measurements taken from various satellites
were assimilated using OI [e.g., Collins et al., 2001; Yu
et al., 2003; Generoso et al., 2007; Adhikary et al., 2008],
Newtonian-nudging [Wang et al., 2004], 2-dimensional
variational (2DVAR) [Zhang et al., 2008; Schroedter-
Homscheidt et al., 2010], 3DVAR [Liu et al., 2011], and
4DVAR [Benedetti et al., 2009] DA techniques. Furthermore,
geostationary satellite dust loading retrievals were assimilated
using 3DVAR [Niu et al., 2008], and Sekiyama et al. [2010,
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2011] used an EnKF to assimilate backscattering coefficients
and depolarization ratios from the Cloud-Aerosol Lidar
with Orthogonal Polarization (CALIOP) sensor onboard
the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) satellite [Winker et al., 2009].
These studies all noted that aerosol DA yielded improved
model representations of initial and future aerosol fields.
[5] In addition to DA of satellite-derived aerosol data,

observations from ground-based aerosol monitoring net-
works [Holben et al., 1998; Welton and Campbell, 2002;
Amiridis et al., 2005], while limited in their areal coverage,
have also been assimilated. For instance, surface measure-
ments of total column AOD provided by the AErosol
RObotic NETwork (AERONET) [Holben et al., 1998] were
assimilated with a global EnKF [Schutgens et al., 2010].
Also, Kahnert [2008] used 3DVAR to assimilate a profile of
surface-borne lidar backscattering coefficients. Additionally,
Tombette et al. [2009] assimilated surface PM10 (particulate
matter with diameter <10 mm) observations over Europe
using the OI method and Lin et al. [2008] assimilated PM10

over China with an EnKF. Furthermore, Pagowski et al.
[2010] assimilated surface PM2.5 (particulate matter with
diameter <2.5 mm) observations over the United States using
a 3DVAR approach and noted improved aerosol forecasts.
[6] Despite successful assimilation of aerosol-related

observations from both ground and satellite platforms, to our
knowledge, satellite and surface aerosol measurements have
not yet been assimilated simultaneously. We surmise that
concurrent assimilation of both satellite and surface aerosol
observations should work synergistically to provide better
overall aerosol forecasts than assimilating observations from
just one source. This study tests this hypothesis by assimi-
lating both surface PM2.5 observations from the United States
Environmental Protection Agency (EPA) AIRNow network
(http://airnow.gov) and total AOD retrievals at 550 nm from
Moderate Resolution Imaging Spectroradiometer (MODIS)
[Remer et al., 2005] sensors onboard the Terra and Aqua
satellites for a �1.5 month long period over the continental
United States (CONUS). Surface PM2.5 assimilation capa-
bility was added into the aerosol DA framework developed
by Liu et al. [2011, hereinafter LIU11], who implemented
AOD DA within the National Centers for Environmental
Prediction (NCEP) Gridpoint Statistical Interpolation (GSI)
3DVAR DA system [Wu et al., 2002; Kleist et al., 2009]
coupled to the Goddard Chemistry Aerosol Radiation and
Transport (GOCART) aerosol scheme [Chin et al., 2000,
2002; Ginoux et al., 2001] within the Weather Research and
Forecasting-Chemistry (WRF-Chem) model [Grell et al.,
2005]. LIU11 demonstrated the practical implementation of
their system by assimilating MODIS AOD retrievals over a
week-long period while studying a dust storm in East Asia,
noting improved aerosol forecasts from AOD DA.
[7] This work builds upon LIU11 and serves several

purposes. First, this study provides another look at AOD
DA within the GSI/GOCART/WRF-Chem framework, but
over a substantially longer period and different geographic
region. Second, we describe and implement surface PM2.5

DA capability within LIU11’s 3DVAR system. Finally, we
simultaneously assimilate both AOD and surface PM2.5

observations, marking the first time both satellite and surface
observations of aerosols have been simultaneously assimi-
lated within a common framework.

[8] The next section briefly describes the modeling and
DA systems, while section 3 describes the observation
operators that linked the model fields to the PM2.5 and AOD
observations. Section 4 details the observation sources
and uncertainty. The experimental design is presented in
section 5 and the results in section 6. A discussion of the
results follows in section 7 before concluding in section 8.

2. Modeling and DA Systems

[9] The modeling and DA systems used here were
described by LIU11. Therefore, generally brief descriptions
follow, and important differences from LIU11 are noted.

2.1. WRF-Chem Model Configurations

[10] Version 3.3 of the WRF-Chem model was used to
predict the transport of aerosols. WRF-Chem is an “online”
model, as chemical and meteorological components are fully
coupled. Aerosol direct and indirect effects through interac-
tion with radiation, photolysis, and microphysical processes
are allowed for certain combinations of aerosol and physical
options.
[11] The GOCART was chosen as the aerosol option

within WRF-Chem. While LIU11 coupled GOCART to the
Regional Atmospheric Chemistry Mechanism (RACM)
[Stockwell et al., 1997] for gaseous chemistry, gaseous
chemical transport was not simulated in this study. The
GOCART model simulates several tropospheric aerosol
types, including sulfate, dust, organic carbon (OC), black
carbon (BC), and sea salt. For OC and BC, hydrophobic and
hydrophilic components are considered. Many processes
regarding the aerosol species’ evolution are represented,
including emission, advection, convection, diffusion, dry
deposition, and wet deposition, as well as chemical reactions
using prescribed OH, H2O2, and NO3 fields for SO2 and
DMS oxidations [Chin et al., 2002]. When GOCART is
chosen as the aerosol module within WRF-Chem, forecasts
of 3D mass mixing ratios of 14 aerosol species are produced:
hydrophobic and hydrophilic OC and BC; sulfate; sea-salt in
four particle-size bins (effective radii of 0.3, 1.0, 3.25, and
7.5 mm for dry air); and dust particles in five particle-size bins
(effective radii of 0.5, 1.4, 2.4, 4.5, and 8.0 mm). Addition-
ally, mixing ratio of a 15th variable representing unspeciated
aerosol contributions to PM2.5 (hereafter, denoted as P) is
also produced when GOCART runs within WRF-Chem,
although P was not originally included in GOCART.
[12] While LIU11 examined simulations over Eastern

Asia, this study focuses on aerosol analyses and WRF-Chem
forecasts over the CONUS (Figure 1). The horizontal grid
spacing was 20-km, there were 41 vertical levels, and the
model-top was 50 hPa. A full suite of physical parameteri-
zations [see Skamarock et al., 2008, and references therein]
were employed in WRF-Chem, including the Yonsei Uni-
versity (YSU) planetary boundary layer (PBL) scheme; WRF
single-moment 5-class (WSM5) microphysics scheme;
Rapid Radiative Transfer Model (RRTM) longwave and
Goddard shortwave radiation schemes; Noah land surface
model; and Grell-3D cumulus parameterization. Lateral
boundary conditions (LBCs) for meteorological fields were
provided by the NCEP North American Mesoscale (NAM)
[Rogers et al., 2009] model at 20-km horizontal grid spacing.
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[13] Aerosol LBCs represented clean oceanic conditions.
Mixing ratios at the lateral boundaries of the 14 speciated
WRF-Chem/GOCART aerosol variables were assigned near
zero values, while boundary values for the unspeciated con-
tributions to PM2.5 (P) equaled 1.0 mg/kg below 1-km and
decreased exponentially with height to 0.1 mg/kg at the
model top. Anthropogenic emissions of SO2, primary PM2.5,
and hydrophobic OC and BC were based on the weekday U.
S. EPA NEI-2005 emissions inventory [U.S. Environmental
Protection Agency, 2010]. The gridded (4-km resolution)
and point source hourly emission files used here are available
at ftp://aftp.fsl.noaa.gov/divisions/taq/emissions data. More
details and evaluations of the inventory are found in Kim
et al. [2011]. Emissions of dust and sea-salt were parame-
terized within the GOCART model [Chin et al., 2002].
[14] The aerosol DA system is now described.

2.2. GSI 3DVAR DA System

[15] NCEP’s GSI 3DVAR DA system was used to assim-
ilate both AOD and surface PM2.5 observations. A 3DVAR
system calculates a best fit “analysis” considering two
sources of initial information: observations at irregularly
spaced points and a gridded background (or “first-guess”)
field, typically taken from a short-term model forecast.
Associated with the background and observations are their
error characteristics. Given the background, observations,
and errors, the analysis vector (x) can be determined by

minimizing a scalar cost-function J(x) given by

J xð Þ ¼ 1

2
x� xbð ÞTB�1 x� xbð Þ þ 1

2
H xð Þ � y½ �TR�1 H xð Þ � y½ �;

ð1Þ

where xb denotes the background vector, y is a vector
of observations, and B and R represent the background
and observation error covariance matrices, respectively. The
covariance matrices determine how closely the analysis is
weighted toward the background and observations. H is the
potentially nonlinear “observation operator” that interpolates
model grid point values to observation locations and trans-
forms model-predicted variables to observed quantities.
[16] Both the background and analysis are vectors com-

prised of “analysis variables” (or “control variables”). While
a model might predict tens or even hundreds of prognostic
variables, only the analysis variables are updated during
DA. For meteorological assimilation the analysis variables
typically are 3D wind, temperature, and moisture fields.
However, here, the analysis variables were the 3D mass
mixing ratios of the 15 WRF-Chem/GOCART aerosol vari-
ables at each grid point. This choice of variables was sim-
ilar to LIU11, but LIU11 analyzed just the 14 speciated
WRF-Chem/GOCART variables and did not include P as a
control variable. P was introduced into the analysis vector
here as it is an important contributor to PM2.5. This speciated
approach to aerosol DA within a variational system was a

Figure 1. Computational domain overlaid with model topography (m). Small open circles depict loca-
tions of AIRNow sites used for PM2.5 assimilation and large filled dots indicate AERONET sites used
for AOD verification. The AIRNow sites were also used to verify PM2.5 forecasts, except verification
did not occur at the AIRNow sites within the boxed region, referred to as the “excluded region” (see
section 6.2.1).

SCHWARTZ ET AL.: PM2.5 AND MODIS AOD ASSIMILATION D13202D13202

3 of 22



novel development introduced by LIU11. By using individ-
ual aerosol species as control variables, no assumptions were
made regarding the contribution of each species’ mass to the
total aerosol mass or shapes of the vertical profiles, unlike
many previous studies [e.g., Zhang et al., 2008; Benedetti
et al., 2009; Pagowski et al., 2010] that employed total
AOD or total aerosol mass as control variables (see LIU11
for a discussion). Thus, while Pagowski et al. [2010] also
assimilated surface PM2.5 observations with GSI, their sys-
tem fundamentally differed from ours, due to their choice
of PM2.5 as the control variable.
[17] The 3DVAR algorithm requires background error

covariance (BEC) statistics for each analysis variable. GSI
uses recursive filters and permits spatially inhomogeneous
BECs [Wu et al., 2002]. Only standard deviation and hori-
zontal and vertical length-scales of the background error are
needed to apply recursive filters both horizontally and ver-
tically. The BECs were computed for each aerosol species
as in LIU11 by utilizing the “NMC method” [Parrish and
Derber, 1992]. This method calculates BECs by taking
differences between forecasts of different lengths valid at
common times. Differences of 24- and 12-h WRF-Chem
forecasts of the analysis variables valid at the same time
for 57 pairs at either 0000 and 1200 UTC over July 2008
were used to compute the aerosol BECs. No cross-correlation
between the different species was considered, as GSI
3DVAR cannot directly model the cross-correlations. Mul-
tivariate correlations among the aerosol species could be
more easily achieved using an EnDA technique.
[18] Since only total 550 nm AOD and surface PM2.5

observations were assimilated to analyze the 3D mass mixing
ratios of 15 aerosol variables, the 3DVAR problem was
under-constrained in terms of observational information
content, and AOD and PM2.5 DA may not improve analyses
and forecasts of individual species. However, the problem
was well constrained mathematically due to use of prior
information from the model background. Given the lack
of vertical information provided by the observations, distri-
bution of the analysis increments (difference between the
analysis and background) onto the different species was
mostly model-driven, with the observation and background
error covariances acting as the main constraints.
[19] The 15 analysis variables were also used to com-

pute model-simulated values of AOD and PM2.5, as the next
section details.

3. Observation Operators

[20] To assimilate any observation with a 3DVAR system,
a model estimate of the observation is required. The obser-
vation operator (or “forward operator”) performs this task
using model variables. Model simulated PM2.5 and AOD
observations were calculated from the 3D fields of the 15
aerosol control variables and the density of dry air (rd). The
analysis variables and rd were bilinearly interpolated to
the observation locations before the formulas were applied.
The Jacobians of the forward operators were also found and
used to distribute the AOD and PM2.5 increments back onto
the speciated 3D aerosol profiles in the 3DVAR minimization
process.
[21] The forward operators are now described.

3.1. P.M2.5 Forward Operator

[22] Model-simulated PM2.5 observations (Pm) were com-
puted by summing weighted mass mixing ratios of fine
aerosol particles, given as

Pm ¼ rd P þ D1 þ 0:286D2 þ 1:8 O1 þ O2ð Þ þ B1 þ B2½
þ S1 þ 0:942S2 þ 1:375U �; ð2Þ

where P represents unspeciated aerosol contributions to
PM2.5; U denotes sulfate; O1 and O2 (B1 and B2) are hydro-
phobic and hydrophilic OC (BC), respectively; and D1 and
D2 (S1 and S2) are dust (sea salt) aerosols in the smallest and
2nd smallest size bins. This formula is identical to the one
used in WRF-Chem to diagnose PM2.5 from the GOCART
aerosol module. Coefficients <1 in equation (2) account
for overlap of GOCART dust and sea-salt size bins with
the 2.5 mm diameter cutoff for PM2.5. Coefficients >1 in
equation (2) empirically account for additional fine particu-
late mass not predicted explicitly by GOCART, such as
oxygen contained in organic aerosols (associated with OC)
and ammonium (typically associated with sulfate aerosols).
The coefficients of the aerosol species inside the brackets of
equation (2) assume aerosol mixing ratios of mg/kg, so mul-
tiplication by rd was required to convert the units to mg/m3

for consistency with the observations. While equation (2) was
valid for all model levels, it was only applied within GSI
at the lowest vertical level, since just surface PM2.5 obser-
vations were assimilated.

3.2. AOD Forward Operator

[23] LIU11 thoroughly described the AOD observation
operator, and, thus, only a brief explanation follows. The
community radiative transfer model (CRTM) [Han et al.,
2006; Liu and Weng, 2006] was coupled to GSI and com-
puted model-simulated AOD at MODIS and AERONET
wavelengths using the profiles of the 14 speciated WRF-
Chem/GOCART aerosol variables. Although the CRTM
does not explicitly include P in its formulation of AOD, we
assumed P had optical properties similar to D1 and D2 and
added 78% of P to D1 and 22% of P to D2 before calculating
AOD. This approach differed from LIU11—who did not
include P in the AOD calculation—and seemed to improve
assimilation statistics without producing any adverse effects.
As in LIU11, external aerosol mixtures were assumed.
[24] The CRTM computes the effective radii (reff) of the

14 speciated WRF-Chem/GOCART aerosol variables assum-
ing spherical aerosol particles and lognormal size distribu-
tions. The refractive index was also computed for each
species, considering hydroscopic growth for sea salt, sulfate,
and hydrophilic OC and BC. Using the size distribution and
refractive index, Mie scattering code [van de Hulst, 1957]
was applied to compute the mass extinction coefficient
a (m2/g) for each aerosol type at a wavelength l. Then, AOD
for the ith aerosol type (i.e., for each of the 14 speciated
WRF-Chem/GOCART variables) at the jth model layer (tij)
for a particular l was calculated as

tij lð Þ ¼ a l; i; reff
� �� cij; ð3Þ

where cij is the aerosol layer mass in g/m2. The final step
involves summing equation (3) over the 14 speciated WRF-
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Chem/GOCART aerosol variables (i=1, 2, …, 14) and the k
discretized model levels to compute the model-simulated
column total AOD (tm):

tm lð Þ ¼
Xk
j¼1

X14
i¼1

tij lð Þ: ð4Þ

4. Observations Sources and Errors

[25] This study considers the assimilation of both surface
PM2.5 and MODIS AOD observations. The observations and
their associated errors are now described.

4.1. Surface PM2.5 Observations

[26] PM2.5 observations from the EPA AIRNow network
were assimilated, similar to Pagowski et al. [2010]. AIRNow
provides hourly averaged surface PM2.5 concentrations at
many sites over the USA and Canada. Data are available
continuously in near-real time. Figure 1 shows the locations
of AIRNow sites whose data were assimilated. Observing
sites spanned most of the domain but were primarily located
in urban and suburban areas.
[27] The total uncertainty associated with a PM2.5 obser-

vation included contributions from measurement and repre-
sentation errors. Pagowski et al. [2010] used a measurement
error (ɛo) of 2 mg/m3. However, here, to associate higher
PM2.5 values with larger measurement errors, ɛo was defined
as ɛo = 1.5 + 0.0075*Po, where Po denotes an AIRNow
PM2.5 observation and the units of each term are mg/m3.
[28] Representativeness errors arise due to inaccuracies in

the forward operator and interpolation from the model grid to
the observation location. Following Elbern et al. [2007] and
Pagowski et al. [2010], the representativeness error (ɛr) was
calculated as

ɛr ¼ gɛo

ffiffiffiffiffiffiffi
Dx

L

r
; ð5Þ

where g is an adjustable parameter scaling ɛo (g = 0.5 was
used), Dx is the grid spacing (here, 20-km), and L is the
radius of influence of an observation and was set to 2-, 4-,
and 10-km for urban, suburban, and rural AIRNow sites,
respectively. The total PM2.5 error (ɛPM2.5) was defined as

ɛPM2:5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ɛ2o þ ɛ2r

q
; ð6Þ

which constituted the diagonal elements in the R matrix
(equation (1)) for PM2.5 observations. Additionally, the
PM2.5 observations were subject to quality control (QC).
PM2.5 values >200 mg/m3 were deemed unrealistic and not
assimilated, and observations leading to innovations (obser-
vations minus the model-simulated observations deter-
mined from the first-guess field) exceeding 100 mg/m3 were
also omitted.

4.2. MODIS AOD Retrievals

[29] As in LIU11, level 2 AOD retrievals over land
and sea from MODIS sensors on the Terra and Aqua satel-
lites were assimilated. Only the dark target product [Remer
et al., 2005], available from both satellites, was assimilated.
MODIS retrieved AOD was provided at 470, 550, 660, 870,

1240, 1630, and 2130 nm wavelengths, but only AOD at
550 nm was assimilated in this study. The original MODIS
AOD level 2 products are at 10- � 10-km resolution but
the AOD retrievals were thinned to a 60-km grid. Satellite
observations are commonly thinned to scales coarser than the
model grid to reduce data volume and correlations between
errors of adjacent observations, which are not considered
in the observation error covariance matrix [Liu and Rabier,
2002].
[30] Over the domain (Figure 1), MODIS AOD products

provided coverage primarily around 1800 UTC (day time),
with some coverage near 0000 UTC. Figure 2a shows the
available dark-target AOD retrievals from both satellites
between 1500 and 2100 UTC 17 June. During this time-
frame, AOD retrievals were generally available through-
out the entire domain but the specific coverage varied.
Around 0000 UTC, Aqua provided observations west of
�105-degrees longitude on some days (Figure 2b), but
observations from Terra were unavailable.
[31] The total observation error for AOD (ɛAOD) followed

Remer et al. [2005] and depended on whether the MODIS
AOD observation (to) was taken over water or land:

ɛAOD ¼ 0:03þ 0:05to points over water
0:05þ 0:15to points over land

� �
: ð7Þ

[32] Only AOD retrievals marked with the best MODIS
QC flag were assimilated.

5. Experimental Design

[33] Four parallel experiments were designed to evaluate
the impact of MODIS AOD and surface PM2.5 DA on aerosol
analyses and forecasts over the CONUS. One experiment
(“noDA”) served as the control and did not employ any DA.
The other three experiments all performed 3DVAR DA but
assimilated different observations. Just MODIS AOD data
were assimilated by one experiment (“AOD”), while another
solely assimilated surface PM2.5 observations (“PM2.5”).
The final experiment assimilated both surface PM2.5 and
AOD observations (“AOD+PM2.5”). The experiments were
all run over the same domain (Figure 1) and used iden-
tical WRF-Chem settings and physical parameterizations as
described in section 2.1.
[34] As the AIRNow network provides hourly averaged

PM2.5 observations, they were assigned “effective” valid
times of 30 min past each hour. PM2.5 observations with
effective times within 1-h of the analysis times were assimi-
lated (i.e., a 1200 UTC analysis assimilated PM2.5 observa-
tions with effective valid times of 1130 and 1230 UTC),
while AOD observations within 3 h of the analysis times
were eligible for assimilation. Given the Aqua and Terra
satellite coverages, AOD was primarily assimilated during
1800 UTC analyses, but a few observations were assimilated
at 0000 UTC. Due to lack of coverage, 550 nmMODIS AOD
was not assimilated in 0600 or 1200 UTC analyses.
[35] The four experiments all began from the same set of

ICs valid 0000 UTC 01 June 2010 that were spun-up over
5 days beginning 0000 UTC 27 May from initial aerosol
fields equivalent to the aerosol LBCs to permit the adjust-
ment of the aerosol concentrations, similar to Pagowski
et al. [2010]. All experiments initialized a new WRF-Chem
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Figure 4. Average 1800 UTC PM2.5 analysis increments at the lowest model level for the (a) PM2.5,
(b) AOD, and (c) AOD+PM2.5 experiments. Note that the color scale in Figure 4b differs from that of the
other panels to more easily highlight differences.
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Figure 5. As in Figure 4, except the increments are for total column-integrated AOD at 550 nm.
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Figure 6. As in Figure 3, except for the experiment that only assimilated AOD and for (a) sulfate,
(b) hydrophobic BC, (c) hydrophilic BC, (d) hydrophobic OC, (e) hydrophilic OC, (f–j) dust aerosols in
increasing size bins, (k–n) sea salt aerosols in increasing size bins, and (o) unspeciated contributions to
PM2.5.
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forecast every 6 h between 0000 UTC 01 June and 1800 UTC
14 July (inclusive). The forecasts were integrated for 6 h,
except the 1800 UTC initializations—when AOD DA had its
greatest impact—which produced 48-h forecasts.
[36] The three experiments that assimilated observations

performed a new aerosol analysis every 6 h to update the
control variables before initializing WRF-Chem forecasts.
The first analyses used the 0000 UTC 01 June fields as
backgrounds, while subsequent analyses used the previous
cycle’s 6-h aerosol forecasts as backgrounds. The experiment
without DA initialized its first forecast from the 0000 UTC
01 June fields, while initial aerosol fields for future forecasts
were simply taken from the previous cycle’s 6-h forecast.
[37] Every 6 h, the initial meteorological fields of all four

experiments were updated by interpolating 20-km NAM
analyses onto the computational domain. No meteorological
DA was performed. Thus, the initial meteorology was the
same for each experiment, and the experiments only differed
regarding the type of aerosol observations (if any) that were
assimilated, permitting a clear isolation of the impact of
aerosol DA on WRF-Chem forecasts.
[38] The analyses and forecasts from the four experi-

ments were compared to AOD observations from MODIS
and AERONET, as well as surface PM2.5 measurements
from AIRNow. The results of these comparisons are now
described.

6. Results

[39] WRF-Chem analyses and forecasts of PM2.5 and AOD
are now analyzed. The DA impact is examined before veri-
fying forecasts. Although forecasts were produced every 6 h,
we focus on evaluating the 1800 UTC analyses and sub-
sequent 48-h forecasts.

6.1. Impact on Analyses

[40] The total aerosol mass mixing ratio (sum of the
15 control variables) was averaged over all grid points
where PM2.5 DA occurred and temporally averaged over all
1800 UTC analyses (44 total) at each vertical level to assess
the impact of DA. When PM2.5 or AOD was assimilated,
the mean total aerosol mass increased after DA (Figure 3).
However, the mass increase was confined below model level
14 (�1.0 km AGL) when only surface PM2.5 observations
were assimilated (Figure 3a), and the mass increase dimin-
ished rapidly above the 6th model level (�0.24 km AGL).
Conversely, assimilating AOD with and without PM2.5

increased the total aerosol mass throughout the column
(Figures 3b and 3c). Directly assimilating PM2.5 increased
the surface aerosol mass the most (�1.5 mg/kg). Solely
assimilating AOD also increased the surface aerosol mass,

but the increase was smaller (�0.7 mg/kg) since the incre-
ment was spread over a deeper layer.
[41] The spatial distribution of the average 1800 UTC

PM2.5 analysis increments at the lowest model level (Figure 4)
further reveals very different impacts of AOD and PM2.5 DA.
When only surface PM2.5 observations were assimilated
(Figure 4a) the mean increments were mostly positive,
indicating PM2.5 DA primarily increased the model PM2.5,
consistent with Figure 3a. Assimilating just PM2.5 produced
mainly localized increment structures around the AIRNow
sites, and the PM2.5 gradients near the sites on individual
days were much sharper than the means shown in Figure 4.
[42] On the other hand, solely assimilating AOD produced

smaller surface PM2.5 increments (Figure 4b) over most
of the domain (note the different color scale compared to
Figures 4a and 4c). The largest surface PM2.5 increments
occurred over the Gulf of Mexico, Mexico, and southwest
CONUS, and the increments were broader and smoother
compared to those generated by assimilating just PM2.5,
reflecting the expansive coverage of the satellites. Simulta-
neously assimilating AOD and PM2.5 (Figure 4c) generated
surface PM2.5 increments that mostly resembled the incre-
ments when just PM2.5 was assimilated, but influence of
AOD DA was also evident.
[43] The mean 1800 UTC column-integrated 550 nm total

AOD increments were also computed (Figure 5). As PM2.5

DA only modified a small portion of the column (Figure 3a),
the average total AOD increments were near zero (Figure 5a)
over most of the domain when just PM2.5 observations were
assimilated. But, when AOD was assimilated, either alone or
with PM2.5 observations (Figures 5b and 5c), the AOD field
was modified more substantially. The largest increments
were produced over the Gulf of Mexico, Atlantic Ocean,
Mexico, and relatively low elevations of the southwest
CONUS.
[44] It is also interesting to examine how DA impacted the

individual aerosol species. Figure 6 is similar to Figure 3,
except it shows the mixing ratios of each control variable
before and after DA for the experiment that only assimilated
AOD. AOD DA increased sulfate (Figure 6a) and unspe-
ciated contributions to PM2.5 (Figure 6o) throughout the
column, while concentrations of BC (Figures 6b and 6c),
hydrophobic OC (Figure 6d), and dust and sea salt in the
largest size bins (Figures 6j and 6n) were unchanged. Sea salt
mixing ratios in the three smallest size bins (Figures 6k–6m)
increased substantially below the 20th model level.
Hydrophilic OC concentrations increased slightly after DA
(Figure 6e) and mixing ratios of dust aerosols in the four
smallest size bins (Figures 6f–6i) increased near the tropo-
pause. Since MODIS AOD observations provide no infor-
mation regarding speciation, these different behaviors were
primarily driven by the background and observation error
covariances.
[45] When only PM2.5 was assimilated, consistent with

Figure 3a, mass concentrations of all control variables were
unchanged above the 14th model level (not shown). Addi-
tionally, mixing ratios of coarse dust and sea salt species
(bins with effective diameters >2.5 mm) were constant before
and after DA since they did not contribute to PM2.5 and
the BECs were univariate. Otherwise, below the 14th
model level, the impact of solely assimilating PM2.5 was

Table 1. Standard 2 � 2 Contingency Table for Dichotomous
Events

Forecast

Observed

Marginal TotalYes No

Yes a b a + b
No c d c + d
Marginal Total a + c b + d
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qualitatively similar to that of just assimilating AOD, with
mixing ratios of sulfate, sea salt in the two smallest size bins
(effective diameters <2.5 mm), and unspeciated contributions
to PM2.5 increasing the most (not shown).
[46] AOD DA impacted the aerosol fields throughout the

column while the impact of PM2.5 DA was confined to lower
model levels. Both PM2.5 and AODDA increased the surface
aerosol mass fields, but the impacts were more pronounced
with PM2.5 DA. The surface PM2.5 increments that were
generated when AOD and surface PM2.5 were assimilated
concurrently reflected the combined impacts of individual
AOD and PM2.5 DA. The changes to aerosol ICs due to DA
manifested themselves in the forecasts, which are now
discussed.

6.2. Aerosol Forecast Verification

[47] The WRF-Chem forecasts were verified using a vari-
ety of metrics. Let Om and Fm denote the respective observed
and forecast values of either PM2.5 or AOD at the mth of N
locations. Many statistics assessing forecast accuracy can be
defined based on the correspondence between the model and
observations. The additive bias (B) is simply the difference of
the mean and observed values, expressed as

B ¼ 1

N

XN
m¼1

Fm � Omð Þ ¼ �F � �O; ð8Þ

where the overbars denote averages. B can be considered a
measure of systematic model error but does not quantify how
individual forecast-observation pairs agree. However, the

Figure 7. Average bias at selected AIRNow sites computed from averaging hourly 0–24-h forecasts and
comparing them to the corresponding 24-h average observations, aggregated over the experimental period
for the (a) noDA, (b) PM25, (c) AOD, and (d) AOD+PM25 experiments.
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de-biased root mean square error (RMSEde-biased) quantifies
this correspondence, which is defined as

RMSEde�biased ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
m¼1

Fm � Om � Bð Þ2
vuut ; ð9Þ

and can be interpreted as a measure of non-systematic model
error. Additionally, the linear correspondence between the
forecast and observations is quantified by the correlation
coefficient (r):

r ¼
PN
m¼1

Fm � �Fð Þ Om � �Oð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
m¼1

Fm � �Fð Þ2
s" # ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

m¼1
Om � �Oð Þ2

s" # : ð10Þ

[48] To evaluate the experiments’ ability to discriminate
between events, with the assistance of a 2 � 2 contingency
table (Table 1), the equitable threat score (ETS) was cal-
culated for model forecasts of PM2.5 at the AIRNow sites.
By selecting PM2.5 thresholds for the forecasts (qf) and
observations (qo) to define an event, the mth site was placed
into the proper quadrant of Table 1 based on the correspon-
dence between the forecast and observations at its location.
Specifically, the mth site fell into category a if the event was
correctly predicted (Fm ≥ qf and Om ≥ qo); b if the event
was forecast but did not occur (Fm ≥ qf and Om < qo); c if
an event occurred but was not forecast (Fm < qf and Om ≥ qo);
and d if a nonevent was correctly predicted (Fm < qf and
Om < qo). Using the elements of Table 1, ETS is defined
as ETS = (a�e)/(a + b + c�e), where e = (a + b)(a + c)/
(a + b + c + d) and is the number of “hits” (elements in

Figure 8. As in Figure 7 except de-biased RMSE normalized by each site’s mean standard deviation of
the observations.
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quadrant “a” of Table 1) due to random chance. ETS ranges
from �1/3 to 1, with a perfect forecast achieving a score of 1
and a forecast worse than random chance scoring less than 0.
In many applications, qf = qo, but equality of the two
thresholds is not required.

6.2.1. Verification of Surface PM2.5 Forecasts
[49] Model forecasts of PM2.5 were verified against

AIRNow observations across the domain (Figure 1). Model
output at the lowest vertical level was assumed to corre-
spond with the surface AIRNow measurements, and the
model PM2.5 fields were interpolated to the locations of the
AIRNow sites for verification.
[50] There were important geographic differences regard-

ing forecast performance. Figure 7 shows the mean bias
at selected sites computed from averaging hourly 0–24-h
surface PM2.5 forecasts and comparing them to the corre-
sponding 24-h average AIRNow values and aggregating over
all 1800 UTC forecasts. The control experiment (Figure 7a)
had primarily negative biases, indicating WRF-Chem under-
predicted surface PM2.5. At many locations in the eastern half
of the domain, all forms of DA (Figures 7b–7d) improved the
biases (though they were still mainly negative), while DA led
to little improvement in the northwest CONUS. Over the

Figure 9. (a) Bias (mg/m3), (b) de-biased RMSE (mg/m3),
and (c) correlation coefficient of surface PM2.5 forecasts as
a function of forecast hour, summed over all AIRNow loca-
tions (except those within the excluded region in Figure 1)
and aggregated over all 1800 UTC forecasts. Model values
are hourly averages between consecutive top-of-the-hours.
Labels on the x-axis refer to ending times of the averaging
periods (e.g., “12” means the average of the model PM2.5

forecast between the 11th and 12th forecast hours). Persis-
tence was computed by “forecasting” yesterday’s hourly
PM2.5 observations twice over the 48-h forecast period (i.e.,
the persistence forecasts for the 12th and 36th forecast hours
were identical). The bias for domain-averaged persistence is
close to zero, and therefore, persistence was not plotted in
Figure 9a.

Figure 10. PM2.5 climatology: PM2.5 percentiles (0–99%)
calculated separately for the observations and each experi-
ment over the entire experimental period (see text).
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southwest CONUS, AODDA, either alone or with PM2.5 DA
(Figures 7c and 7d), produced extremely high biases at many
sites, while assimilating just PM2.5 yielded few differences
at these locations compared to when no observations were
assimilated.
[51] Figure 8 shows the corresponding de-biased RMSEs

normalized by each site’s mean standard deviation of the
observations (to more easily reveal differences). The patterns
were similar to those of the biases (Figure 7) and correlation
coefficients (not shown). Aerosol DA (Figures 8b–8d) real-
ized improvements at many sites east of 104�W compared to
when no assimilation occurred (Figure 8a). Only assimilating
AOD improved the forecasts in eastern Texas more than just
assimilating PM2.5, while solely assimilating PM2.5 led to
better forecasts than only assimilating AOD in the northeast
CONUS and southern Canada. Assimilating AOD and PM2.5

simultaneously yielded forecasts that reflected the best
aspects of both individual PM2.5 and AOD DA over these
two areas. In the southwest CONUS, assimilating just PM2.5

did not improve the bias-removed RMSEs compared to the
control, and AOD DA, with and without concurrent PM2.5

DA, degraded the forecasts. The forecast degradation in the
southwest CONUS due to AODDA is discussed in section 7.
[52] Hourly PM2.5 forecasts were also verified to evaluate

the temporal evolution of forecast accuracy. Additionally,
verification scores were computed for previous-day persis-
tence by “forecasting” yesterday’s hourly PM2.5 observa-
tions twice over the 48-h forecast period (for example, the
persistence forecasts for the 12th and 36th forecast hours
were identical). As the AIRNow values represent hourly
averages with effective valid times of 30 min past each hour,
hourly WRF-Chem PM2.5 forecasts valid at consecutive top-
of-the-hours were averaged for comparison with observa-
tions. In Figures 9 and 11, values on the x-axis denote ending
periods of the 1-h averages (e.g., a value of 6 means the
average between the 5- and 6-h forecasts). Given the poor
forecast performance due to AOD DA over the southwest
CONUS (Figures 7 and 8), all subsequent verification did not
consider forecasts within 104–116�W and 30–40�N (here-
after the “excluded region”; see the box in Figure 1) to pre-
vent bad forecasts at a small number of sites from dominating
statistics.
[53] The bias, de-biased RMSE, and correlation coeffi-

cient were calculated for PM2.5 forecasts aggregated over all
1800 UTC forecasts and AIRNow sites (outside the excluded
region). All experiments had a negative bias for all times
(Figure 9a). The differences between the experiments
decreased for longer forecasts, likely due to model processes
and emissions dominating at later periods [Kahnert, 2008].
The negative bias was largest without DA, but when obser-
vations were assimilated the negative bias was reduced for all
forecast hours. After the first hour, assimilating only AOD

reduced the bias more than just assimilating PM2.5. Up to
�42 h, the experiment with both PM2.5 and AOD assimila-
tion produced the smallest bias, illustrating the benefit of
assimilating observations from multiple sources.
[54] While the bias measures systematic error, the

de-biased RMSE (Figure 9b) assesses non-systematic model
error. Aerosol DA improved the bias-removed RMSEs
compared to the control for all times, although the differences
between the experiments were very small after �36 h. In the
first �15 h, assimilating just PM2.5 generated lower de-
biased RMSEs than assimilating only AOD, but after �24 h,
assimilating solely AOD produced similar or slightly better
scores than assimilating just PM2.5. Assimilating both PM2.5

and AOD yielded the lowest de-biased RMSEs through
�30 h. Additionally, when PM2.5 was assimilated, rapid error
growth occurred in the first hour (see section 7 for a discus-
sion). All experiments produced lower de-biased RMSEs
than persistence for most forecast hours.
[55] The correlation coefficients (Figure 9c) generally

corresponded to the de-biased RMSEs. In the first 6 h, PM2.5

DA, with or without AOD DA, produced the highest corre-
lations. Thereafter, correlations were best when both AOD
and PM2.5 were assimilated. For the first �15 h, assimilating
only PM2.5 increased correlations more than assimilating just
AOD; after �15 h the opposite held. Similar to the biased-
removed RMSEs, correlations of the four experiments grew
closer with time. Persistence always produced higher corre-
lations than the control, but the experiment that assimilated
both PM2.5 and AOD had higher correlations than persistence
for the first �12 h and between �24–36 h.
[56] Clearly, the GOCART option within WRF-Chem

systematically underpredicted the surface aerosol mass,
which was also noted by LIU11. The PM2.5 climatology over
the experimental period (0000 UTC 01 June to 1800 UTC
14 July) further illuminates the model biases. All AIRNow
observations outside of the excluded region (Figure 1) over
the experimental period were included in the observational
climatology. Similarly, model PM2.5 values predicted at the
non-excluded AIRNow locations each forecast hour from
all 1800 UTC initializations were included in the model cli-
matologies. The zth percentile (e.g., 95th percentile) was
chosen to determine the climatological absolute PM2.5 values
corresponding to the zth percentile (qz) separately for the
observations and each experiment. For example, considering
the AIRNow climatology, z percent of all PM2.5 AIRNow
observations were <qz.
[57] All forms of aerosol DA increased the absolute PM2.5

concentrations compared to the control. At percentiles >5%
(Figure 10), the experiments without or with just PM2.5

DA had the lowest absolute PM2.5 values compared to the
observations. The two experiments that assimilated AOD
produced the highest model PM2.5 values, with climatologies
similar to the observations for the 5th–30th percentiles.
Simultaneous PM2.5 and AOD DA produced percentiles
closest to those observed, but for percentiles >30%, the
observed absolute concentrations were still substantially
higher than those of any experiment. Overall, the percen-
tiles reveal the underprediction of PM2.5 concentrations for
all experiments, particularly for more extreme events, and are
consistent with the biases (Figure 9a).
[58] These percentiles were also used in the computation of

the ETS (Figure 11). Using percentile thresholds rather than

Table 2. Aggregate Verification Statistics for 24-h AOD Forecasts
Compared to MODIS AOD Values

Experiment Bias De-biased RMSE Correlation Coefficient

noDA �0.114 0.125 0.288
PM2.5 �0.109 0.124 0.306
AOD �0.044 0.134 0.318
AOD + PM2.5 �0.044 0.134 0.319
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absolute thresholds removes the impact of bias when calcu-
lating skill scores and permits a clear assessment of spatial
skill [e.g., Lean et al., 2008; Roberts and Lean, 2008;
Schwartz et al., 2009; Mittermaier and Roberts, 2010]. For
example, to compute the ETS for the 90th percentile, qo =
21.0 mg/m3, while qf varied depending on the experiment
between 10.65 and 14.45 mg/m3 (see Figure 10). The ETSs
were calculated considering all AIRNow sites except those
in the excluded region and aggregated over all 1800 UTC
forecasts.

[59] As the event became rarer and the forecast length
increased, ETSs decreased (Figure 11). At the 50th and
75th percentiles (Figures 11a and 11b), all forms of DA
improved forecasts compared to the control through �30 h.
Just assimilating PM2.5 produced better forecasts than only
assimilating AOD through �18 h, with comparable scores
between the two experiments thereafter. At these percentiles,
when both AOD and PM2.5 were assimilated, ETSs were
nearly identical to those when just PM2.5 was assimilated and

Figure 12. Hourly time series of total AOD at 500 nm from 0000 UTC 01 June to 1700 UTC 15 July at the
(a) Key Biscayne, (b) UMBC, (c) Boulder, (d) Konza, (e) Bratts Lake, and (f) Maricopa AERONET sites.
Model values represent output every hour beginning at the initial time and ending at the 23rd hour of inte-
gration patched together for each 1800 UTC forecast. AERONET observations represent hourly averages.
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comparable or higher than persistence ETSs for most times.
For the 90th, 95th, and 98th percentiles (Figures 11c–11e),
aerosol DA led to better forecasts than the control for at
least �36 h, with the combination of AOD and PM2.5 DA
yielding the highest ETSs for�24 h. Only assimilating PM2.5

produced higher ETSs than solely assimilating AOD for
�12–18 h. After this time, just assimilating AOD yielded
similar or slightly higher scores than only assimilating PM2.5.
Assimilating both AOD and PM2.5 produced better ETSs
than persistence for the first �12 h. For the most extreme
events (Figure 11f), assimilating only AOD generated better
forecasts than just PM2.5 DA for �6–18-h forecasts. How-
ever, the best forecasts through �18 h occurred when AOD
and PM2.5 were assimilated concurrently. No experiment had
skill compared to random forecasts past �24 h at the 99th
percentile.
[60] Generally, simultaneously assimilating PM2.5 and AOD

produced ETSs that were either the highest or tied for highest,
but there was little skill for extreme events. When ETSs were
computed using identical thresholds for the observations and
forecasts (i.e., qf = qo), the results did not qualitatively differ,
although ETSs were lower than those in Figure 11 for all but
the lowest PM2.5 thresholds (not shown).
[61] The forecasts of AOD are now evaluated.

6.2.2. Verification of AOD Forecasts
[62] Forecasts of AOD were verified against MODIS AOD

observations and at AERONET sites. Statistics comparing
24-h forecasts of model AOD with MODIS AOD aggregated
over all 1800 UTC forecasts outside the excluded region are
shown in Table 2. Assimilating AOD reduced the negative
AOD bias, although AOD DA slightly worsened the de-
biased RMSE. However, AOD DA led to the highest corre-
lations, even though the values were low. Just assimilating
PM2.5 observations produced little change compared to the
control. These metrics indicate that 24-h forecasts of AOD
have room for improvement, but AOD DA reduced the bias
and increased the correlation with observations.
[63] The AOD forecasts were also verified against

AERONET observations. During the experimental period,
data from 34 AERONET sites were available over the
domain (Figure 1). Figure 12 shows model predictions of
total 500 nm AOD at several sites and the corresponding
AERONET observations. Model values represent output
every hour beginning at the initial time and ending at the 23rd
hour of integration patched together for each 1800 UTC
forecast, and the AERONET values are hourly averaged.
PM2.5 DA had little impact on AOD forecasts compared to
the control. But, at all sites, AOD values were increased by
assimilating AOD, and the higher values generally agreed
better with observations (Figures 12a, 12b, 12d, and 12e).
However, at the Boulder, Colorado site (Figure 12c), AOD
DA sometimes led to overpredictions, such as after 4 July.
Moreover, at Maricopa, Arizona (Figure 12f), AOD DA
produced forecasts that consistently and severely over-
predicted AOD.
[64] This overprediction from AOD DA was also observed

at other AERONET sites in the southwest CONUS, consis-
tent with the high surface PM2.5 biases and poor forecasts
over this region. The average biases computed from all 1800
UTC 0–23-h model forecasts and AERONET observations
over the experimental period are shown in Figure 13. AOD
DA led to high biases in the southwest CONUS that were

much worse than the biases of the control (Figures 13c and
13d). However, AODDA reduced the mean bias at most sites
outside this region compared to the control (Figure 13a).
PM2.5 DA (Figure 13b) resulted in little difference compared
to when no DA occurred.
[65] AOD forecasts were mostly improved by AOD DA,

except over the southwest CONUS. The cause of the high
bias over the southwest CONUS due to AOD DA and a
general discussion of the results are presented in the next
section.

7. Discussion

[66] Despite mostly encouraging results from both AOD
and PM2.5 DA, several disconcerting features were noted.
For example, there was clearly a low WRF-Chem bias of
aerosol mass. Missing secondary organic aerosol (SOA) for-
mation, nitrate, and ammonium within the GOCART aerosol
model likely contributed to the low model bias. OC is known
to contribute at least 50% to PM2.5, and SOA is a domi-
nant component of OC [Zhang et al., 2007]. Global model
[Volkamer et al., 2006] and regional U.S. multimodel studies
[e.g., McKeen et al., 2009] have documented the consistent
underprediction of OC in models that do not include SOA
formation. These results suggest that both AOD and PM2.5

DA can partially remedy inherent model biases.
[67] It is also noteworthy that rapid error growth occurred

in the first hour whenever surface PM2.5 observations were
assimilated but not when just AOD was assimilated
(Figures 9b, 9c, and 11). Furthermore, it is intriguing that
only assimilating AOD produced smaller surface PM2.5 bia-
ses (Figure 9a) after the first hour and comparable or slightly
better surface PM2.5 forecasts after �15–18 h compared to
when just PM2.5 was assimilated. All these behaviors can be
attributed to model processes and the structures of the anal-
ysis fields.
[68] As evidenced by the mean surface PM2.5 increments,

whenever PM2.5 was assimilated sharp horizontal aerosol
mass gradients were generated in the analyses near the
AIRNow sites (Figures 4a and 4c). But, when only AOD was
assimilated, the horizontal gradients were much weaker
(Figure 4b). Similarly, as AOD DA increased aerosol mass
throughout the column, vertical aerosol mass gradients below
�1-km were weakest in the analyses when just AOD was
assimilated (Figure 3b). Although simultaneous DA of AOD
and PM2.5 also increased aerosol mass throughout the col-
umn, contributions from the PM2.5 observations increased
aerosol mass the most near the surface (Figure 3c) and the
vertical aerosol mass gradient was larger below �1-km
compared to when only AOD was assimilated. However, the
vertical aerosol mass gradient was strongest below�1-km in
the analyses when just PM2.5 was assimilated (Figure 3a).
[69] Once model integration began, advection, diffusion,

and vertical mixing smoothed the aerosol mass gradients.
Sharper gradients enhance these processes. Thus, whenever
PM2.5 observations were assimilated, horizontal advection
and diffusion quickly smoothed the strong horizontal gra-
dients and diluted surface aerosol mass near the AIRNow
sites, leading to the rapid error growth in the first hour.
Vertical mixing also contributed to the error growth in the
first hour whenever PM2.5 observations were assimilated by
transporting lower aerosol concentrations above the surface
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downward. Conversely, as solely assimilating AOD yielded
smaller near-surface horizontal and vertical aerosol mass
gradients, vertical mixing and horizontal advection and dif-
fusion were weaker, leading to quite stable surface PM2.5

values over the first hour. Furthermore, only assimilating
AOD produced higher above-surface aerosol mixing ratios
than just PM2.5 DA. Therefore, vertical mixing transported
higher aerosol values to the surface when solely AOD was
assimilated compared to when only PM2.5 DA occurred,
leading to a smaller surface PM2.5 bias after the first hour in
the experiment that just assimilated AOD than the experi-
ment only assimilating PM2.5. It is likely the experiment that
performed just AOD DA produced similar or slightly better
surface PM2.5 forecasts after �15–18 h than the experiment
that only assimilated PM2.5 due to its improved surface bias.
[70] Assimilation parameters can be tuned to lessen the

effects of these model processes when surface PM2.5 is
assimilated and reduce the rapid error growth in the first hour.
For instance, vertical BEC length scales could be increased
to permit deeper increments from PM2.5 DA and diminish
the impact of vertical mixing. Similarly, increasing the
horizontal BEC length scales would allow assimilation of
PM2.5 observations to influence a broader area, decreasing
the magnitudes of horizontal advection and diffusion during
model integration. However, it is unclear whether increasing
these length scales is physically justifiable. Additionally, the
PM2.5 observation error could be increased to weight the
analysis closer to the background.
[71] Last, AOD DA degraded PM2.5 and AOD forecasts

in the southwest CONUS, where the AOD increments were
largest (Figures 5b and 5c). These large increments indicate
the analyses fit very closely to the MODIS AOD values over
these areas. The large increments closely followed the topo-
graphic contours (Figure 1) and were mostly generated over
relatively low, flat areas in arid, desert-like regions. Sum-
mertime in these locales features high surface reflectance,
which can interfere with MODIS AOD cloud masking
algorithms and adversely impact retrieval values [Engel-Cox
et al., 2004; Zhang and Reid, 2006; Drury et al., 2008]. In
fact, due to high surface reflectance, Engel-Cox et al. [2004]
found that MODIS AOD and surface PM2.5 values were only
weakly correlated in the western CONUS, despite good
correspondence in the eastern half of the CONUS. Similarly,
Prados et al. [2007] found poor correlations between
AERONET and MODIS AOD over the western CONUS.
Moreover, they found low correlations over the desert
southwest between MODIS AOD and AOD calculated from
the Geostationary Operational Environmental Satellite-12
(GOES-12) Aerosol Smoke Product (GASP), which reduces
confidence in MODIS AOD values over that region. Addi-
tionally, Drury et al. [2008, 2010] found that MODIS AOD
retrievals are biased high over arid regions since the MODIS
algorithm underestimates surface reflectance and introduced
a method to better quantify surface reflectance and improve
MODIS AOD retrievals. Furthermore, Zhang et al. [2005]
and Zhang and Reid [2006] noted that MODIS AOD was
biased high over bright areas. To remedy this bias (and other
biases), they developed empirical corrections and quality
assurance procedures to correct raw MODIS AOD values.
[72] Given these findings, it appears that issues regarding

MODIS AOD data quality over the southwest CONUS led to
poor analyses in these regions and subsequently erroneous

forecasts, underscoring the need for careful QC of MODIS
AOD. Clearly, additional development following Zhang
and Reid [2006] and Drury et al. [2008, 2010] is needed
within GSI to either better use or reject MODIS AOD
retrievals over arid regions.

8. Summary

[73] MODIS total AOD retrievals and surface PM2.5

observations from the AIRNow network were assimilated
every 6 h using 3DVAR between 01 June and 14 July 2010.
Each 1800 UTC analysis initialized a 48-h WRF-Chem
forecast over a domain spanning the CONUS. Parallel
experiments assimilated AOD and PM2.5 both separately and
together and a control experiment that did not employ DA
was also performed.
[74] The 1800 UTC forecasts were validated against

MODIS, AERONET, and AIRNow observations. All experi-
ments had a low surface bias of aerosol mass mixing ratio that
was primarily caused by the WRF-Chem model. However,
assimilating both AOD and PM2.5 observations separately
and together helped reduce the low bias. Just assimilating
AOD improved the surface bias more than only assimilating
PM2.5 after the 1st hour, but combined AOD and PM2.5 DA
produced the lowest bias for all times. It is encouraging
that assimilating only total AOD—a column-integrated
quantity—can improve the bias of surface aerosols, and this
finding is consistent with LIU11.
[75] Poor MODIS AOD data quality in the southwest

CONUS degraded AOD and surface PM2.5 forecasts in that
region when AOD was assimilated, while PM2.5 DA had a
neutral effect. Elsewhere, aerosol DA improved forecasts,
particularly in the central and eastern CONUS and southern
Canada. Assimilating just surface PM2.5 observations did not
improve AOD forecasts compared to the control, but AOD
DA, either by itself or in conjunction with PM2.5 DA, pro-
duced the best AOD forecasts. Additionally, all forms of
DA unequivocally improved surface PM2.5 forecasts through
at least �30 h. Through �15–18 h, PM2.5 forecasts
were better when assimilating just PM2.5 rather than solely
AOD, although, for longer forecasts, assimilating only AOD
yielded comparable or slightly better PM2.5 forecasts than
just assimilating PM2.5. However, the best PM2.5 forecasts
were achieved when MODIS AOD and AIRNow PM2.5

observations were assimilated concurrently.
[76] Considering the goodness of both AOD and PM2.5

forecasts, the combination of AOD and PM2.5 DA clearly
produced superior aerosol predictions. The informational
content of both observation types was optimally combined
within a common variational framework, leading to analyses
that reflected the contributions of both individual sources.
These results indicate that both AOD and surface PM2.5

observations should be assimilated if the observations are
available, as the different observations work synergistically.
[77] While 3DVAR is computationally efficient and easily

permits multiple species in the analysis vector, its main lim-
itation is the static BECs. More advanced DA techniques,
such as EnDA, may be superior to 3DVAR by calculating
multivariate and flow-dependent BECs that better-represent
“errors of the day.” However, EnDA approaches are more
computationally expensive and perhaps impractical for
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operational applications when the number of control variables
grows too large.
[78] Finally, the aerosol DA system developed by LIU11

and used again here can be continually extended to assimi-
late additional aerosol-related observations. Given these
results, future efforts should continue to focus on assimilat-
ing aerosol observations from disparate observing platforms.
Assimilating more observations from different sources and
wavelengths should refine vertical structures of aerosol mass
and better quantify individual species’ contributions to total
aerosol mass. Additionally, speciated aerosol measurements
(e.g., BC, OC) can be assimilated easily in this system and
should improve forecasts of individual species. However,
these advancements rely on the availability of suitable aero-
sol data, which underscores the need for additional aerosol
observing networks, particularly those that provide vertical
information about aerosol mass.
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