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ABSTRACT

This paper will first describe the forecasting errors encountered from running the National Center for

Atmospheric Research (NCAR) mesoscale model (the Advanced Research Weather Research and Fore-

casting model; ARW) in the complex terrain of southwest Asia from 1 to 31 May 2006. The subsequent

statistical evaluation is designed to assess the model’s surface and upper-air forecast accuracy. Results show

that the model biases caused by inadequate parameterization of physical processes are relatively small,

except for the 2-m temperature, as compared to the nonsystematic errors resulting in part from the uncer-

tainty in the initial conditions. The total model forecast errors at the surface show a substantial spatial

heterogeneity; the errors are relatively larger in higher mountain areas. The performance of 2-m temperature

forecasts is different from the other surface variables’ forecasts; the model forecast errors in 2-m temperature

forecasts are closely related to the terrain configuration. The diurnal cycle variation of these near-surface

temperature forecasts from the model is much smaller than what is observed.

Second, in order to understand the role of the initial conditions in relation to the accuracy of the model

forecasts, this study assimilated a form of satellite radiance data into this model through the Joint Center for

Satellite Data Assimilation (JCSDA) analysis system called the Gridpoint Statistical Interpolation (GSI).

The results indicate that on average over a 30-day experiment for the 24- and 48-h (second 24 h) forecasts, the

satellite data provide beneficial information for improving the initial conditions and the model errors are

reduced to some degree over some of the study locations. The diurnal cycle for some forecasting variables can

be improved after satellite data assimilation; however, the improvement is very limited.

1. Introduction

Weather prediction in southwest Asia (SWA) is often

very complex because of mesoscale variations induced

by the diverse topography. This is predominately a semi-

arid to arid region surrounded by the Black and Caspian

Seas to the north, the Mediterranean to the west, the

Arabian Sea and Persian Gulf to the south, the Hima-

layas to the east, and crossed by the impressive Tauros,

Zagros, and Hindu Kush mountains. A few previous

model studies (Evans and Smith 2001, 2006; Evans et al.

2004; Zaitchik et al. 2007a,b; Marcella and Eltahir 2008)

provided some interesting results for the basic weather

simulation in SWA using a regional climate model [the

second-generation National Center for Atmospheric

Research (NCAR) Regional Climate Model (RegCM2)]

or the fifth-generation Pennsylvania State University–

NCAR Mesoscale Model (MM5) model. They pointed

out that the regional model has difficulty producing an

accurate simulation of precipitation in certain subre-

gions, which is related to an accurate description of
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storm tracks, topographic interactions, and atmospheric

stability. However, for a next-generation mesoscale

forecast model (the Advanced Research Weather Re-

search and Forecasting model, ARW) developed by

NCAR (Skamarock et al. 2005), the performance of this

model employed in the operational forecasts over this

region is not fully understood. One of the purposes in

this paper is to evaluate the performance of the ARW

model in SWA complex terrain.

This evaluation primarily concentrates on the fore-

casts of wind, temperature, and precipitation since

SWA is dominated by hot, dusty, windy weather

(Agrawala et al. 2001). During the transitional season

from winter to summer, the temperature and wind in-

crease substantially; contrastingly, the precipitation

decreases significantly. Subsequently, during this sea-

sonal transition, the occurrence of blowing sand/dust

and unstable local-scale weather events increases as

well, and the prediction accuracy of these events is

highly dependent upon the accuracy of the temperature,

precipitation, and wind forecasts from the model.

Some recent studies have evaluated the ARW model

based on objective error statistics for precipitation

forecasts over the United States. Cheng and Steenburgh

(2005) produced surface sensible weather forecasts with

ARW and Eta models over the western United States.

Their results suggest that improvements in initialization

may be as important, or more so, than improvements in

the physics for land surface processes. Gallus and

Bresch (2006) compared the impacts of Weather Re-

search and Forecasting (WRF) model dynamics core,

physics package, and initial conditions on warm season

rainfall forecasts over the central United States. They

found that the sensitivity of rainfall forecasts is a func-

tion of model physics, dynamics, and initial conditions,

and they are situationally dependent on which domi-

nates most. For heavier rainfall, sensitivity to initial

conditions is generally less substantial than the sensi-

tivity to changes in the dynamic core or physics. For

light rainfall, the WRF model using NCAR physics is

much more sensitive to a change in the dynamic core

than the WRF model using the National Centers for

Environmental Prediction (NCEP) physics. It is very

clear that the errors in the weather forecasts are caused

by many reasons. One of these reasons is attributed to

the imperfection of the numerical weather models’

representation of the actual atmosphere. However, as

Lorenz (1963) pointed out, the most fundamental cause

of forecast failure is that the atmosphere is sensitive to

initial conditions (ICs). This means that an arbitrarily

small error in the analysis of the initial state of the at-

mosphere can have an overwhelming effect in a finite

amount of time. Therefore, it is not surprising that

considerable effort has focused on improving the esti-

mates of the model initial states through advanced

techniques. One such technique is data assimilation.

Thus, the second purpose of this paper is to evaluate the

impact of data assimilation on weather forecasts over

SWA areas.

This paper is organized as follows. Section 2 describes

the real-time configuration of WRF-ARW as run op-

erationally within SWA. The observational datasets

used in the verification are given in section 3. Section 4

explains the methodology used in the evaluation. The

results of the forecast error for the May 2006 case are

presented in section 5. Section 6 investigates the impact

of data assimilation on the forecasts. Finally, a summary

and discussion are given in section 7.

2. WRF-ARW model and forecasts

The weather model used in this study is the WRF

model utilizing the Advanced Research WRF dynami-

cal core (WRF-ARW; Michalakes et al. 2001; Skamarock

et al. 2005), which is a nonhydrostatic, fully compress-

ible, primitive equation model. Lead institutions in-

volved in the effort include NCAR, the Air Force

Weather Agency (AFWA), the National Oceanic and

Atmospheric Administration (NOAA), and other gov-

ernmental agencies as well as several universities. WRF

is built around a software architectural framework

within which different dynamical cores and model

physics packages are accessible within the same code.

Within the WRF framework, it is possible to mix the

dynamical cores with differing physics packages to op-

timize performance since each core has strengths and

weaknesses in different areas. WRF-ARW uses a terrain-

following pressure coordinate and the Arakawa C grid

staggering.

Similar to AFWA operational setups, a 15-km grid

spacing centered over SWA (Fig. 1) is used to encom-

pass the region’s complex topography and its associated

spatial variability in surface characteristics. To assess

model predictive skill, 48-h forecasts are made for each

day starting at 0000 UTC for the period 1–31 May 2006.

Forecasts without data assimilation are labeled CTRL

in order to distinguish them from the forecasts with data

assimilation found in section 6. The initial atmospheric

and lateral boundary conditions, including soil moisture

and temperature, are taken from the NCEP Global

Forecast System (GFS) real-time forecasts at 3-h inter-

vals, which are gridded to a horizontal resolution of

18 3 18. Through the WRF Preprocessing System (WPS),

the global soil categories, land-use category, terrain

height, annual mean deep soil temperature, monthly
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vegetation fraction, monthly albedo, maximum snow

albedo, and slope category are interpolated into the

model grids of the study domain. The physics packages

chosen are the WRF single-moment five-class (WSM5)

microphysics scheme, the Yonsei University planetary

boundary layer (YSUPBL) scheme, the Noah land

surface scheme, the Grell–Devenyi ensemble cumulus

scheme, the Rapid Radiative Transfer Model (RRTM)

longwave radiation, and the Dudhia shortwave radia-

tion scheme.

3. Observed and analyzed datasets

a. Observed precipitation

The observed precipitation data are taken from the

Climate Prediction Center’s (CPC) Famine Early Warn-

ing System (FEWS) program, which is derived from

geostationary satellite retrieval precipitation data merged

with rain gauge data and model analysis. The merging

technique has been shown to significantly reduce bias

and random error compared to individual precipitation

data sources, thus increasing the accuracy of the rainfall

estimates (Xie and Arkin 1996a). Geostationary satel-

lite data are utilized for the determination of cloud-top

temperature. Meteosat-5 thermal infrared (IR) digital

data at 5-km-pixel resolution are accessed every 30 min

and then reformatted and converted to a geographic

grid with 0.18 resolution. The grid is 751 3 501 points,

which begins with point (1, 1) at 108N, 208E and ends at

point (751, 501) at 608N, 958E. A horizontal resolution

of 0.18 was chosen for the estimate computations to

correspond with the absolute positioning error for the

satellite of approximately 10 km. Arrays are used to

accumulate the occurrences of cloud-top temperatures

below temperatures of 235 and 275 K. Rain gauge re-

ports transmitted via the Global Telecommunications

System (GTS) are received every 6 h and are utilized in

FIG. 1. Domain of the model and subregion definitions. Shading indicates the elevation of terrain (m). The subregions are defined as

northern Iraq (A; 348–368N, 418–438E), northwestern Iran (B; 348–368N, 468–488E), north-central Iran (C; 348–368N, 548–568E), central

Afghanistan (D; 348–368N, 668–688E), the western Himalayan Mountains (E; 348–368N, 748–768E), western Saudi Arabia (F; 228–248N,

418–438E), eastern Saudi Arabia (G; 228–248N, 518–538E), the Arabian Sea (H; 228–248N, 638–658E), and northwestern India (I; 228–248N,

708–728E).
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the CPC Climate Assessment Data Base (CADB) for

monitoring of climate anomalies. Automated quality

control of these GTS observations within the CADB is

done prior to the processing of precipitation estimates.

b. Observed temperature

The maximum and minimum temperatures at 2-m

levels with 0.58 3 0.58 gridded datasets are created by

the CPC, which is taken from observational stations of

the World Meteorological Organization (WMO) GTS

datasets. The interpolation method is based on the

previous rainfall estimation algorithm (Xie et al. 1996b).

c. Analyzed temperature and wind field

The temperature and wind fields are taken from the

NCEP GFS analysis data, which is gridded to a hori-

zontal resolution of 18 3 18.

4. Topography and evaluation method

To investigate the spatial heterogeneity of the com-

plex terrain in SWA, nine representative subregions are

depicted in Fig. 1. They are defined as northern Iraq (A;

348–368N, 418–438E), northwestern Iran (B; 348–368N,

468–488E), north-central Iran (C; 348–368N, 548–568E);

central Afghanistan (D; 348–368N, 668–688E), west Hi-

malayan Mountains (E; 348–368N, 748–768E), western

Saudi Arabia (F; 228–248N, 418–438E), eastern Saudi

Arabia (G; 228–248N, 518–538E), the Arabian Sea (H;

228–248N, 638–658E), and western India (I; 228–248N,

708–728E).

The nine subregions effectively represent the heter-

ogeneity of the complex terrain in SWA. Table 1 dis-

plays the average topography (Hgt), vegetation type

(Veg), and soil type (Soil) over these nine regions. Ex-

cept for the water type in the Arabian Sea (marked H),

the soil types in all other eight regions are loam; in

addition, the vegetation types include barren, grass,

shrubland, wooded land, mixed dry/cropland, and water.

Three regions (B, D, and E) with terrain above 2500 m

are covered by short plants with grass (B), shrubland

(D), and wooded tundra (E). Three regions with terrain

under 1000 m (A, C, and F) and the two plains regions

(G and I) are practically free of any plants.

This evaluation is designed to present the model er-

rors of surface temperatures, precipitation, wind speeds,

and upper-atmospheric variables for both 24- and 48-h

(e.g., the second 24 h) forecasts. The statistical measures

used to quantify model forecast performance are bias

(forecast 2 observation), mean-square error (MSE), and

error standard deviation (SD). For purposes of inter-

pretation, the MSE represents the total model forecast

error including contributions from both systematic and

nonsystematic/random errors. Systematic error may

be caused by a consistent misrepresentation of physical

parameters such as radiation or model convection. Non-

systematic errors are caused by uncertainties in the

model initial conditions or unresolvable differences

in the scales between the forecasts and observations

(Nutter and Manobianco 1999).

If X represents any of the parameters under consid-

eration for a given time and vertical level, then forecast

error is defined as X9 5 Xf 2 Xa, where the subscripts f

and a denote forecast and analyzed/observed quantities,

respectively. Given N valid pairs of forecasts and anal-

yses, the bias is computed as

bias 5 X9 5
1

N
�
N

i51
X

i
9; (1)

the mean-square error is computed as

MSE 5
1

N
�
N

i51
(X

i
9)2; and (2)

the SD error is computed as

SD 5
1

N
�
N

i51
(X

i
9�X9)2

2
4

3
5

1/2

. (3)

In Eqs. (1)–(3), N is used rather than N-1 so that a

decomposition following Murphy [(1988), Eq. (9)] could

be applied to the MSE:

MSE 5 (X9)2
1 (SD)2. (4)

Therefore, the total model forecast error (e.g., MSE)

consists of contributions from model squared biases

TABLE 1. The average height (m) of topography, vegetation type (Veg), and soil type (Soil) in the nine subregions (defined in Fig. 1)

over SWA.

A B C D E F G H I

Height 328 2557 737 3833 4839 958 67 0 75

Veg Barren Grass Barren Shrub land Wooded tundra Barren Barren Water Mixed dryland/cropland

Soil Loam Loam Clay loam Loam Loam Sandy loam Loam Water Loam
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ðX9Þ2 (i.e., systematic error) and the squared standard

deviation (SD)2 error (i.e., nonsystematic error) in the

forecast and observed data. A fraction is defined to in-

dicate the ratio of systematic error in the total model

forecast error as follows:

E
r
5 [(X9)2/MSE]100%. (5)

Note in Eq. (5) that if the model bias is less than 50%,

most of the MSE is due to random, nonsystematic-type

variability in the errors.

5. Forecasts error

In the following section, WRF-ARW model forecast

error characteristics for 24- and 48-h (e.g., second 24 h)

forecasts and the diurnal variation are described. Re-

sults are from forecasts made during the 30-day period

starting 1 through 30 May 2006.

a. 24- and 48-h forecasts

1) TEMPERATURE AT 2 M

Squared biases (WRF forecasts 2 GFS analysis) in

2-m temperature forecasts vary with terrain elevation

(Fig. 2a). Biases are larger over high-terrain areas (E, B,

and D) for the 24- and 48-h forecasts. Meanwhile, the

biases are significantly smaller in low-terrain regions (A,

C, F, G, and I) or water areas (H).

Even though the magnitude of the squared error SD

(Fig. 2c) in the highest-terrain region (E: western

Himalayan Mountains) is nearly equivalent to that of the

forecast bias, it is very small in the other areas. However,

the biases and corresponding MSEs are comparable in

FIG. 2. Squared bias, MSE, squared SD error, and fraction of squared bias to MSE (Er) for 2-m temperature

(T2m, 8C) forecasts from 1 to 31 May 2006. Results are plotted for averaged 24- and 48-h forecasts as a function of the

locations (A, B, C, D, E, F, G, H, and I) defined in Fig. 1. Unit is (8C)2 in (a),(b), and (c).
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magnitude over most of other mountainous areas

(Fig. 2b). The fraction of the squared biases to the MSEs

(Fig. 2d) is greater than 50% in most of the areas, which

showed clearly that a large contribution to the total

model forecasts error in these locations is derived from

a systematic model error. The results indicate an ap-

parent model deficit in the description of surface tem-

perature in high-terrain areas.

To illustrate the above point, squared biases, MSEs,

and squared SD errors in the whole of SWA are

depicted in Fig. 3. For the 24-h forecasts, the total model

forecast errors are dominated by the model systematic

errors (Figs. 3a–c). The fraction of squared biases to

the MSEs (Fig. 3d) exceeds 50%; the distribution of the

total model forecast errors is also dependent on the

configuration of the terrain (cf. Figs. 3a,b and Fig. 1).

FIG. 3. Squared bias, MSE, squared SD error, and fraction of squared bias to MSE (Er) of T2m for (a)–(d) 24- and

(e)–(h) 48-h forecasts for 30-day averages from 1 to 31 May 2006. Unit is (8C)2 in (a)–(c) and (e)–(g).
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The 48-h forecast errors are a little higher than the 24-h

forecast errors (Figs. 3e–h).

2) PRECIPITATION

In contrast, the precipitation MSEs in the 24-h fore-

casts are dominated by the squared SD error (Fig. 4)

over all nine selected subregions. The biases are not

correlated to the height of the terrain. The maximum of

the squared bias (Fig. 4a) over the highest-terrain re-

gion is much smaller than the squared SD error. The

fraction of the squared biases to the MSEs (Fig. 4d) is

far less than 50% in all selected subregions, which

showed clearly that a larger contribution to the total

model forecasts error comes from a nonsystematic

model error. These results indicate an apparent model

problem in the description of the initial conditions or

the model resolution. The 48-h forecast errors are much

higher than the 24-h forecast errors in most areas.

For the whole study domain, the MSEs in the 24-h

forecasts are obviously dominated by the model non-

systematic errors (Figs. 5a–c). The fraction of squared

biases to the MSEs (Fig. 5d) is under 50% except for

some Himalayan Mountains areas. The distribution of

the total model forecast errors has nothing to do with

the structure of the higher terrain. The areas of the 48-h

forecast errors greater than 20 mm2 clearly expanded

(Figs. 5e–h).

FIG. 4. Same as in Fig. 2 but for precipitation (mm day21) forecasts. Units are (mm day21)2 in (a)–(c).
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3) WIND SPEED AT 10 M

Similar to precipitation, the MSEs in 10-m wind speed

are largely associated with the nonsystematic errors in

most of the subregions (Figs. 6a–c). The largest model

bias occurs over northwestern Iran (Fig. 6a). The biases

over the western Himalayan Mountains region, eastern

Saudi Arabia, and western India are almost zero. The

fractions of the squared biases to the MSEs (Fig. 5d) are

under 50% over all of the selected areas.

Over the SWA domain, the MSEs of the 10-m wind

speed in the 24-h forecasts correspond fairly well to the

FIG. 5. Same as in Fig. 3 but for precipitation (mm day21) forecasts. Units are (mm day21)2 in (a)–(c) and (e)–(g).
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low SD errors (Figs. 7b and 7c). The forecast errors

from the systematic error in the western mountains of

Iran are relatively large values (Fig. 7a). The 10-m wind

speed statistical fields are quite different from the 2-m

temperature fields, and the nonsystematic model errors

compose a much larger portion of the total forecast

errors for 2-m temperature forecasts (Fig. 7d). The 48-h

forecast errors are similar to the 24-h forecast errors in

most of the areas (not shown).

The above results suggest that the MSEs near the surface

contain a substantial spatial heterogeneity, as can seen by

the relatively larger errors in the higher mountainous areas.

However, the source of the errors indicates a significant

difference among the temperature, precipitation, and wind

speed. The inaccuracies in the 2-m temperature forecasts

come mainly from systematic errors, which are controlled

largely by the physical representation within the model. In

contrast, the inaccuracies in the precipitation and 10-m

wind speed forecasts are dominated more by nonsystem-

atic errors, which we postulate are derived from the ran-

dom inadequacies of the initial conditions.

4) TEMPERATURE AT 500 HPA

The squared bias is very small except that the Hi-

malayan Mountains region (E) gets up to 178C for 24-h

forecasts (Fig. 8a) and there is a slightly larger value for

FIG. 6. Same as in Fig. 2 but for 10-m wind speed (m s21) and 24-h forecasts only. Units are (m s21)2 in (a)–(c).
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48-h forecasts (not shown). The larger magnitudes of

the MSEs is randomly distributed over central Saudi

Arabia, southeastern Iraq, northwestern Iran, and the

western Himalayan Mountains (Fig. 8b). The corre-

sponding SD error (Fig. 8c) reveals that nonsystematic

errors compose a substantial portion of the total error.

The fraction of squared biases to the MSE (Fig. 8d) is

far less than 50% except for the western Himalayan

Mountains region (E), which showed clearly that a

larger contribution to the MSEs comes from a nonsys-

tematic total model forecast error. Compared to 24-h

forecasts, the 48-h forecasts’ bias is higher over most of

study areas (not shown).

5) WINDS AT 200 HPA

Similar to the upper-level temperature forecasts, the

wind forecasts (the first 24-h forecasts shown only) at

200 hPa (Fig. 9) indicate that the MSEs are dominated

by nonsystematic errors in either the zonal or meridio-

nal wind component or both. For the zonal wind fore-

casts, the large MSE over Himalayan Mountains region

is consistent with nonsystematic error; in addition, the

Arabian Sea also has a strong nonsystematic error sig-

nature. For the meridional wind component, the larger

forecast errors occur over a different place from the

zonal wind forecasts. The larger MSEs for the zonal

wind forecasts in the Himalayan Mountains region dis-

appear in the meridional wind field.

To summarize, the 2-m temperature forecast error is

typically caused by systematic error and is most closely

associated with the elevated terrain; by contrast, pre-

cipitation, 10-m wind speed, and upper level forecast

errors are dominated by the nonsystematic errors,

which do not appear to be correlated with terrain.

b. Diurnal cycle variation

Based on model forecasts, the southwest Asian domain-

wide mean of the 2-m temperature exhibits a minimum

near 0000 UTC followed by a sharp increase to a max-

imum near 1200 UTC (not shown). The differences in

the variables (temperature, and wind speed) at maxi-

mum (1200 UTC) and minimum (0000 UTC) times are

defined as the diurnal cycle variation in this study.

The southwest Asia area’s mean diurnal cycle of 2-m

temperature over the 30-day study period (Fig. 10a)

shows that the amplitude of the temperature diurnal

cycle for model forecasts is considerably lower than the

value in the WMO GTS observations. Note a slight

decrease in temperature diurnal cycle on 2, 7, and 17

January in GTS observations that is not observed in the

model forecasts. These two points indicate that the

near-surface temperature diurnal cycle in the model

forecasts has serious problems.
FIG. 7. Same as Fig. 3 but for 10-m wind speed and 24-h forecasts

only. Units are (m s21)2 in (a)–(c).
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The 10-m model forecast wind speeds exhibit a dif-

ferent pattern of behavior from that of temperature.

Similar to the NCEP GFS analysis data, the amplitude

of the wind speed diurnal cycle in the model (Fig. 10b)

shows a strong daily variability. The magnitudes of the

model forecasts values are fairly consistent with the

analysis values, except for the large difference on 3

January. There is no evidence of a sharp gap between

the model forecasts and the analysis data.

However, the spatial domain of the SWA areas ap-

pears to cover roughly four time zones. The whole do-

main average did not reflect significantly the diurnal

cycle of the different locations. The 30-day period mean

of the diurnal cycle (Fig. 11) displayed the variations

among the locations. The results show that over re-

gions in the western and northeastern parts of southwest

Asia, including the Saudi Arabian desert and the

northern border of Afghanistan, the model forecasts of

2-m temperature (Fig. 11b) are in much better agree-

ment with the GTS observations (Fig. 11a) than in

the Zagros Mountains of western Iran or in the north-

west Indian deserts. Note that the amplitude of the di-

urnal cycle in the model is much smaller than the GTS

observations.

For the diurnal cycle variation in 10-m wind speed,

the model forecasts (Fig. 11d) over southwest Asia have

similar amplitudes and distributions to the NCEP GFS

analysis data (Fig. 11c) except for the clear mesoscale

features in the model forecasts. Note, however, that the

analysis data suggest a strong diurnal cycle variation

over northwestern Iran and northern Afghanistan.

Overall, however, the model forecasts of the diurnal

cycle are consistent with the analysis.

6. Impact of satellite data assimilation

Results from the previous section suggest that, aside

from the 2-m temperature, errors in most forecast var-

iables are dominated by nonsystematic errors, which are

caused by uncertainties in the model initial conditions

or unresolvable differences in scales between the fore-

casts and the observations (Nutter and Manobianco

1999). The model initial conditions are very important

factors impacting model forecasts. Many previous studies

(Tracton et al. 1980; Halem et al. 1982; Andersson et al.

1991; Mo et al. 1995; Derber and Wu 1998; Bouttier and

Kelly 2001) indicate that the assimilation of satellite ra-

diance observations into a weather model can improve

the forecasts by providing those initial conditions that are

more representative of the true state of the atmosphere.

For the purpose of understanding the role of initial

conditions in the accuracy of forecasts, we will now

consider satellite observation data assimilation.

FIG. 8. Same as in Fig. 3 but for 500-hPa temperature and 24-h

forecasts only. Unit is (8C)2 in (a)–(c).
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a. Data assimilation system

There are two basic approaches to assimilating satellite

information into a data assimilation system (DAS). The

first is to assimilate retrieved data from radiances

measured by satellite instruments. The second is to as-

similate radiance measurements directly into a DAS

prior to the retrieval. Direct radiance assimilation is

theoretically superior to retrieval assimilation because

the observational error statistics in the former are more

justified than in the latter (Eyre et al. 1993; Derber and

Wu 1998; McNally et al. 2000). Direct radiance assimi-

lation will be used in the current study.

In this study, the Gridpoint Statistical Interpolation

analysis system developed by JCSDA (Derber and Wu

1998; Cucurull et al. 2007) is integrated with the WRF-

ARW mesoscale system, and the Advanced Television

and Infrared Observation Satellite-N (TIROS-N) Op-

erational Vertical Sounder (ATOVS) radiance obser-

vations are employed. The GSI analysis system is based

FIG. 9. Same as in Fig. 3 but for (a)–(d) 200-hPa zonal wind and (e)–(h) meridional wind for 24-h forecasts only.
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on NCEP’s three-dimensional variational data assimi-

lation (3DVAR) analysis system known as Spectral

Statistical Interpolation (SSI; Parrish and Derber 1992).

The current GSI regional analysis system accepts

NCEP’s Nonhydrostatic Mesoscale Model (NMM)

WRF and NCAR’s ARW mass core (Liu and Weng

2006; Xu et al. 2009), and the input data could be either

binary or network common data form (NetCDF) data-

sets. For the ARW regional model, the background

error statistics in the GSI data assimilation system use

the same vertical grid structure as the first-guess of

NCEP global model forecasts. The background error

covariance matrix is extracted through the interpolation

of NCEP’s GFS counterpart. The National Meteoro-

logical Center (NMC, now known as NCEP) method

(Parrish and Derber 1992) is a popular method for esti-

mating the climatological background error covariance.

b. Satellite data

The ATOVS datasets supplied by the National En-

vironmental Satellite, Data, and Information Service

(NESDIS) are composed of radiances from the Ad-

vanced Microwave Sounding Unit (AMSU) and the

High-Resolution Infrared Sounder (HIRS/3). Two sepa-

rate radiometers (AMSU-A and AMSU-B) compose the

AMSU platform. AMSU-A is a cross-track, stepped-line

scanning total-power radiometer. The instrument has an

instantaneous field of view of 3.38 at the half-power

points, providing a nominal spatial resolution at nadir

of 48 km. The AMSU-B is a cross-track, continuous-

line scanning, total-power radiometer and has an in-

stantaneous field of view of 1.18 (at the half-power

points). The spatial resolution at nadir is nominally

16 km. The antenna provides a cross-track scan, scan-

ning 648.958 from nadir with a total of 90 earth fields of

view per scan line.

The AMSU-A and AMSU-B radiance data used here

have undergone substantial preprocessing by NESDIS

before becoming available. The data have been statis-

tically limb corrected (adjusted to nadir) and surface

emissivity corrected in the microwave channels. Figure

12 shows an example of the scan position of the two

microwave sensors on board the NOAA-15 and -16

satellites during the study period. It is clear that the

NOAA-16 data cover the most southwest Asia area and

AMSU-B has a higher density of observations than the

AMSU-A.

Derber and Wu (1998) pointed out that the presence

of a single data point containing large errors can result

in substantial degradation of the analysis and the sub-

sequent forecast. For this reason, a simple quality con-

trol procedure has been developed and the observed

FIG. 10. Diurnal cycle variation of (a) T2m (8C) and (b) 10-m wind speed (m s21) for 24-h

forecasts only.
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brightness temperature data have been modified em-

pirically with various parameters for different instru-

ments. In the GSI analysis system, this check includes

two steps. First, a location check (including removal of

observations outside the domain) and a thinning pro-

cedure (excluding location–time duplicates and incom-

plete observations) are performed to ensure the vertical

consistency of upper-air profiles. Second, numerous

quality control (QC) checks are redone based on vari-

ous quality parameters after the model brightness

temperatures are obtained from the radiative transfer

model. The quality parameters are formulated in terms

of the expected observational error variance as a func-

tion of the channels and have been adjusted for their

position across the track of the scan, whether it is over

land, sea, snow, sea ice, or a transition region, and for

elevation, the difference between the model and the real

topography, and, finally, the latitude. In Fig. 13, the sta-

tistics show that the number of observations used in the

GSI regional data assimilation system is quite different.

AMSU-B has many more observations than do the two

AMSU-A platforms. For NOAA-15 (Fig. 13), the maxi-

mum number of AMSU-B observations for all 30 days

range from 50 000 to 150 000 pixels, and for AMSU-A,

the number is only around 40 000 pixels. For NOAA-16,

the number of AMSU-B observations exceeded 150 000

pixels, while the AMSU-A was under 60 000 pixels. On

average for the 30 days, the evidence shows that through

this two-step checking procedure, the amount of radiance

data going into the model is substantially reduced. The

percent usage of AMSU-A radiance data was over 40%,

but for AMSU-B it was only 16%.

It is obvious that bias correction and quality control

remove nonuseful data. This is less taxing on the mini-

mization procedure within variational data assimilation

systems. However, because of the imperfections inher-

ent in the bias correction and quality control schemes, a

lot of valuable observations are eliminated. Future

studies should continue to refine the bias correction and

quality control schemes.

FIG. 11. Diurnal cycle variations of T2m (8C) in (a) GTS observations, (b) CTRL model forecasts and 10-m wind speed

(m s21) in the (c) NCAR GFS analysis and (d) CTRL model forecasts for 24-h forecasts only.
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c. Experiments design

For the control experiments described in section 2

(referred to as CTRL), the initial conditions generated

from the GFS forecasts had been assimilated with sev-

eral satellite data sources, such as AMSU-A/B, HIRS,

the Microwave Sounding Unit (MSU), etc. For the

purpose of eliminating the effects of these radiance as-

similations in the first-guess field from the GFS global

analysis data, we first generated a spinup run for 6 h

from 1800 UTC on the previous day to 0000 UTC on the

forecasting day in the data assimilation (referred to as

DA) experiments, then the AMSU-A and AMSU-B

radiance data are assimilated in the ARW forecast

model to modify the initial conditions at 0000 UTC on

each day, and finally we produce forecasts in the same

way as the CTRL experiment.

d. Results analysis

To understand clearly the effects of the ATOVS ra-

diance data assimilation on the forecasts over the study

area, three statistical variables—bias, correlation, and

mean square error skill score—are calculated against

the observation data.

1) BIAS

The bias is computed as in Eq. (1), and the absolute

bias difference between DA and CTRL is defined as

jbiasjDA 2 jbiasjCTRL. The 30-day mean will be inves-

tigated first. For the 24-h forecasts, the absolute bias

difference in the 2-m temperature forecast (Fig. 14a)

shows that the bias is reduced in DA over most of

southwest Asia. The biases in Iran, Afghanistan, and

Pakistan are on average 0.38–1.88C less than in the

CTRL forecasts, with the largest impact occurring on

the south or southwest slope of the Afghanistan Hindu

Kush Mountains area (cf. with Fig. 1).

The absolute bias difference in 10-m wind speed for

the 24-h forecasts (Fig. 14b) reveals that the largest im-

pacts on DA are over the Arabian Sea, the Persian Gulf,

and the border area between Pakistan and Afghanistan,

where these places are beyond the effects of high terrain.

Whereas the impact of the satellite data assimilation on

the 2-m temperature is observed near the mountain

areas, the impact on the 10-m wind speed happens in

places far away from these mountain regions, and espe-

cially over water areas. However, the evidence shows

that the bias increased in many areas including south-

eastern Iran, northwestern India, and the other areas.

FIG. 12. Scan coverage of ATOVS (AMSU-A and -B) radiance being used in the current data assimilation system at

0000 UTC during May 2006.
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Compared to the 24-h forecasts in the CTRL experi-

ment, the precipitation forecast bias with DA (Fig. 14c)

decreased slightly over the Mediterranean Sea, the Black

Sea coast, the Saudi Arabian desert, and the Iranian

Zagros Mountains areas. Note, however, the bias with

DA increased over the Himalayan Mountains area.

For upper levels, the absolute bias difference in the

500-hPa temperature, geopotential height, and wind

field forecasts are presented in Fig. 15. The radiance

data assimilation reduces the forecast bias of the geo-

potential height (Fig. 15b) and wind field (Figs. 15c

and 15d) over most of southwest Asia. The evidence

shows that the upper-level geopotential height and wind

field forecasts impacted by satellite radiance data as-

similation are not associated with the configuration of

terrain. Meanwhile, the 500-hPa temperature forecasts

are modulated by the radiance assimilation differently

(Fig. 15a). Here, the satellite data assimilation does

not improve the temperature forecasts over the central

southwest Asia area, including Saudi Arabia, the Ira-

nian Zagros Mountains, and the Afghan Hindu Kush

Mountains.

2) MEAN-SQUARE-ERROR SKILL SCORES

Murphy (1988) found forecasting skill scores are

generally defined as measures of the relative accuracy of

two forecasts, where one of the two forecasts is defined

as a ‘‘reference system.’’ For the following experiments,

the CTRL forecasts are considered to be the reference

system. Based on the mean-square error, the skill score

(SS) can be expressed as follows:

SS(d, r, a) 5 1� [MSE(d, a)/MSE(r, a)]. (6)

Note that SS in Eq. (6) is a function of the DA fore-

casts (d), the CTRL reference forecasts (r), and the

analyzed quantity (a). The MSE (d, a) and MSE (r, a)

are as defined in Eq. (2) indicating the mean-square

error of DA and the CTRL forecast relative to the

analysis, respectively. Therefore, the greater positive SS

values reflect increasing positive skill over the perfor-

mance of the reference forecasts.

Figure 16 depicts the results for the 2-m temperature,

10-m wind speed, and precipitation forecasts over the

nine locations defined in Fig. 1. With regard to the 2-m

FIG. 13. Total amount of radiance and the used percentage in the forecast experiments as a

function of date for AMSU-A and AMSU-B in NOAA-15 and NOAA-16, respectively.

1002 W E A T H E R A N D F O R E C A S T I N G VOLUME 24



temperature forecasts, the statistical analysis (Fig. 16a)

indicates that all SSs in the different locations are pos-

itive for the 24- and 48-h forecasts, but the SSs for 48-h

forecasts in most regions are greatly diminished in re-

lation to those of the 24-h forecasts. The SSs in the

northern Iranian Zagros Mountains (B) and the western

Himalayan Mountains (E) are about 10%–20% less

than those in the lower mountains or plain areas. When

compared to Fig. 2, we find that the forecast errors in

the high-mountain areas are mainly from the model

systematic errors and the nonsystematic errors make a

relatively smaller contribution to the total forecast er-

ror. Satellite data assimilation, at least for the AMSU-A

and AMSU-B radiances, seems not to make a significant

contribution to the accuracy of the surface temperature

forecasts in the higher-mountain areas.

In contrast, the 10-m wind speed in Fig. 16b shows a

inverse SS value from the surface temperature. Six of

nine locations including all high-mountain areas (B, D,

and E) show a negative skill score, which means the

satellite data assimilation produced a negative impact,

but the SSs in the Arabian Sea increase by 25% and

20% for 24- and 48-h forecasts, respectively. For the

precipitation forecasts, the evidence shows (Fig. 16c)

that the satellite data assimilation only improved the

model forecasting bias over Iraq (A), northern Iran (B),

and the Saudi Arabia desert (F, G). The other five

subregions became worse.

3) PATTERN CORRELATION

To evaluate the spatial agreement between the model

and the observations quantitatively, pattern correla-

tions (Walsh and McGregor 1997) were calculated be-

tween the model-simulated and observed fields. The

pattern correlation rp of the two spatial fields is simply

the correlation of a series of points (i) from one field

with corresponding values from the other field:

r
p

5
�(X

oi
�X

o
)(X

fi
�X

f
)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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)2
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�(Xfi �Xf )

2
q , (7)

where Xo and Xf are the means of the observational

field (Xo) and model-simulated field (Xf), respectively.

Figure 17 shows the pattern correlation of the ob-

servational and model forecasting fields for 2-m tem-

perature, 10-m wind speed, and precipitation over the

whole prediction domain. The pattern correlation coef-

ficient between the observations and model forecasts

grows slightly after satellite data assimilation for these

three surface variables in each of the 24- and 48-h fore-

casts. For a 30-day average in 24-h forecasts (Figs. 17a–c),

FIG. 14. Bias (model 2 observation) of (a) T2m (8C), (b) 10-m

wind speed (m s21), and (c) precipitation (mm day21) for 30-day-

averaged 24-h forecasts during May 2006.
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the correlation coefficient in the CTRL reaches 0.973,

0.268, and 0.575 for 2-m temperature, 10-m wind speed,

and precipitation, respectively. The corresponding values

in DA are 0.975, 0.280, and 0.581. The 48-h forecasts

have similar results (Figs. 17d–f). The results indicate

that the pattern forecasts’ improvement is very limited

although the correlation coefficient grows in DA.

4) NEAR-SURFACE TEMPERATURE AND WIND

FIELD DIURNAL CYCLE VARIABILITY

Analysis of near-surface temperature and wind field

variability is based on eight selected subregions [the

Arabian Sea (H) was omitted due to there being no

GTS temperature data available there]. The 30-day

mean diurnal cycle variation of 2-m temperature is

presented in Fig. 18. It is apparent that the amplitudes of

the diurnal cycles in the model forecasts of temperature

in the CTRL and DA are relatively lower than in the

GTS observations over seven of eight selected subre-

gions (Fig. 18a). Note that the amplitude of the diurnal

cycle in DA is closer to the GTS observations although

the growth is very small. This demonstrates that the

surface air temperature diurnal cycle can be improved

slightly with satellite data assimilation.

For analysis of the 10-m wind fields, the reference

data used are still those of the NCEP GFS analysis. In

contrast to surface temperature, it is not readily ap-

parent that the amplitude of the diurnal cycle has been

improved in DA (Fig. 18b). The performances are quite

different in these selected subregions. The diurnal cycle

of the wind speed (Fig. 18b) in the analysis data is

considerably larger than in the model forecasts over the

five subregions B, D, E, H, and I, where B, D, and E are

three high-mountain subregions. But it is clear that the

amplitude of the diurnal cycle has been modified to

some degree in DA.

7. Summary and discussion

a. Summary

This paper presented an objective verification and im-

pact of radiance data assimilation on weather forecasts

FIG. 15. Bias (model 2 observation) of (a) temperature (8C), (b) geopotential height (gpm), (c) zonal wind (m s21),

and (d) meridional wind (m s21) at 500 hPa for 30-day-averaged 24-h forecasts during May 2006.
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over complex terrain areas of southwest Asia using the

NCAR mesoscale model (WRF-ARW) and the Joint

Center for Satellite Data Assimilation (JCSDA) anal-

ysis system (GSI). The experiment period was from

1 through 31 May 2006. The results are summarized as

follows.

The model biases caused by inadequate parameteri-

zation of physical processes, except for the 2-m tem-

perature, are relatively small compared to the nonsys-

tematic errors resulting, in part, from the uncertainty in

the initial conditions. The total forecast errors at the

surface show a substantial spatial heterogeneity; there is

relative larger error in higher-mountain areas. How-

ever, the source of the error indicates a unique differ-

ence between the temperature, precipitation, and wind

speed, where the error in 2-m temperature is mainly

from systematic errors, which are largely controlled by

the physical representation of the terrain (i.e., the errors

are positively correlated with terrain elevation); while,

in contrast, the errors in 10-m wind speed and precipi-

tation have a greater contribution from nonsystematic

errors, which are more likely related to uncertainty in

the initial conditions.

The amplitude of the diurnal cycle of 2-m tempera-

ture in the model is much smaller than the GTS obser-

vations. However, the model forecasts of the diurnal

cycle are consistent with the NCEP GFS analysis data.

There is no evidence of a noticeable gap between the

model forecasts and the analysis data.

The ATOVS satellite data provides useful information

for improving the initial conditions, and the model error

was reduced to some degree. The bias and mean-square

error skills score (SS) show that satellite data assimilation

produces a better forecast over some of areas; however, it

FIG. 16. MSE SSs for (a) T2m, (b) 10-m wind speed, and (c) 24-h accumulated precipitation.

Results are plotted for averaged 24- and 48-h forecasts as a function of defined locations.

AUGUST 2009 X U E T A L . 1005



does not seem to make a significant contribution to the

accuracy of forecasts in the higher-mountain areas. The

pattern forecasts show improvement in DA, although its

correlation coefficient growth is very small.

b. Discussion

In this study, the weather forecasts using the WRF-

ARW system were evaluated over the mountainous

areas of southwest Asia. Due to the complexity of the

high terrain and lack of knowledge in the estimation of

the physical processes in this area, forecasters should

have greater awareness of these limitations of the model

when forecasting in this region.

First of all, parameterization of physical processes

plays a significant role in the forecasting of surface

temperature. For the 2-m temperature forecasts, the

systematic error component is not only larger than the

random errors, but also indicates it is related to the el-

evation of the terrain. Meanwhile, we note that the

areas of high bias shown in Fig. 3a correspond more

with areas of rapid elevation change. These are the areas

where a difference in terrain height between the datasets

would have the largest effect. They are also the areas

where differences between the observational station ele-

vation and the mean grid-point elevation would be largest.

The lapse rate effects due to these terrain height differ-

ences are probably another reason for the 2-m tempera-

ture bias. In contrast, random errors play a much bigger

role in the forecasting of the upper-level, precipitation,

and 10-m wind fields. The random errors prevent perfect

forecast guidance and are caused by a combination of the

uncertainty in the initial conditions and unreasonable

model scales. The detailed statistical results presented in

section 4 are specific to the surface and the upper level at

nine specific locations. The basic error characteristics for

one forecasting variable vary by the selected locations,

FIG. 17. Pattern correlation of model forecasts and observation of T2m, 10-m wind speed, and rainfall for (a)–(c) 24- and (d)–(f) 48-h

forecasts.
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and may not be representative of errors of other forecast

variables. For example, in a preliminary investigation of

temperature errors, the results demonstrated that the

maximum 2-m temperature biases occurred over the high-

mountain areas while the temperature biases at 500 hPa

were found over most of southwest Asia and were not

related to the configuration of the terrain.

Note that the results presented here are for only

1 month of experimental model runs; the accuracy of

the forecasts’ performance needs to be further verified

and investigated with more real-time forecasts. As

expressed by Manning and Davis (1997), ‘‘These sta-

tistics would provide additional information to model

users and alert model developers to those research areas

that need more attention.’’ The additional and com-

plementary need for verification strategies in the WRF-

ARW model is elucidated in reference papers (e.g.,

Skamarock et al. 2005).

Second, random error is very complicated. It is only

partially attributable to the uncertainty in the initial

conditions. An accurate representation of the initial

conditions would help users to compare the latest

forecast guidance with the current observations and

make appropriate adjustments in real time. The assim-

ilation of satellite radiance observations into a numer-

ical weather prediction (NWP) model provides initial

conditions more closely representative of the true state

of the atmosphere. The results shown here demonstrate

the positive impacts of satellite data on weather predic-

tion in most of the southwest Asia areas, but the impacts

are not as obvious in the high-terrain areas, such as the

Himalayan Mountains and the Iranian mountain region.

This feature implies that the random error is not only

derived from the uncertainty in the initial conditions, but

that there are other reasons, like the resolution of the

model horizontal scale, that also needs to be considered.

This issue will be investigated in future work.
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