
J. Fluid Mech. (2026), vol. 1026, A16, doi:10.1017/jfm.2025.10989

Turbulent flow over isolated forested hills of
varying shape and steepness

Edward G. Patton
1,∗ , John J. Finnigan

2,3
, Ian N. Harman

2
and

Peter P. Sullivan
1

1NSF National Center for Atmospheric Research, Boulder, CO, USA
2Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
3Australian National University, Canberra, ACT, Australia
Corresponding author: Edward G. Patton; Email: patton@ucar.edu

(Received 26 April 2025; revised 21 August 2025; accepted 6 November 2025)

To advance understanding of the influence hill-slope and hill-shape have on neutrally
stratified turbulent air flow over isolated forested hills, we interrogate four turbulence-
resolving simulations. A spectrally friendly fringe technique enables the use of periodic
boundary conditions to simulate flow over isolated two-dimensional (2D) and three-
dimensional (3D) hills of cosine shape. The simulations target recently conducted wind
tunnel (WT) experiments that are configured to fall outside the regimes for which current
theory applies. Simulation skill for flow over isolated 3D hills is demonstrated through
matching the canopy and hill configuration with the recently conducted WT experiments
and comparing results. The response of the mean and turbulent flow components to
2D versus 3D hills along the hill-centreline are discussed. The phase and amplitude of
spatially varying flow perturbations over forested hills are evaluated for flows outside
the regime valid for current theory. Flow over isolated 2D forested hills produces larger
amplitude vertical motions on a hill’s windward and leeward faces and the speed-up of the
mean wind compared with that over isolated 3D forested hills at the hill-centreline. The
3D hills generate surface pressure minima over hill-crests that are only half the magnitude
of those over 2D hills. The spatial region over which hill-induced negative pressure drag
acts increases with increasing hill steepness. Assumptions in partitioning the flow into an
upper layer with an inviscid response to the hill’s pressure field are robust and lead to
solid predictions of hill-induced perturbations to the mean flow; however, applying those
assumptions to predict the evolution of the turbulent moments only provides approximate
explanations at best.
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1. Introduction
Over 20 % of the Earth’s surface can be characterized as hilly or mountainous terrain (e.g.
Körner et al. 2005). Although tall mountainous regions of the world garner substantial
focus in meteorology (e.g. Bougeault et al. 2001; Grubišić et al. 2008; Houze et al.
2017), the Earth’s hypsographic curve interestingly shows that most of Earth’s terrain
is less than 1000 m in height (e.g. Lagrula 1968; Cawood et al. 2022). Even in large-scale
mountainous terrain, terrain height spectra demonstrate substantial variance at small scales
(e.g. Young & Pielke 1983). While today’s weather, air pollution and climate models can
potentially resolve the larger-scale terrain features (e.g. mountains), the ability to resolve
gentle small-scale hills currently remains beyond reach in larger-scale models. Due to the
prevalence of small-scale hills, understanding their influence on turbulent flow is also
essential for proper measurement interpretation, and for describing pollutant, aerosol and
seed transport, and for predicting wind throw and wind energy availability (e.g. Finnigan
et al. 2020).

Under neutrally stratified conditions, inviscid incompressible flow over a low symmetric
obstacle produces a pressure minima occurring at the obstacle crest but does not generate
any resistance (drag) because the pressure perturbation remains symmetric relative to the
obstacle in the absence of any momentum stress (e.g. d’Alembert 1752; Calero 2018). In
laminar incompressible flow, the addition of finite viscosity ensures a thickening of the
boundary layer (a greater separation of the streamlines) in a hill-like obstacle’s lee due
to the spatially varying action of viscous drag which produces a pressure perturbation
phase-shifted slightly downstream relative to the obstacle resulting in form drag (typically
referred to as sheltering, e.g. Prandtl (1904)). Turbulent incompressible flows over hills
also produce form drag through sheltering but the turbulent stresses dominate the smaller
viscous stresses resulting in even larger pressure asymmetry relative to the hill shape
producing even larger drag (e.g. Jackson & Hunt 1975; Britter, Hunt & Richards 1981;
Hunt, Leibovich & Richards 1988; Belcher, Newley & Hunt 1993). Characteristics of the
hill can alter the flow’s evolution over the obstacle, e.g. flow over steeper hills induces
larger amplitude pressure perturbations and this obstacle-induced pressure perturbation
can generate a sufficiently large near-surface adverse pressure-gradient on the hill’s lee that
downward turbulent transport of momentum from aloft becomes insufficient to counter
the adverse pressure-gradient producing flow separation; whether the flow separates or
not dramatically alters the pressure field and hence the overall form drag felt by the
outer flow (e.g. Taylor, Mason & Bradley 1987; Finnigan et al. 1990; Wood & Mason
1993; Athanassiadou & Castro 2001). Because surface roughness alters the turbulence,
variations in surface roughness also modulate flow responses to hills and the induced
separation (e.g. Britter et al. 1981; Ayotte & Hughes 2004; Tamura, Okuno & Sugio 2007).
Flow over two-dimensional (2D) versus three-dimensional (3D) hills (e.g. ridges versus
isolated hills) also differs substantially because of the ability for flow over 3D hills to
divert around the hill, which produces spanwise shear around the edges of and in the lee
of the hill altering the turbulence and separation by generating additional instabilities and
vortices (e.g. Mason & Sykes 1979; Hunt & Snyder 1980; Mason & King 1985; Arya &
Gadiyaram 1986; Gong & Ibbetson 1989; Ishihara, Hibi & Oikawa 1999; Liu et al. 2019a,b,
2020).

Because mountainous and hilly terrain compresses climate zones and creates small-
scale habitat diversity, these regions support more than one quarter of the Earth’s
terrestrial biodiversity (e.g. Körner et al. 2005). Hilly terrain is therefore frequently
forested. Finnigan & Belcher (2004) demonstrated using linearized theory that because
forests interact with the flow through pressure drag, forests on hills can shift the
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hill-induced pressure perturbation enough to induce separation at notably smaller slopes
than expected over hills of similarly specified roughness. Finnigan & Belcher’s (2004)
theory also predicts that flow separation should depend on the distribution and density
of the canopy elements, which Patton & Katul (2009) later confirmed. Researchers such
as Wilson, Finnigan & Raupach (1998), Poggi et al. (2007) and Ross (2008) discussed
that within-canopy turbulence mixing length scales vary with position over sinusoidally
repeating forested hills. When investigating turbulent flow over observed Amazonian
terrain, Chen, Chamecki & Katul (2020) found separated flow even in the lee of small
bumps, and Chamecki et al. (2020) and Chen & Chamecki (2023) showed that imbalances
in above-canopy turbulent kinetic energy (TKE) budgets can result from upstream terrain
influences. With the exception of Chamecki et al. (2020), Chen et al. (2020) and Chen &
Chamecki (2023), much of this literature discussing turbulence over forested hills has
focused on 2D sinusoidally repeating hills.

To our knowledge, Finnigan & Brunet (1995) represents the first effort describing
within- and above-canopy turbulent flow over isolated forested hills, where they
documented that above-canopy streamlines dip into the canopy at approximately one-
third the way up the windward side of a 2D isolated hill that can eliminate (or even
reverse) the inflection point in the mean velocity profile expected in canopy-flows (e.g.
Raupach, Finnigan & Brunet 1996; Finnigan, Shaw & Patton 2009); a phenomenon that
has important implications for turbulence production at canopy-top. Neff & Meroney
(1998) found that canopy-gaps influence hill-induced fractional speed-up factors and flow
separation. Through two-point correlation analysis, Dupont & Brunet (2008) noted that
turbulence in the intermittent leeward separation zone is not correlated with canopy-top
turbulence on the windward side of the hill. Grant et al. (2015) found key features predicted
by Finnigan & Belcher’s (2004) theory in their field measurements over an isolated
forested ridge. For a given hill shape, Ma et al. (2020) demonstrated that variation in a
canopy’s morphology modulates the position, strength and depth of the leeward separation
bubble. Similar to Wood (2000) who discussed flow over hills with unresolved roughness,
Tolladay & Chemel (2021) demonstrated resolution influences on key turbulence statistics
in large-eddy simulation (LES) of flow over the same isolated forested ridge as that studied
by Ma et al. (2020). These efforts have enhanced the general understanding of the role tall
vegetation plays in modulating turbulent flow over infinitely long isolated ridges; how
canopies modulate turbulence over 3D hills remains understudied.

Towards understanding the role that hill shape and slope play in modulating turbulence,
we analyse four LESs of turbulent flow over isolated forested hills. These four simulations
include two each at two different hill slopes. For each hill slope, the simulations conducted
include one targeting flow over an infinitely wide 2D hill and one over an axisymmetric 3D
hill. In collaboration with the effort reported here, colleagues conducted a comprehensive
WT experiment studying neutrally stratified turbulent over 3D forested hills (figure 1,
Harman & Finnigan 2018). The numerical simulations attempt to reproduce the physical
WT simulations over axisymmetric 3D hills (Harman & Finnigan 2018) and 2D hills.

The outline of this manuscript is as follows: § 2 discusses current theory describing
turbulent flow over forested hills. Section 3 describes the simulations investigated.
Section 4 outlines the techniques used to analyse the simulation data. Section 5 compares
the simulation results against WT measurements from Harman & Finnigan (2018).
Section 6 describes the mean flow and turbulence response to variations in hill
shape and slope. Section 7 interrogates turbulence/mean-flow phase relationships at key
heights above the surface towards advancing current theory, and § 8 summarizes the
findings.
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Figure 1. A photograph of the forested isolated axisymmetric 3D steep (sm = 0.26) cosine hill surface in the
wind tunnel (WT) (Harman & Finnigan 2018).

2. Current theory describing turbulent flow over forested hills
Current analytic theory of turbulent shear flow over low hills (e.g. Jackson & Hunt 1975;
Hunt et al. 1988; Belcher et al. 1993) has provided an enduring and consistent framework
for analysis and understanding of flow over low hills and even over steeper hills upwind
of the separation region. The theory divides the flow into different layers, where the
perturbations to the mean flow caused by the hill are governed by distinctly different
dynamics. Separate solutions to the flow equations are found for each layer and then these
are matched asymptotically between the layers. For hills of sufficiently low-slope to ignore
flow separation, Hunt et al. (1988) defined two main regions: (i) the outer region, where the
response to the pressure field generated by flow over the hill is inviscid, and (ii) the inner
region, where perturbations to the turbulent Reynolds stresses affect the perturbations to
the mean flow. Each of these regions was further divided into two layers. The middle
layer, of depth hm , is the lower part of the outer region through which flow responses
are inviscid but rotational to accommodate shear in the approach flow. In the upper layer,
extending from hm to the top of the boundary layer, flow responses are irrotational and
can be computed by potential theory. The inner region consists of the shear stress layer of
depth hi , and the thin inner surface layer, of depth ls , which allows formal matching with
a surface boundary condition.

Finnigan & Belcher (2004) extended the analytic theory of Hunt et al. (1988) to hills
covered by tall plant canopies by replacing the thin inner surface layer by a deep plant
canopy parameterized by linearized flow equations in the upper canopy but where the
unavoidably nonlinear dynamics in the lower canopy were treated heuristically. Harman &
Finnigan (2009, 2013) further developed Finnigan & Belcher (2004) to accommodate more
realistic 2D hills, and then Harman & Finnigan (2021) extended the theory to 3D hills.
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In all of these small perturbation theories, whether over hills covered by a rough surface
or a tall canopy, identifying the depths of the inner shear stress layer, hi , and the middle
layer, hm , is critical to applying the theory. To derive the formula for hm , Hunt et al.
(1988) assumed that the flow approaching the hill could be described by a logarithmic
profile in equilibrium with the upstream surface while in the inner shear stress layer hi , the
interdependence of the perturbations to the turbulent shear stresses and the perturbations
to the mean shear are assumed to obey the same mixing length flux-gradient relationship
as in an equilibrium log law. Finnigan & Belcher (2004) relies on the same formulae for
hm and hi as Hunt et al. (1988).

The formulae for hm and hi assume the flow over the hill remains attached (i.e. no
flow separation). Over steeper 2D hills and over 3D hills, this assumption breaks down. If
the flow separates, streamlines that were following the surface contour upwind leave the
surface and delineate the boundary of a separation bubble. Downwind of the separation
point the scale of the largest turbulent eddies increases abruptly. In the attached flow the
largest eddies are limited by the local distance to the surface but after separation the
largest eddies span the bubble depth, which is typically O(H) with H representing the
hill height. While the streamlines approaching a 3D hill in its plane of lateral symmetry
go over the hill-centreline, streamlines to either side are deflected forming space curves
whose principal normals intersect the hill surface at right angles (Finnigan 2024).

As fluid parcels above the canopy advect over the hill, changes to the Reynolds stresses
reflect the competing effects of two processes. First, the existing eddies are stretched
and rotated by the mean flow as they follow the mean streamlines. Second, nonlinear
interactions between the eddies will tend to equalize TKE between their orthogonal
components u′, v′ and w′, and to transfer TKE to finer scale eddies where it is ultimately
dissipated to heat through the action of viscosity. These effects are represented formally in
the conservation equations for the turbulent normal and shear stresses, 〈u′2〉, 〈v′2〉, 〈w′2〉,
〈u′w′〉, 〈v′w′〉 and TKE , where TKE = (〈u′2〉 + 〈v′2〉 + 〈w′2〉)/2. In these equations, the
so-called production terms describe the transfer of kinetic energy from the mean flow
to the larger energy-containing eddies of the turbulence while the turbulent diffusion
and pressure-strain terms describe the nonlinear interactions between these eddies, which
break them down and destroy their coherence. These nonlinear interactions determine τ ,
the time over which the large eddies remain coherent enough to receive energy directly
from the mean flow. Here τ can be taken as τ ∼ TKE/ε, where ε is the rate of viscous
dissipation of TKE. This definition is strictly only applicable to equilibrium situations,
where the rate of viscous dissipation is in balance with the transfer of kinetic energy from
the mean flow to the turbulence, but we will assume that is also indicative of the rate at
which these large eddies lose their coherence as they interact with each other during their
passage over the hill.

In regions where the time scale of hill-induced changes in the mean flow is small
compared with τ (i.e. in the so-called rapid distortion regimes), the turbulent stresses will
reflect their recent history of straining and rotation by the mean flow and Hunt et al. (1988)
assumes that this will be the case in the outer region in general and in the middle layer in
particular. In regions where mean flow changes are slow compared with τ , the turbulence
will approach a state of local equilibrium between the rate of straining by the mean flow
and the resulting Reynolds stresses so that their relationship can be described by an eddy
viscosity. Current theory assumes that we should observe this behaviour in the inner shear
stress layer, z < hi .

Beneath the inner layer and above the ground surface lies the canopy layer, which intro-
duces additional length scales (Lc and hc), through the addition of canopy drag and the
no-slip condition at the surface. In the canopy, turbulent stresses are complicated by wake
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production, Wp, i.e. the production of turbulent eddies at scales defined by the canopy
elements and associated short-circuiting of the inertial energy cascade (Finnigan 2000;
Shaw & Patton 2003). In addition, viscous dissipation increases by the work performed
by the turbulence against the viscous drag of the canopy elements (Ayotte, Finnigan &
Raupach 1999; Shaw & Patton 2003). For dense canopies (hc/Lc > 1), canopy drag
eliminates the importance for the flow dynamics of shear stress at the underlying surface
but at the same time ensures strong vertical gradients in turbulent stresses. Finally, behind
the hill crest, the strong adverse pressure gradient can cause reversed flow and separation,
which introduces the hill height H as an additional length scale affecting the turbulence.

3. Simulation description and configuration
Numerical models of turbulent flow over forested hills take many forms that each provide
value with varying levels of accuracy and cost (see recent review by Finnigan et al. (2020)).
Analytical models provide extremely timely solutions, but typically linearize the nonlinear
equations that describe turbulent flow (e.g. Finnigan & Belcher 2004; Poggi et al. 2008;
Harman & Finnigan 2009, 2013). Reynolds-averaged Navier–Stokes models solve the full
nonlinear equations but averaged over space and time such that the influence of turbulence
is fully parameterized (e.g. Wilson et al. 1998; Katul & Chang 1999; Ross & Vosper
2005, among others). Similar to Reynolds-averaged Navier–Stokes, LES also solves the
full nonlinear equations but relies on relatively isotropic grids and only spatially averages
(or filters) the equations at scales smaller than the grid resolution, such that the largest
scales of turbulence (i.e. those performing most of the transport) are resolved by the grid
and only the smallest scales of turbulence (which primarily act to dissipate energy) must be
parameterized (e.g. Moeng & Sullivan 2015). Although it is computationally expensive,
LES has become a close counterpart to field and laboratory experiments over the past
30 plus years because of its ability to accurately simulate the time-evolving and spatially
evolving response of turbulence to varying forcing over complex surfaces (e.g. Wood 2000;
Patton & Katul 2009; Sullivan, McWilliams & Patton 2014; Chamecki et al. 2020).

In our LES, the governing equations describe 3D time-dependent turbulent winds in a
dry incompressible Boussinesq atmospheric boundary layer, including (i) three transport
equations for momentum ρu, (ii) a transport equation for a conserved scalar variable,
(iii) a discrete Poisson equation for a pressure variable p to enforce incompressibility and
(iv) closure expressions for subgrid-scale (SGS) variables, e.g. an equation for SGS TKE
e (see Sullivan et al. 2014). The physical processes included in the LES boundary-layer
equations include, temporal time tendencies, advection, pressure gradients, divergence of
SGS fluxes, buoyancy, resolved turbulence, and in the case of the SGS e equation also
diffusion and dissipation.

Explicit spatial filtering of the momentum equations in the presence of vegetative-
canopy elements generates terms representing canopy-induced pressure and viscous drag
(Finnigan & Shaw 2008) which are parameterized using a time-dependent and local
velocity-squared type drag law, e.g.

Fc = − cd a |u| u, (3.1)

where, a is the canopy’s frontal area density and cd is a drag coefficient describing the
canopy’s efficiency at absorbing momentum. Dissipation in the SGS energy equation is
also augmented by the work SGS motions perform against the canopy-induced form drag.
See Shaw & Patton (2003), Patton & Katul (2009) and Patton et al. (2016) for further
details of the canopy representation in the LES.
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By applying a transformation to the physical space coordinates (x, y, z) that maps them
onto flat computational coordinates (ξ, η, ζ ), Sullivan et al. (2014) adapted our flat LES
(Sullivan & Patton 2011) to a situation with a 3D time-evolving lower boundary shape
h = h(x, y, t). The current simulations use this same framework, but impose a time-
independent surface, e.g. h = h(x, y) where the maximum hill slope sm = max(∂h/∂x).
Of importance is that we transform the coordinates, not the flow variables. Therefore,
horizontal velocity components (u, v) are defined in a right-handed Cartesian coordinate
system parallel to the flat surface surrounding each hill (with u aligned with the
imposed pressure gradient force in the +x direction, and v positive to the left of the
imposed pressure gradient force in the +y direction), and vertical velocity (w) is defined
positive upward from the underlying flat surface (the +z direction) aligned opposite to
the gravitational force (although the flow under consideration is neutrally stratified, so
gravitational forces are ignored).

The simulations discretize a 4096 × 2048 × 512 m3 domain using 2048 ×1024 × 256
grid points. The computational mesh in physical space is surface following and non-
orthogonal. Vertical grid lines are held fixed at a particular (x, y) location but the
horizontal grid lines undergo vertical translation according to the vertical variation of
the underlying surface. While the grid resolution in the horizontal directions is fixed
for all horizontal locations, the vertical grid is refined near the surface to resolve near-
surface/canopy processes and is then algebraically stretched above the canopy to push the
upper boundary far above the hill to minimize any influence of the upper boundary on the
hill-induced pressure field. Care is taken to ensure that every grid volume uses an aspect
ratio no larger than 5 : 1 attempting to reasonably satisfy isotropy assumptions used to
close the equations in the SGS model.

Spatial differencing is pseudospectral in the horizontal computational directions (ξ, η)
and is second-order finite difference in ζ . Time stepping uses a low-storage third-order
Runge–Kutta scheme, and the time step δt is picked dynamically based on a fixed Courant–
Fredrichs–Lewy number.

An important development for this effort involves implementing a turbulent inflow
fringe (or precursor) method which is compatible with our pseudospectral spatial
differencing and third-order Runge–Kutta time differencing (Schlatter, Adams & Kleiser
2005; Munters, Meneveau & Meyers 2016) to enable simulation of flow over isolated 2D
and 3D hills. The strategy involves simulating two interconnected periodic domains, where
the flow in the upwind domain is periodic and representative of flow over an infinitely long
horizontally homogeneous forested surface. The outflow of that upwind domain serves as
inflow for the downwind domain containing the hill. In the second domain at the boundary
far downstream from the hill, nudging terms are applied over the downwind-most 102 grid
points (from grid points 1946–2048) to force the exit flow of the larger downwind domain
to match the flow exiting the upstream region (note that 102 grid points is 20 % of the
upwind domain). Hence both domains use periodic boundary conditions in the x direction,
but the flow impinging on the hill is unaware of any upstream hills. It is important to
note two things: (i) the size of the upstream inflow domain dictates the largest scales
of motion impinging on the hill located in the downstream domain, and (ii) the chosen
fringe strategy used in these simulations was developed prior to and differs from the two-
domain strategy discussed in Sullivan et al. (2020, 2021) that ensures decoupling of inflow
conditions from any slight imperfections in the spectral tapering (e.g. Inoue, Matheou &
Teixeira 2014) and which enables inclusion of Coriolis and buoyancy forces. (For these
reasons, we recommend using the technique described by Sullivan et al. (2020, 2021)
for future studies.) Figure 2 shows the total extent of the horizontal domain for the two
steeper hill configurations (sm = 0.26). The blue lines in figure 2 mark the boundaries
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Figure 2. Example of the horizontal domains used and the idealized cosine-shaped 2D and 3D hills. Panel (b)
reflects the axisymmetric case with L = Ly = Lx . The blue line spanning the domain at x = 1024 m depicts
the downwind boundary of the horizontally homogeneous periodic region, while the green line spanning the
domain at x ∼ 3892 m depicts the beginning of the fringe region where the solutions begin to be nudged back
to those at the downwind edge of the upwind periodic region starting at the green line located at x ∼ 820 m.
Periodic boundary conditions are imposed in the y-direction. The vertical domain extends up to 512 m.

where periodicity in the x direction is enforced. The green lines in figure 2 mark the
starting point of the region where the nudging algorithm operates, with the left-hand side
showing the horizontally homogeneous region used to nudge the downstream flow back to
horizontally homogeneous flow that is unaware of the hill and the right-hand side showing
the region that is nudged back to the upwind conditions. Periodic boundary conditions are
imposed in the lateral (y) direction, the upper boundary is a frictionless rigid lid, and the
lower boundary beneath the trees uses a rough-wall neutrally stratified drag law with a
surface roughness length z◦ = 1 × 10−3 m.

To minimize the computational expense, all the simulations are generated by first
integrating a smaller 512 × 512 × 256 grid point flat-domain simulation out in time using
periodic horizontal boundary conditions until the initially laminar flow develops from
divergence free random fluctuations into 3D turbulence that is in equilibrium with the
imposed pressure gradient. Upon reaching equilibrium, a restart volume is saved. This
volume is then mirrored one time in the lateral (y) and four times in the downwind (x)
directions to create a fully turbulent initial condition for the full large-domain simulations.
The code is then reconfigured to: (i) restart from this larger volume, and (ii) run using
the precursor inflow boundary condition in the along-wind (x) direction. Upon restart, a
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hill is gradually grown into the downwind portion of the domain over a period of 400 s.
Averaging begins after integrating forward in this configuration for approximately one
large-eddy turnover time to allow the turbulence to evolve into the new configuration.
Running on 2048 CPUs on an HPE SGI ICE XA system (Computational and Information
Systems Laboratory 2019), the (2D; 3D)-hill simulations required approximately (77; 366)
wallclock hours, respectively.

As in the WT measurements (Harman & Finnigan 2018), the flow is neutrally stratified
(no buoyancy) and Coriolis forces are ignored. The hills are of cosine shape,

h(x, y)= H cos2
(
π x̂

4

)
when | x̂ | ≤ 2, (3.2)

h(x, y)= 0 when | x̂ |> 2, (3.3)
where, H is the hill height. In the 2D-hill case,

x̂ = x − x◦
Lx

, (3.4)

and, in the 3D-hill case,

x̂ =
[(

x − x◦
Lx

)2

+
(
y − y◦
Ly

)2
] 1

2

, (3.5)

where Lx and Ly are the hill lengths at the hill half-height in the x and y directions,
respectively, and (x◦, y◦) represent the physical location of the hill crest. In the
axisymmetric 3D hill simulations, Lx = Ly = L . Variations in hill steepness are generated
by keeping H fixed and varying L . Scaling up the WT hills by a factor of 256, H = 12.8 m
for all cases; see table 1 for the matching values of L . Figure 3 shows examples of the
surfaces investigated with the LES. The x , y grid lines follow this surface and algebraically
relax back to horizontal grid lines parallel to the upwind flat surface at approximately the
domain half-height (see (4) in Sullivan et al. (2014), where we use � = 3).

The canopy parameters are derived directly from measurements of the rods used in the
WT experiments (Harman & Finnigan 2018). In the WT, the rods are 15 mm tall, 5 mm
in diameter (dr ), and are spaced at 12.5 mm intervals in the x direction and 25 mm in the
y direction. Hence, the number of rods per unit area nr = 3200 m−2 and the rods have
a frontal area density a = nr × rd = 16 m2 m−3 that is constant with height. Fitting the
WT observed profiles with the rods installed on flat terrain (Harman & Finnigan 2018,
figure 2a) to the Harman & Finnigan (2007) roughness sublayer (RSL) theory reveals that
the rods have an effective canopy length scale Lc = (cd a)−1 = 110 mm. Therefore, the
drag coefficient cd of the rods is 0.57. In the numerical simulations, these rod parameters
are applied to a canopy of height hc = 3.84 m resolved by nine grid points on the flat
portion of the domain and by 10 grid points at the hill crest due to the terrain following co-
ordinate system. To mimic the WT experiments, the canopy is prescribed to be horizontally
homogeneous for all four simulations. Figure 1 shows an image of the WT configuration
with the steep-sloped (sm = 0.26) axisymmetric canopy-covered hill installed.

To classify the current simulations within the context of previous work, we first turn
to the Hunt et al. (1988) and Finnigan & Belcher (2004) theories discussed in § 2. In
both theories, the middle layer depth (hm) is defined as hm ∼ L [ln(hm/z◦)]1/2, and the
inner layer depth (hi ) is defined as hi ∼ 2 L κ2/ln(hi/z◦), where κ is von Kármán’s
constant. However, calculating hi and hm using these formulations can lead to physically
implausible values over surfaces covered with tall roughness, i.e. hi can end up being
found at heights within the canopy of roughness elements (Finnigan et al. 1990). Therefore,
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Case ID Shape sm L u∗ Fp/u2∗ Fc/u2∗ Fτ /u2∗ max
(
u/ub)hc

max
(
σu/σub )hc

max
(
σw/σwb )hc

max
(
uw/uwb)hc

2D–0.16 2D 0.16 64.0 0.42 0.78 0.22 0.02 0.56 [−0.41] 0.11 [−0.34] 0.35 [0.88] 0.32 [−1.38]
3D–0.16 3D 0.16 64.0 0.40 0.46 0.20 0.12 0.42 [−0.34] 0.10 [−0.22] 0.26 [0.72] 0.75 [0.81]
2D–0.26 2D 0.26 38.4 0.42 2.69 0.22 0.01 0.80 [−0.31] 0.09 [−0.31] 0.37 [2.29] 0.68 [−1.30]
3D–0.26 3D 0.26 38.4 0.42 1.26 0.18 0.08 0.64 [−0.31] 0.19 [−0.16] 0.19 [1.30] 0.13 [1.09]

Table 1. Bulk parameters from each of the four simulations. Here sm is the maximum hill slope (max(∂h/∂x)),
L is the length of the hill (m) in the streamwise direction x at half the hill height (so the total hill
length is 4L), u∗ is the friction velocity (m s−1) evaluated at x = −4L and z = hc (consistent with u∗
observed in the WT; when averaged over the entire upwind periodic domain, u∗ = 0.42 m s−1 for all
cases). Here Fp = − ∫ 2L

−2L 〈p〉hx dx is the streamwise surface pressure drag integrated over the hill (e.g.
the hill-induced pressure force on the air) normalized by u2∗, where hx = ∂h/∂x is the x-varying hill
slope), Fc = − cd a

∫ 2L
−2L

∫ hc
0 〈|ui |u〉 dz dx is the hill- and canopy-integrated drag induced by the canopy

in the streamwise direction and Fτ = ∫ 2L
−2L 〈u′w′〉 dx is the hill-integrated streamwise surface stress; the

total drag felt by the flow over the hill FT = Fp + Fc + Fτ . Here max(
u/ub)hc , max(
σu/σub )hc ,
max(
σw/σwb )hc and max(
uw/uwb)hc are the maximum hill- and canopy-induced speedup, standard
deviation of streamwise and vertical velocity, and vertical flux of streamwise momentum increase at canopy
top along hill centreline, respectively, where 
u/ub = [(〈u〉 − 〈u〉b)/〈u〉b], 
σu/σub = [(σu − σub )/σub ],

σw/σwb = [(σw − σwb )/σwb ] and 
uw/uwb = [(〈u′w′〉 − 〈u′w′〉b)/〈u′w′〉b] evaluated at a height of hc
above the local surface h, the notation b refers to a reference value upwind of the hill (Appendix A) and
the adjacent values in square brackets reflects the x/L location where the maximum canopy-top value is found.
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LH
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Figure 3. A zoomed presentation of the 2D (a) and 3D-axisymmetric (b) cosine hills interrogated. In (a),
L = Lx and Ly is not defined, and in (b) L = Lx = Ly . H is the hill height (3.2). The green surface depicts
canopy top hc.

Appendix B derives new formulae for hi and hm incorporating changes to the logarithmic
mean velocity profile and the accompanying flux-gradient relationship which occur over
a tall plant canopy (Harman & Finnigan 2007, 2008); labelled ĥm and ĥi using similar
notation to Harman & Finnigan (2007, 2008). For the configurations discussed here, ĥm
∼ (32.8, 21.7) m and ĥi ∼ (11.8, 9.8) m for cases with sm = (0.16, 0.26), respectively,
where these values represent their physical height above the origin of the above-canopy
coordinates z = d + z◦ in the upwind flow (Appendix B). For reference, hi for the current
configuration using this same reference height is ∼ (9.3, 7.2) m, respectively, and hm = ĥm .

Secondly, figure 4 presents a regime diagram following that proposed by Poggi et al.
(2008) that characterizes the simulations based upon key length scales determining canopy
influences on the flow. The length scales of importance are the canopy height hc, canopy
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Figure 4. Length scale regime diagram following Poggi et al. (2008) mapping the hill geometry and canopy
morphology of the current numerical (labelled P26) and WT (Harman & Finnigan 2018, HF18) simulations
relative to previous research on turbulent flow over low forested hills. Here, low hills implies that H/L 	 1
with H the hill height, and L the hill half-length at half the hill height. Here hc is the canopy height, and
Lc is the canopy adjustment length. Low hills with L/Lc < 1.1 are deemed ‘narrow’, and with L/Lc > 1.1
‘long’. Canopies with hc/Lc < 0.18 are deemed ‘shallow’, and hc/Lc > 0.18 ‘deep’, where 0.18 = 2β2 when
β = u∗/u|hc = 0.3. From Finnigan & Belcher (2004, FB04), the envelope hc/Lc = 2(H/L)(L/Lc)

2 delineates
the regime in which the mean within-canopy vertical velocity is expected to be sufficiently large to affect the
outer layer pressure. Previous research included Finnigan & Brunet (1995, FB95), Tamura et al. (2007, T07,
where β = 0.3 is assumed), Poggi et al. (2007, P07), Dupont & Brunet (2008, DB08), Ross (2008, R08),
Patton & Katul (2009, PK09), Harman & Finnigan (2013, HF13), Ma et al. (2020, M20), Chen et al. (2020,
C20) and Tolladay & Chemel (2021, TC21). Open symbols reflect work on sinusoidally repeating low forested
hills, and filled symbols reflect work on isolated forested hills. Symbols without a black outline study flow
over low 2D forested hills (ridges), those with a black outline study flow over low 3D forested hills. The thin
long-dash black line marks the canopy height at which one would expect separation zs for the current canopy
configuration according to FB04.

adjustment length Lc and the hill half-length at half the hill height L . Regime 1 marks
the region where the Finnigan & Belcher (2004, FB04) theory is valid. In Regime 2,
deviations from the FB04 theory can be attributed to within-canopy vertical velocities
being of sufficient amplitude to alter the pressure in the inner layer above the canopy; i.e.
when L/Lc is large, the canopy flow adjusts to the pressure gradient more rapidly than
the pressure gradient changes (Belcher, Harman & Finnigan 2011). In Regime 3, such
deviations can be attributed to both pressure and advection. In Regime 4, the canopy
is insufficiently deep or dense to absorb all the momentum and hence within-canopy
turbulence is influenced by finite shear stress at the underlying surface. All of these
processes are at play for flows in Regime 5. Figure 4 shows that the current simulations
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fall within Regime 4, a regime that falls outside the applicability of current theory (e.g.
Finnigan & Belcher 2004; Harman & Finnigan 2009, 2013) and which has not received
much attention in the literature.

The numerical and physical WT simulations differ in that a constant external pressure
gradient (Πx = 1.63 × 10−4 m s−2, selected to reproduce u∗ observed in the tunnel) drives
the flow in the x-direction in the LES, while the WT is a zero pressure-gradient tunnel.
The flow sampled in the WT therefore represents an internal boundary layer driven by
downward transport of momentum from the free stream airflow above, while the LES
simulations represent a pressure-gradient driven fully developed boundary layer that is
turbulent throughout the domain.

Another aspect of the numerical simulations that differs from the WT physical
simulations is that the numerical simulations use periodic boundary conditions in the
lateral direction, while the WT has viscous sidewall boundary layers. The horizontal
dimensions of the numerical simulation domain are selected to ensure that the flow
interacting with the 3D hills remains independent of the problem design. In the
configuration with 3D hills (table 1), the hill only occupies a maximum of ∼ 3 % of the
lateral domain that should ensure that any hill-induced flow perturbations are negligible at
the lateral boundaries.

4. Analysis procedures
Analysis of the 2D- and 3D-hill simulations differ because the 2D simulations contain an
homogeneous horizontal direction, i.e. the lateral (y) direction, while the 3D simulations
do not. In the 2D-hill case, mean flow fields and higher moments are laterally averaged and
time-averaged during the simulation and statistics are calculated during postprocessing.
Analysis of the 3D simulations relies solely upon time averages (analogous to single-
point WT measurements) based upon first-, second- and third-order moments calculated
at every time step during the simulation. For the 2D-hill cases, a turbulent fluctuation
is defined as a deviation from an instantaneous lateral average and higher moments are
calculated as laterally averaged products which are then time-averaged over the duration
of the simulation. For the 3D-hill cases, a turbulent fluctuation is defined as a deviation
from a time-average at a single point and higher moments are calculated as time-averaged
products of those fluctuations. The notation 〈 〉 is used to denote a mean and a ′ for a
fluctuation from that mean.

To compare the numerical and WT simulations, all flow variables are normalized by
time-averaged friction velocity u∗ evaluated at canopy top (z/hc = 1) and at x/L = −4,
which is characteristic of the undisturbed flow approaching the hill. The actual u∗ values
derived from the simulations can be found in table 1, note that the small u∗ variations
shown in table 1 reflect a slight need for additional averaging. The simulations are
currently averaged over 150 000 time steps (or, if we define a large-eddy turnover time
τ� as the height of the domain (512 m) divided by the friction velocity u∗, 150 000 time
steps is ∼ 8τ�). Two characteristic length scales are used: (i) the length of the hill at half
its height in the along-wind direction L , and (ii) the canopy height hc.

5. Comparison with WT measurements

5.1. Flow fields
For the 3D–hill cases, vertical profiles of mean wind speed from the LES agree quite well
with the WT observed profiles (figure 5). Minor differences can be seen at x/L = −1
and x/L = 0, i.e. halfway up the hill and at hill-crest, where the LES produces slightly
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Figure 5. A comparison of WT observed (symbols) and numerically simulated (lines) vertical profiles of
average streamwise velocity, u (a), and vertical velocity standard deviation, σw (b), at hill centreline over
axisymmetric hills normalized by the friction velocity u∗. Blue colours reflect results for the case with sm =
0.16, and green colours reflect results for the case with a slope sm = 0.26; for the LES the data are from 3D–0.16
and 3D–0.26, respectively. The mean flow direction in these figures is from left to right (in the +x direction).
In these figures, we are using a coordinate system that is aligned with (and perpendicular to) the flat terrain
surrounding the hill, so positive u is in the +x direction, and positive w is upward.

higher wind speeds in the upper canopy. Vertical profiles of the vertical velocity standard
deviation (σw = 〈w′2〉1/2) reveal larger differences between simulations and observations,
but the overall trend of the evolution over the hill match well. The most noticeable
difference in σw occurs inside the canopy. These differences can be attributed to the fact
that the WT measurements represent samples at fixed locations within the rod canopy, and
hence the measurements sample the wakes that waver horizontally and vertically in the lee
of the individual physical canopy elements in response to turbulent motions at scales larger
than the canopy element spacing. In contrast, the canopy-resolving LES parametrizes the
average influence of all canopy elements within a grid cell and hence do not resolve any
individual physical canopy elements or the turbulence comprising their wake. Harman
et al. (2016) demonstrated substantial variability of 80 individual σw profiles collected
within a single interelement volume; σw profiles averaged over all 80 profiles largely
eliminates the within-canopy σw peaks, thereby appearing more like those produced by the
LES. Harman & Finnigan (2018) conducted similar sampling of 16 locations surrounding
a single peg of the current canopy at x/L = −4; Appendix A shows that observed σw/u∗
averaged over these 16 locations still peaks in the upper canopy, but the peak is clearly
reduced compared with the single-point statistics presented in figure 5 and is more like that
in the LES. Therefore, if the WT measurements were to have collected vertical profiles
throughout the entire inter-rod volume, notably better agreement would be expected for
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Figure 6. A comparison streamwise transects of normalized surface pressure variations at hill centreline
normalized by u2∗ for 3D forested hills of two slopes (sm = 0.16 (blue colours) and 0.26 (green colours));
for the LES, these results are from cases 3D–0.16 and 3D–0.26, respectively. Solid lines represent LES results,
and symbols reflect the WT measurements.

σw between the WT and the LES. Nevertheless, these comparisons provide substantial
evidence that the LES reasonably reproduces the physical simulations.

5.2. Pressure
In the absence of a canopy, the surface pressure perturbation induced by neutral flow en-
countering an isolated obstruction exhibits an initial peak associated with flow stagnation
on the upwind side of the obstruction, a pressure minimum at the hill crest resulting from
the flow acceleration over the hill, followed by a second pressure peak on the hill’s leeward
side as the flow moving over the hill encounters the flat surface again and then recovers
downwind of the hill to its undisturbed upwind state (e.g. Jackson & Hunt 1975; Hunt et al.
1988). Theory suggests that because canopies interact with the flow through pressure,
that the presence of vegetation on hills can shift the pressure distribution sufficiently to
make forested hills appear steeper than one would anticipate (e.g. Finnigan & Belcher
2004). Asymmetries in and phase shifts of the surface pressure perturbations relative
to the hill define the orographic surface drag felt by the flow and dictate whether flow
separation will occur on leeward slopes (e.g. Belcher et al. 2011). Therefore, the surface
pressure distribution reflects the overall hill- and canopy-induced influence on the flow
and represents a key metric whose accuracy needs to be demonstrated.

During the WT experiments, a manifold system sampled the surface pressure via tubes
inserted into holes drilled into the hill surface (Harman & Finnigan 2018). Comparing
observed and simulated along-wind surface pressure variations normalized by u2∗ at hill
centreline (figure 6) reveals broad overall agreement between the WT and the LES of the
location and phasing of the pressure maxima and minima for both hill slopes. On the
windward side of the hill, the pressure peak in the steep hill case is of slightly higher
magnitude in the WT than in the LES, while the pressure minima near hill-centre or
just downwind of the crest is of higher magnitude in the LES than the WT; which, in
combination implies a slightly larger surface pressure gradient driving the flow in the LES
producing the slightly higher in-canopy wind speeds shown in figure 5. These features
likely result from our decision for the LES simulations to target outdoor situations and the
associated taller LES domain compared with the depth of the boundary layer in the WT,
but do not negatively influence confidence in the LES solutions.
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Figure 7. Vertical slices of average streamwise velocity 〈u〉 normalized by the friction velocity u∗. Panels (a)
and (c) present results from the shallow-sloped hills (sm = 0.16), and panels (b) and (d) from the steeper hills
(sm = 0.26). Panels (a) and (b) present time-averaged and laterally averaged 2D-hill results, panels (c) and (d)
present time-averaged 3D-hill results. In all figures, the dashed black line depicts canopy top. All four figures
use the same vertical axis relative to the canopy height (hc), which means that they’re presented up to different
heights relative to the hill half-length (L). The mean wind flow is from left to right (in the +x direction). The
white contour line marks zero streamwise velocity. The dash–dot line is ζi/hc, and the dash–dot–dot line is
ζm/hc; see § 7 for definition of ζi and ζm .

The results presented in figures 5 and 6 provide evidence that the LES and its
configuration accurately simulates turbulent flows over isolated 3D hills. Therefore, the
LES results can now offer insight into aspects of flow over 2D or 3D forested hills that are
difficult to observe.

6. Flow over 2D versus 3D forested hills
Flow over isolated hills differs from flow over repeating 2D cosine hills, because in the
latter the flow approaching any single hill feels the influence of the hill just upstream and
all previous hill adjustments (e.g. Belcher et al. 1993). Turbulent flow over isolated 2D
and 3D hills differ substantially due to the ability for the flow to leak around the sides of
3D hills (e.g. Mason & King 1985). We now interrogate mean variations in the flow fields
resulting from interactions with isolated 2D and 3D forested hills.

6.1. Mean wind
Figure 7 shows the influence of hill-shape and hill-slope on the vertical variation of mean
streamwise velocity. It is important to recall that figure 7(a,b) present y- and time-averaged
2D x–z slices, while figure 7(c,d) show time averages at hill centreline (y/L = 0). It is also
important to recall that flow variables (u, v, w) represent flow in the (x , y, z) directions.

For the steeper hills (sm = 0.26), a separation bubble forms on the hill’s leeward side
within the canopy for both hill-shapes (figure 7), where reverse flow spans the region
between 0.67< x/L < 2.29 (0.67< x/L < 1.93) and extends vertically through the entire
(most of the) canopy depth in the 2D (and 3D) cases, respectively. Flow separation also
occurs intermittently over the shallower-sloped hills (sm = 0.16), but mean separation
is only found in 2D–0.16 confined to regions very close to the surface and to 0.56<
x/L < 1.25. All cases reveal a within-canopy speed-up on the windward side of the hill
occurring between approximately −1.5 ≤ x/L ≤ −0.5. At a fixed height above the trees
(e.g. z/hc = 10), cases with shallower-sloped hills (sm = 0.16, figure 7a,c) result in higher
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velocity u∗ comparing the four cases. Dashed lines depict results for flow over the 2D hills, and solid lines
depict results over 3D hills at hill centreline (y/L = 0). Flow over the shallow-sloped hills (sm = 0.16) are in
blue, and flow over the steeper hills (sm = 0.26) are in green. The mean wind flow is from left to right (in the
+x direction).

average streamwise wind speeds for the same imposed pressure gradient compared with
those with steeper hills (figure 7b,d). A direct comparison of the 2D versus 3D flow fields
at specified locations (figure 8) emphasizes these findings quantitatively. Overall, 2D-
hills induce larger amplitude streamwise 〈u〉 and vertical velocity 〈w〉 than do 3D hills,
especially above the canopy; this result should be expected due to the ability for the flow
impinging on the hill to leak around the sides of the 3D hills. At the foot of the windward
side of the hill (x/L = −2), all cases display non-zero 〈w〉 suggesting that the flow already
feels the hill-induced pressure forces. At x/L = −1, 〈w〉 at canopy top increases by nearly
11 % for 2D compared with 3D hills for cases with sm = 0.16, compared with a 19 %
increase for cases with sm = 0.26. At hill-crest, 〈w〉 remains upward above and within the
upper canopy. Canopy-top wind speeds are highest in the region between x/L = −1 and
0, but the largest vertical gradient in streamwise velocity is found near x/L = 0. Reverse
flow within the canopy is clearly apparent at x/L = 1 for the cases with sm = 0.26, i.e.
negative streamwise velocity and positive vertical velocity within the canopy with both
changing sign at canopy top. The 2D hill case with sm = 0.26 clearly requires a longer
distance downwind for 〈w〉/u∗ to relax back to conditions upwind wind of the hill, which
has not occurred by x/L = 4. In combination, the profiles in figure 8 demonstrate the
increased role of mean vertical advection of streamwise momentum with increasing hill
slope whose sign varies with position on the hill, and emphasize that care should be taken
when comparing the current simulation results (where flow variables are presented in a
coordinate system aligned with the upstream flat surface) and outdoor field measurements
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Figure 9. Horizontal terrain-following (at constant ζ ) slices of time-averaged streamwise velocity, 〈u〉 (a,d),
and spanwise velocity, 〈v〉 (b,e), and vertical velocity, 〈w〉 (c, f ), at canopy top (ζ/hc ∼ 1) normalized by u∗
from the two 3D-hill simulations: (a–c) 3D–0.16; (d–f ) 3D–0.26. The dashed black line depicts the location of
the hill base at ζ/L = 0, and the black cross marks the hill-crest. The mean wind flow is from left to right (in
the +x direction).

that rotate variables into a flow-dependent coordinate system forcing local 〈w〉 to zero (e.g.
Wilczak, Oncley & Stage 2001; Finnigan et al. 2003; Finnigan 2004).

Figure 9 shows terrain-following horizontal surfaces of 〈u〉, spanwise 〈v〉 and vertical
〈w〉 velocity normalized by u∗ at canopy-top (z/hc ∼ 1) for the two 3D-hill cases and
demonstrates the horizontal variability of mean wind fields induced by variations in hill-
slope. Figure 9(a,d) show that increased hill slope dramatically increases the speed-up
on the windward side and a slow-down on the leeward side. Maximum wind speeds
at canopy-top occur on the windward side of the hill at approximately x/L = −0.3
(see max(
u/ub)hc , table 1), and extend laterally to approximately y/L = 1, while the
peak wind-speed reduction at canopy-top on the leeward side occurs at approximately
x/L = 1.5 and only extends laterally to approximately y/L = 1. Note that these results
differ from those in turbulent flow over unforested hills where the maximum speedup
occurs at the hill-crest (e.g. Jackson & Hunt 1975; Ayotte & Hughes 2004); Finnigan
& Belcher (2004) present an explanation describing the canopy-imposed mechanisms
controlling this shift for flow over 2D-hills. With increasing hill steepness, maximum
speedup at canopy top and at hill centreline increases and shifts up slightly downwind
(max(
u/ub)hc , table 1).

Figure 9(b,e) demonstrate the horizontal distribution of the mean lateral velocity v at
canopy top induced by the 3D hills. Increased hill-slope also increases the magnitude of the
hill-induced lateral velocity, with lateral velocities on the windward side of the hill (x/L <
0) generally of lower magnitude than those on the leeward side (x/L > 0). For both hill
slopes, the lateral velocities are induced out to lateral regions approximately y/L = ±3 (as
defined by 〈v〉/u∗ >±0.2). In the case with sm = 0.16, lateral velocities largely disappear
by x/L = 2, while the flow encountering the steeper hill (sm = 0.26), lateral velocities at
canopy top persist downwind of the hill to at least x/L = 4. At the canopy top, the peak
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hill-induced upward 〈w〉/u∗ is found along the windward hill centreline at x/L 
 −0.75
for both 3D-hill cases (figure 9c,f ), with the steeper hill (sm = 0.26) generating a ∼40 %
larger upward vertical velocity. Peak downward 〈w〉/u∗ at canopy top is found on the
leeward side of the hills, with a single peak in the unseparated 3D–0.16 case along hill
centreline at x/L 
 1, and a ∼23 % lower amplitude double peak in the separated 3D–0.26
case located at x/L 
 1.5 and y/L 
 ± − 1.

In the 3D hill cases, the canopy’s presence produces interesting lateral flow within
the canopy (figure 10, showing spanwise vertical slices of v at three different x/L
locations for the case with sm = 0.26). On the upwind side of the hill (figure 10a), the hill
induced stagnation pressure (to be further discussed in § 6.2) produces diverging lateral
flow out to approximately y/L = ±3 and vertically throughout the canopy and up to
heights of approximately z/L = 1 (z/hc = 10). At hill centreline (x/L = 0, figure 10b),
the above canopy flow continues its divergent path around the hill. However, canopy
drag sufficiently reduces the streamwise velocities within the canopy that the hill-induced
lateral pressure gradients produces within-canopy uphill flow on either side of the 3D hill.
This convergent within-canopy flow starts at lateral distances of at least y/L = ±3. At
x/L = 1 (figure 10c), the lateral flow converges in the hill’s lee but over a shallower depth
than is the divergent flow on the hill’s windward side. Similar lateral flow features are also
found in the WT (Harman & Finnigan 2018). This hill-induced within-canopy lateral flow
likely has significant impact on the transport of surface- and canopy-emitted scalars and
hence the interpretation of single-point scalar flux measurements in forested hilly terrain.

6.2. Pressure
Axisymmetric 3D hills produce slightly higher stagnation pressure peaks on the windward
side of the hill, and notably reduced negative pressure near the hill crest compared with
2D hills (figure 11 and figure 12a,d). This feature results from the impinging flow leaking
around the lateral sides of the 3D hill compared with the 2D hill which produces more
blockage as the flow is forced to go over the hill, hence 2D hills produce higher magnitude
canopy-top wind speeds overall (max(
u/ub)hc , table 1). For both hill shapes, steeper
hills (sm = 0.26) shift the pressure minima more towards the hill crest compared with the
shallower sloped hills (sm = 0.16), but also broaden the along-wind region containing the
minimum such that the lowest pressures span a region from approximately −0.5 ≤ x/L ≤
1.5 (compared with −0.2 ≤ x/L ≤ 0.9 in the cases with shallower-sloped hills). Of note,
however, is the secondary pressure minima in the hill lee in both the 2D–0.26 and the 3D–
0.26 simulations (perhaps best seen in figure 13), a feature which has not been mentioned
in previous studies of turbulent flow over forested hills and which therefore likely arises
from the shallow canopy (Regime 4, figure 4) and its influence on flow separation.

Figure 12(b,e) and 12(c, f ) present horizontal surfaces (constant ζ ) of the streamwise
and spanwise pressure gradient induced by the 3D hills; these four panels show results
at midcanopy height (ζ/hc ∼ 0.6) rather than at the surface like that in figure12(a,d).
Clearly, the induced streamwise pressure gradient achieves larger amplitudes in the
streamwise direction than in the spanwise direction. Compare max((∂〈p〉/∂x) (hc/u2∗))∼
(0.77, 1.56) and min((∂〈p〉/∂x) (hc/u2∗))∼ (−0.64,−0.86), respectively, for sm =
(0.16, 0.26), and for the spanwise direction for which the maxima/minima are symmetric,
with max/min((∂〈p〉/∂y) (hc/u2∗))∼ ±(0.36, 0.59) for sm = (0.16, 0.26), respectively.
Although the spanwise pressure gradients are of lower magnitude from that in the
streamwise direction, the lateral uphill in-canopy flows seen in figure 10 in the case
with sm = 0.26 at x/L = 0 suggest that the hill-induced spanwise pressure gradient is
of sufficient magnitude to dominate downward transport of momentum down into the
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Figure 10. Spanwise vertical slices (y–z) of time-averaged spanwise velocity v normalized by u∗ at three
along-wind locations: (a) x/L = −1; (b) x/L = 0; (c) x/L = 1) from 3D–0.26. Positive v is in the +y direction.
The dashed black line depicts canopy top (z/hc = 1). The mean streamwise wind flow is out of the page (in the
+x direction). Note that contour ranges and intervals differ between panels.
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Figure 11. Vertical slices of average pressure normalized by the friction velocity u2∗. Panels (a) and (c) present
results from cases with shallow-sloped hills (sm = 0.16), and panels (b) and (d) from cases with steeper hills
(sm = 0.26). Panels (a) and (b) present time-averaged and laterally averaged 2D-hill results, panels (c) and
(d) present time-averaged 3D-hill results at hill-centreline. In all panels, the heavy dashed black line depicts
canopy top, the dash–dot line ζi/hc, and the dash–dot–dot line ζm/hc (see § 7). All four panels use a consistent
vertical axis relative to canopy height (hc), which means that they are presented up to different heights relative
to the hill half-length (L). The mean wind flow is from left to right (in the +x direction).

canopy along the sides of the 3D hills. Compared with the case with sm = 0.16, the case
with sm = 0.26 also shows strong lateral pressure gradients downwind of hill crest, but
concentrated primarily in regions out towards hill-base.

Figure 13(a) shows a comparison of the horizontal variation of normalized surface
pressure along the hill-centreline for the four cases. Figure 13(b) shows the correlation
between the mean hill-induced surface pressure perturbations 〈p〉 and the local hill slope
hx , where the integral under these curves represent the pressure drag in the x direction at
hill centreline (see Fp in table 1). In all cases as the flow approaches the hill (from left to
right in the figure), it first feels a pressure force retarding the flow (e.g. stagnation, positive
〈p〉 hx ); an increase of 10 % in hill slope increases the pressure force in this region by
approximately a factor of four. The amplitude and streamwise horizontal region over which
this force acts also evolves with variations in hill-shape; where for 2D hills this retarding
force acts over a smaller horizontal extent than it does for 3D hills, and the horizontal
extent over which this retarding force acts increases with increasing hill-steepness. At a
location somewhere between −1.1 ≤ x/L ≤ −0.7, pressure drag changes sign to become
an accelerating force (e.g. a thrust, negative 〈p〉 hx ). Again, the spatial region over which
this thrust acts on the flow increases with increasing hill steepness, however, the horizontal
extent over which it acts decreases as the hills change from a 2D ridge to an axisymmetric
3D hill. Pressure drag acts to retard the flow (positive 〈p〉 hx ) across nearly the entire
leeward side of the hill for all cases, with the exception of a small region of acceleration
(thrust) that develops in the cases with shallower slopes (i.e. between 1.5 � x/L ≤ 2). The
region of maximum pressure drag on the leeward side shifts downstream with increasing
hill steepness.

Consistent with Ross & Vosper (2005) and Poggi & Katul (2007a,b), peak minimum
pressure is generally found at or just downstream of hill crest (0 � x/L � 0.5), however,
both of the sm = 0.26 cases interestingly show a surface pressure increase at 0.5 � x/L �
0.6 not present in either of the sm = 0.16 cases (figure 13a). 2D–0.16 in figure 11 shows
a similar pressure increase in the midcanopy and above, suggesting that this pressure
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Figure 12. Horizontal terrain-following surfaces of time-averaged surface pressure, 〈p〉 (a,d), streamwise
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results from 3D–0.16, and (d–f ) from 3D–0.26. The dashed black line depicts the location of the hill base at
ζ/L = 0, and the black cross marks the hill-crest. The mean wind flow is from left to right (in the +x direction).
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Figure 13. (a) A comparison of surface pressure (〈p〉) over 2D (dashed lines) and 3D (solid lines) hills. Hills
with sm = 0.16, blue lines; and with sm = 0.26, green lines. Note that the solid lines in this panel are the same
as those in figure 6. (b) A comparison of the negative correlation between the pressure distributions shown
in (a) and the local hill slope (hx = ∂h/∂x) at hill centreline normalized by u2∗ for all simulations; i.e. the
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a force acting to decelerate (accelerate) the flow, respectively. Results in both panels are laterally averaged for
cases with 2D hills, and time-averaged along hill-centreline for cases with 3D hills.
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Figure 14. Vertical slices of the average standard deviation of vertical velocity σw normalized by u∗ from all
four simulations. Same layout as for figure 7. The mean wind flow is from left to right (in the +x direction).

increase might result from an interaction of canopy processes and the hill-induced large
scale pressure field. Figure 8 also shows that the mean flow reverses in the lower-canopy
to midcanopy in the region 1 � x/L � 2. Therefore, this secondary pressure peak might
result from the stagnation associated with the positive within-canopy streamwise velocity
〈u〉/u∗ at x/L = 0 and the reversed streamwise flow at x/L = 1. This secondary pressure
increase in the lee of steeper sm = 0.26 hills for flows in Regime 4 contradicts Poggi &
Katul’s (2007a) suggestion to estimate hill-induced pressure perturbations based upon the
effective (or apparent) surface determined by the windward terrain surface and the leeward
separation bubble.

6.3. Turbulence
All cases generate an increase in the normalized standard deviation of vertical velocity
σw/u∗ on the leeward side of the hill (figure 14) resulting from the hill-induced elevated
shear layer in the hill’s lee. Generally, this leeward increase of σw/u∗ is of larger
magnitude in the 2D hill cases (figure 14a,b) than in the 3D hill cases (figure 14c,d)
with peak values of approximately 1.6 in the lower sloped case (sm = 0.16) over the
region between 1< x/L < 2 for both the 2D and 3D hills, while for the steeper hills
(sm = 0.26) σw/u∗ peaks at approximately 1.9 over the region spanning approximately
1< x/L < 3; accentuated vertical velocity fluctuation amplitudes persist downwind to
well beyond x/L = 8 (or x/hc = 80) and extend vertically up to heights above z/L = 1.2
(or z/hc = 12) with the maximum change in σw at canopy top 
σwhc

occurring at
x/L ∼ 0.8 for flow over the hills with sm = 0.16 and at x/L ∼ (2.3, 1.3) for the (2D, 3D)
hills with sm = 0.26 (table 1).

The streamwise variation of vertical profiles of turbulent flow statistics along hill
centreline help quantify the influence of hill shape and steepness (figure 15). Upwind
of the hill (x/L ∼ −4), (σu , σw)/u∗ above canopy-top match their theoretically expected
(e.g. Lumley & Panofsky 1964) values ∼(2.3, 1.3), respectively, and 〈u′w′〉/u2∗ is nearly
constant with height at a value of −1. Work performed by the flow against canopy drag
ensures that turbulence moments diminish rapidly with descent into the canopy, similar
to that found in the vicinity of numerous other canopies (e.g. Raupach 1994). On the
windward side of the hills (x/L ∼ −1), σu/u∗ and σw/u∗ change little at canopy top
with the increased streamwise velocity increases shown in figures 8 and 9, however,
the decreased vertical gradient in the streamwise wind at this x/L does manifest in
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Figure 15. Vertical profiles of the standard deviation of streamwise velocity (a) and vertical velocity (b)
normalized by the friction velocity u∗ comparing the four cases at x/L = (−4,−2,−1, 0, 1, 2, 4). Panel (c)
presents vertical profiles of the vertical flux of streamwise momentum 〈u′w′〉 normalized by u2∗ at the same
x/L locations. Dashed lines depict results for flow over the 2D hills, and solid lines depict results over 3D
hills at hill centreline (y/L = 0). Flow over the shallow-sloped hills (sm = 0.16) are in blue, and flow over the
steeper hills (sm = 0.26) are in green. The mean wind flow is from left to right (in the +x direction).

reduced momentum stress in the canopy’s vicinity – with a greater amplitude reduction
of 〈u′w′〉/u2∗ near canopy-top in the cases with 3D hills compared with 2D hills sufficient
to create a 〈u′w′〉/u2∗ minimum just above the canopy. The steeper hills (sm = 0.26)
also reveal a very small region of weak near-surface upward turbulent momentum flux
beneath canopy-top driven by the thrust force found in this region (figure 13). At hill-crest
(x/L = 0), increased vertical shear of streamwise velocity amplifies σu/u∗ and 〈u′w′〉/u2∗
compared with their upstream values at x/L = −4, while σw/u∗ diminishes slightly. On
the hill’s leeward side (x/L = 1 and x/L = 2), the hill- and canopy-induced adverse
pressure gradient reduces mean streamwise velocity producing enhanced shear up to at
least z/hc = 4 which amplifies all three second moments throughout this depth compared
with their upstream values (figure 15). At x/L = 1 just above the canopy, σu/u∗ and
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Figure 16. Horizontal slices of time-averaged velocity standard deviations normalized by u∗ (a–c) and
momentum flux normalized by u2∗ (d–f ) along the ζ/hc = 0.95 surface (i.e. near canopy top) from the steeper
(sm = 0.26) 3D hill simulation, 3D–0.26. In (a)–(c), results are presented for streamwise velocity, σu (a,d),
spanwise velocity, σv (b,e), and vertical velocity, σw (c,f ), and in (d)–(f ) results are presented for vertical flux
of streamwise momentum, 〈u′w′〉 (d), vertical flux of spanwise momentum, 〈v′w′〉 (e), and spanwise flux of
streamwise momentum, 〈u′v′〉 (f ). The dashed black line depicts the location of the hill base at ζ/L = 0, and
the black cross marks the hill-crest. The mean wind flow is from left to right (in the +x direction).

〈u′w′〉/u2∗ increase most in the shallower hill cases (sm = 0.16) where the flow does not
separate no matter the hill shape. Within the broader hill-induced shear layer in the hill
lee, flow over 2D hills amplifies σw/u∗ and 〈u′w′〉/u2∗ more-so than over 3D hills as the
turbulence acts to counter the adverse pressure gradient. By x/L = 4, σu/u∗ has nearly
recovered its upstream profile, but not σw/u∗ and 〈u′w′〉/u2∗ – especially for cases with
steeper hills (sm = 0.26).

To elaborate on a 3D hill’s influence on turbulence, figure 16 presents the spatial
variation of turbulence moments along a constant ζ -surface at canopy top in the steeper
(sm = 0.26) 3D-hill simulation. On the windward side, pressure gradients induced by the
steeper (sm = 0.26) 3D hills enhance σu (primarily between −1 � x/L � 0 and −1 �
y/L � 1), enhance σv more broadly spatially across the hill, and slightly diminish σw
(in a similar spatial region as σu). On the leeward side of the steep 3D hills: (i) σu
rapidly diminishes to magnitudes below upstream values over a similar range of y/L
(−1 � y/L � 1) but extending to at least x/L = 6; (ii) σv diminishes below upwind values
over most of the hill’s leeward region, but then picks up again when the terrain flattens; (iii)
σw increases throughout the leeward hill region peaking at the hill base and then slowly
returns to upstream values by approximately x/L = 4.

Steep 3D hills (sm = 0.26) reduce the vertical flux of streamwise momentum at
canopy-top across their entire windward side, with peak reductions down to as low as
〈u′w′〉/u2∗ ∼ 0.1 between −1 � x/L � 0 and −1 � y/L � 1, i.e. the region coincident
with the largest positive hill-induced streamwise pressure gradient (figure 12e). Steep
3D hills (sm = 0.26) accentuate 〈u′w′〉/u2∗ at canopy-top primarily on the outward flanks
1026 A16-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
98

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10989


Journal of Fluid Mechanics

(between 0.5 � x/L � 2 and 0.5 �±y/L � 1.5). Vertical shear of the spanwise wind
(figure 10) driven by the hill-induced pressure gradient ensures an importance of canopy-
top vertical flux of spanwise momentum (〈v′w′〉/u2∗) on the outer flanks of the hill, with
peaks between −1 � x/L � 0 and 0.5 �±y/L � 1.5, however, the hill-induced peaks
of 〈v′w′〉/u2∗ are of notably smaller magnitude than the hill-induced modification to
〈u′w′〉/u2∗. Flow divergence around the windward side of the hill produces a spanwise flux
of streamwise momentum (〈u′v′〉/u2∗). More importantly, large-amplitude spanwise fluxes
of streamwise momentum in the hill’s lee participate strongly in laterally transporting
streamwise momentum leaking around the hill-sides to regions inward behind hill-crest–
a flow recovery mechanism not present in flow over 2D hills. The variability in figure 16
highlights limitations of the finite duration time-averaging in the 3D-hill cases.

7. Evaluating current theory
The small perturbation theory outlined in § 2 was originally developed for predicting
turbulence over very low hills but is frequently applied outside its strict range of validity.
The present LES data provide an opportunity to evaluate the analytic theory when applied
to flows in Regime 4. Here, we evaluate how well results on the 2D ridges and on the plane
of symmetry of the 3D hills follow the analytic theory.

7.1. Perturbation analysis description

7.1.1. Turbulence production terms in streamline coordinates
Current theory describing turbulent flow over forested hills hinges on equations written in
streamline coordinates that simplify interpretation of the hill-induced forces perturbing the
flow (e.g. Finnigan & Belcher 2004). The dominant production terms in the 2D Reynolds
stress equations valid for the LES along hill-centreline in streamline coordinates can be
written as

ũ
∂ 〈ũ′w̃′〉
∂ x̃

= − σ 2
w̃

∂ ũ

∂ z̃
− 1

2
〈ũ′w̃′〉∂ ũ

∂ x̃
−

(
2σ 2

ũ − σ 2
w̃

) ũ

R
+ · · · , (7.1)

ũ
∂ σ 2

ũ

∂ x̃
= −2 σ 2

ũ
∂ ũ

∂ x̃
− 2 〈ũ′w̃′〉 ∂ ũ

∂ z̃
+ 2 〈ũ′w̃′〉 ũ

R
+ · · · , (7.2)

ũ
∂ σ 2

w̃

∂ x̃
= 2 σ 2

w̃

∂ ũ

∂ x̃
− 4 〈ũ′w̃′〉 ũ

R
+ · · · , (7.3)

where, the ellipses represent the triple moment, SGS, and canopy drag terms and the
〈 〉 averaging notation is only retained for the covariances. Note that in (7.1) to (7.3)
the sign convention applied to the streamline curvature 1/R is opposite to that used in
Finnigan (1983) and Kaimal & Finnigan (1994). As in Finnigan (2024), we define R or
1/R as negative if the centre of curvature lies in the negative z direction (Aris 1990).
In (7.1) to (7.3), the operators (∂/∂ x̃ , ∂/∂ z̃) denote directional derivatives parallel and
perpendicular to the (x̃ , z̃) coordinate lines, respectively. Velocity components (ũ, w̃) and
turbulent stresses (σ 2

ũ , σ 2
w̃

, 〈ũ′w̃′〉) in (7.1) to (7.3) should be interpreted as those that would
be measured in a right-handed Cartesian coordinate frame (x̃ , z̃) aligned at any point with
its x̃-axis tangent to the streamline and its z̃-axis normal to the streamline. This coordinate
system has the advantage that velocity vectors and tensors have their usual dimensions and
interpretation but comes at the cost that partial derivatives must be replaced by directional
derivatives (Finnigan 2024).
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7.1.2. Production terms in terrain-following coordinates
Flow separation complicates the use of streamline coordinates. We therefore turn to a
coordinate system tied with the terrain-following coordinate surfaces of the simulation
which remain well-defined even in the presence of flow separation. Upwind of any flow
separation, we expect that the terrain-following coordinate lines do not depart very far
from streamlines.

As an approximation to flow variables transformed into streamline coordinates in (7.1)
to (7.3), we transform the LES flow variables into a system defined relative to the local
tangent of the coordinate surfaces, i.e. we approximate ũ and w̃ as

ũ ≈ u e1 +w e3, and (7.4)
w̃≈ −u e3 +w e1. (7.5)

where, e1 = dx/(dx2 + dz2)(1/2) and e3 = dz/(dx2 + dz2)(1/2).
Turbulence statistics of variables in this terrain-following coordinate system (〈ũ′w̃′〉, σ 2

ũ ,
σ 2
w̃

) are approximated by locally rotating time-averaged statistics of LES-derived variables
calculated during the simulations into the terrain-following coordinate system via

〈ũ′w̃′〉 ≈ −σ 2
u e1e3 + 〈u′w′〉(e2

1 − e2
3)+ σ 2

we1e3, (7.6)

σ 2
ũ ≈ σ 2

u e
2
1 + 2〈u′w′〉e1e3 + σ 2

we
2
3, (7.7)

σ 2
w̃ ≈ σ 2

u e
2
3 − 2〈u′w′〉e1e3 + σ 2

we
2
1. (7.8)

The directional derivatives (∂/∂ x̃ , ∂/∂ z̃) in (7.1) to (7.3) are approximated by derivatives
along the LES coordinate surfaces (i.e. ∂/∂ x̃ ≈ ∂/∂ξ = ∂/∂x , and ∂/∂ z̃ ≈ ∂/∂ζ ), where
we have taken advantage of the fact that ξ = x (and dξ = dx) in our code. An incremental
arclength along a terrain-following coordinate line dx̃ ≈ dx(1 + s2)(1/2), where s = dz/dx
is the local slope of the coordinate line. We additionally assume dx̃ ≈ dx and recognize
that the maximum slope sm of any terrain-following coordinate line in our simulations is
0.26 and that this choice introduces a small error in the derivatives of �3.3 %.

7.1.3. Analysis heights
We investigate the relationship between the changes to the mean flow and the Reynolds
stresses in three layers: (i) the upper canopy layer hc > z > d (where d is the canopy’s
displacement height, Appendix B); (ii) the inner shear stress layer ĥi > z > hc; (iii) the
middle layer ĥm > z > ĥi . We therefore present variations of the mean flow and turbulence
along lines of constant ζ midway through the middle layer at ζm = ĥi + 0.5(ĥm − ĥi ),
midway through the inner surface layer at ζi = hc + 0.5(ĥi − hc) and in the upper canopy
at ζc = 0.75hc. Since the middle layer and inner layer depths depend on the hill length
scale L (see § 3 and Appendix B), ζi and ζm change with hill steepness. Upwind of any
flow separation, the terrain-following coordinate lines, ζm , ζi , ζc do not depart too far from
streamlines.

7.2. Hill-induced flow perturbations

7.2.1. Middle layer
Figure 17a shows for all four cases that increases in 
ũ (where, 
ũ = 〈ũ〉 − ub, and ub =
〈ũ〉b) are nearly in phase with the hill crest as we expect given that the flow perturbations in
the outer region are primarily an inviscid response to the pressure field induced by the hill.
Consequently, the steeper hills produce larger
ũ than the shallower hills, and the 2D hills
produce larger 
ũ than the 3D hills. 
ũ in the 3D-hill cases also takes more than 8L
to recover to its upwind undisturbed value although comparison with figure 7 shows that
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Figure 17. Streamwise variation of hill-induced perturbations of mean first- and second-order statistics relative
to background values in the undisturbed flow upwind of the isolated hills (marked as b) along the three constant
ζ -coordinate surfaces: (a) middle-layer, ζm ; (b) inner-layer, ζi ; (c) upper canopy layer, ζc; see § 7.1.3 for the
definition of ζm , ζi and ζc. Panels (i) present perturbation streamwise velocity (
ũ/ub = (〈ũ〉 − ub)/ub, where
ub = 〈ũ〉b). Panels (ii) depict the variation of the centrifugal acceleration ũ/R (in units of s−1). Panels (iii)
show ∂ ũ/∂ x̃ = ∂
ũ/∂ x̃ (in units of s−1). Panels (iv) present the perturbation vertical gradient of streamwise
velocity ∂
ũ/∂ z̃. Panels (v) present perturbation streamwise momentum stress (
ũw̃/uwb = (〈ũ′w̃′〉 −
uwb)/uwb, where uwb = 〈ũ′w̃′〉b). Panels (vi) present perturbation streamwise velocity variance (
σ 2

ũ /σ
2
ub =

(σ 2
u − σ 2

ub )/σ
2
ub , where σ 2

ub = 〈ũ′2〉b), and panels (vii) present vertical velocity variance (
σ 2
w̃
/σ 2
wb

= (σ 2
w̃

−
σ 2
wb
)/σ 2

wb
, where σ 2

wb
= 〈w̃′2〉b). Long-dashed lines present results for cases with isolated 2D hills, and solid

lines present results for cases with 3D hills along hill-centreline; blue colours, sm = 0.16; green colours,
sm = 0.26. A 1-2-1 smoothing in the streamwise direction has been applied to all fields. The mean wind flow
is from left to right (in the +x direction). See Appendix A for description of quantities marked with b.

ζm is above the separation bubble. The vertical gradient of mean perturbation streamwise
velocity ∂
ũ/∂ z̃ decreases at this height starting at x/L ∼ −1 for all cases, and then
becomes positive at approximately x/L ∼ 1 with notably larger increased vertical shear
in the cases with steeper hills (∼35 % increase for cases with sm = 0.16 versus ∼180 %
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increase for cases with sm = 0.26). The streamwise velocity gradient, ∂ ũ/∂ x̃ (= ∂
ũ/∂ x̃)
peaks on the upwind slope and attains its lowest values on the lee slope with the largest
values on the 2D ridges.

The third important mean strain term appearing in the production terms of the Reynolds
stress (7.1) to (7.3) is ũ/R, where R is the local radius of curvature of the surface-following
coordinate lines. The effects of rotation on the turbulent stresses are particularly important
and are often expressed in terms of a curvature Richardson Number Ric because the
centrifugal forces generated following a curved trajectory are analogous to the effects of
buoyancy but have a larger effect on the turbulence than a simple comparison of ũ/R with
other strains such as ∂ ũ/∂ x̃ or ∂
ũ/∂ z̃ would suggest (Bradshaw 1969, 1973; Finnigan
1983). Here ũ/R attains its largest positive values over the upwind and downwind concave
hill surfaces and its largest negative values over the convex hill crest. The combination of
greater curvature and larger velocity perturbations on the steeper (sm = 0.26) hills implies
ũ/R is more than twice as large on those hills as on the shallower (sm = 0.16) hills.

Streamwise velocity variance σ 2
ũ increases up to the hill crest on the 3D hills but

decreases slightly on the 2D hills; this likely represents a response to the greater
streamwise acceleration over the 2D ridges as the first production term in (7.2),
[−2 σ 2

ũ (∂ ũ/∂ x̃)] represents stretching of vortex tubes aligned in the streamwise direction,
which increases σ 2

ṽ
and σ 2

w̃
at the expense of σ 2

ũ . The slight decrease in shear, ∂
ũ/∂ z̃
and in 
ũw̃, adds to the decrease in σ 2

ũ production but the third production term
2 〈ũ′w̃′〉(ũ/R)] acts to augment σ 2

ũ over the 3D hills as both 〈ũ′w̃′〉 and ũ/R are negative.
The most prominent feature of the σ 2

ũ evolution is the large increase on the lee slope over
the 2D hills and the steeper 3D hill. This large increase is likely associated with the large
increase in mean shear ∂
ũ/∂ z̃ bounding the upper edge of the separation bubble. This
finding is not evident over the shallower 3D hill where there is no increase in σ 2

ũ .

7.2.2. Inner layer
In the inner layer (figure 17b), 
ũ initially decreases with approach to the hill, then at
x/L ∼ −1, 
ũ increases to maximum values occurring just upwind of hill-crest (x/L =
0), and then diminishes to a minima at x/L ∼ 1.5. The breaking of the symmetry between

ũ and the hill profile seen in the middle layer, results from the action of hill-induced
perturbations on the shear stress 〈ũ′w̃′〉. This asymmetry leads in turn to generation of
aerodynamic drag on the hill. The maxima and minima in 
ũ are ∼10 % higher for
the cases with 2D hills compared with 3D hills and shift slightly upwind for cases with
sm = 0.26. At this height, flow over hills of sm = 0.16 recovers its upwind 
ũ value by
x/L ∼ 6, while flow over hills with sm = 0.26 recover their upwind values by x/L ∼ 8.

Compared with the middle layer, hill-induced variations in ∂
ũ/∂ z̃ shift upwind by
x/L ∼ 0.5 with a minimum just upwind of hill-crest (i.e. at x/L ∼ −0.5), a maximum
downwind of hill-crest (i.e. at x/L ∼ 0.5), which is much larger on the steeper hills and
is probably associated with the strong shear capping the separation bubble. A downwind
minimum occurs at x/L ∼ 3 from which all cases do not recover their upwind values until
x/L ∼ 8.

Variations in σ 2
ũ on the 2D hills in the inner layer are largely in phase with

∂
ũ/∂ z̃, which is the dominant mean strain entering the largest production term,
[−2 〈ũ′w̃′〉 (∂ ũ/∂ z̃)] in (7.2). This response in σ 2

ũ is amplified by the reduction in 
ũw̃, a
reduction itself largely driven by the changes in ∂
ũ/∂ z̃ as we can see from (7.3) as well
as by the damping effect of streamline curvature over the convex hill slope before flow
separation occurs. Over the 3D hills, we see an increase in σ 2

ũ on the upwind slope, which
could be attributed to the unstable curvature upwind of x/L ∼ −1.
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The reduction in σ 2
w̃

over the hill crest can be associated with the reduction in the vortex
stretching strain ∂ ũ/∂ x̃ just ahead of the hill but is primarily attributable to the effect of the
curvature term [− 4 〈ũ′w̃′〉 (ũ/R)], which acts to reduce σ 2

w̃
directly. However, stabilizing

curvature also reduces 〈ũ′w̃′〉 over the hill crest and this change also feeds through to
slightly mitigate curvature’s damping effect on σ 2

w̃
. Changes in 〈ũ′w̃′〉 closely follow the

changes in ∂
ũ/∂ z̃ until the separation bubble and wake is encountered at x/L ∼ 1. The
large spike in 〈ũ′w̃′〉 at x/L ∼ 1 is likely associated with the free shear layer at the upper
boundary of the bubble. Here 〈ũ′w̃′〉 is also strongly reduced by curvature’s damping effect
over the crest through the third, curvature-linked, production term in (7.1). The largest
impact of separation is on σ 2

w̃
behind the steepest 2D ridge and this is where we would

expect the most active and established separation region (figure 14) although we see large
increases in σ 2

w̃
on the other hills also. Somewhat surprisingly, σ 2

ũ reduces behind the hill
with the largest reduction occurring behind the 3D hills.

7.2.3. Upper canopy layer
The first striking difference between the inner layer and the upper canopy layer is the
upwind shift in the positive peak in 
ũ which now occurs at x/L ∼ −0.5. The negative
peak in 
ũ upwind of the hill also moves farther upwind and both peaks increase in
magnitude. Finnigan & Belcher (2004) explain these upwind movements of the 
ũ peaks
as a physical consequence that in the lower canopy, the background velocity ub becomes
smaller than the velocity perturbations, which are driven by the hill-induced pressure
perturbations that are able to pass through the canopy unimpeded. Consequently, the

ũ perturbations come into phase with the pressure gradient −∂〈p〉/∂x which has its
maximum positive value around x/L ∼ −2 (figure 13). The upper and lower canopy
velocity fields are connected by turbulent mixing so the upper canopy 
ũ perturbation
is dragged upwind compared with 
ũ in the inner layer. The Finnigan & Belcher (2004)
theory (applicable in Regime 1, figure 4) assumes that the velocity shear ∂ ũ/∂ z̃ and shear
stress 〈ũ′w̃′〉 in the lower canopy are both negligible so that the velocity perturbations are
driven only by −∂〈p〉/∂x , not by turbulent momentum transfer. Figures 8 and 15 show
that in the present ‘shallow canopy’ (Regime 4) configuration, velocity shear in the lower
canopy is significant and 〈ũ′w̃′〉 cannot be ignored. We therefore expect that the velocity
perturbations in the lower canopy are less closely linked to the pressure gradient but also
share some of the dynamics of the upper canopy flow where velocity perturbations more
closely follow the pressure perturbations. Consequently we expect that the upwind shift
of the velocity peak observed here is smaller than would be observed over the same hill
contour covered by a denser and/or deeper canopy.

The strongly negative 
ũ perturbations in the lee of the hill indicate separation within
the canopy on both steeper and shallower hills. Recall that the Finnigan & Belcher (2004)
theory predicts that separation can occur within the canopy even on hills which are too
shallow for the separation bubble to extend into the inner and middle layers. The strain
fields, ũ/R, ∂ ũ/∂ x̃ and ∂ 
ũ/∂ z̃ also change in the upper canopy. While ũ/R and ∂ ũ/∂ x̃
closely follow the pattern of the inner layer with their variations simply being reduced
in magnitude, ∂
ũ/∂ z̃ departs distinctly from its inner layer behaviour. The four hills
each generate different and complicated ∂
ũ/∂ z̃ evolution upwind and around the hilltop,
with the sm = 0.16 and more strikingly the sm = 0.26 hills exhibiting strong reductions in
vertical shear with minima at x/L ∼ 2. These presumably signal the presence of within-
canopy separation.

The evolution of σ 2
ũ in the upper canopy is difficult to explain simply in terms of the

production terms in (7.1) to (7.3). In all four simulations, σ 2
ũ increases upwind of the hill
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crest. The largest production term in (7.2) is [−2 〈ũ′w̃′〉 (∂ ũ/∂ z̃)] but 〈ũ′w̃′〉 falls where σ 2
ũ

increases while changes in ∂ 
ũ/∂ z̃ are small. The vortex stretching strain ∂ ũ/∂ x̃ is large
on the upwind slope for both the steeper 2D and 3D hills and this term should act to reduce
σ 2
ũ and increase σ 2

w̃
but instead the latter decreases on the upwind slope. This decrease in

σ 2
w̃

can be explained by the damping effect of streamline curvature which is apparently
larger than production by vortex stretching. The fluctuating canopy-drag covariance term
〈ũ′ F̃ ′

x 〉 (not shown) acts as a sink of variance on the windward side of the hill and a weak
source in the hill lee but is of insufficient amplitude to overwhelm the production terms.
There is a positive contribution to σ 2

ũ from the curvature term 2 〈ũ′w̃′〉 (ũ/R) but it is
difficult to understand why this should have a large positive effect on the isolated steep
hill but not the steep 2D hill.

We tentatively conclude that the redistribution of energy between σ 2
ũ and σ 2

w̃
in the

canopy by pressure and its interaction with the lower boundary (possibly because these
simulations lie within Regime 4) prevents interpretation of the upper canopy Reynolds
stresses in terms of the mean flow straining alone. Here σ 2

ũ , σ 2
w̃

and 〈ũ′w̃′〉 all show
large peaks behind the hill on both the steeper and shallower hills, with the peaks on
the shallower 2D and 3D hills occurring around x/L ∼ 2 whereas on the steeper hills the
peaks are displaced downwind to x/L ∼ 3 and preceded by a dip just behind the crest,
which presumably corresponds to separated flow.

8. Summary and conclusions
To advance understanding of the hill-slope’s and hill-shape’s role on turbulent air flow over
isolated forested hills, we interrogate four turbulence-resolving simulations. A spectrally
friendly fringe-technique enables the use of periodic boundary conditions to simulate flow
over isolated 2D and 3D hills of cosine shape. The simulations target recently conducted
WT experiments that are configured to fall outside the regimes for which current theory
applies.

First, simulation skill for flow over isolated 3D hills is demonstrated through matching
the canopy and hill configuration with the recently conducted WT experiments and
intercomparing results. Subsequently, response of the mean and turbulent flow components
to 2D versus 3D hills along hill-centreline are discussed. Finally, a discussion of the phase
and amplitude of spatially varying responses of flow over forested hills are evaluated.
Our analysis provides insight into flow features induced by changes in hill shape and
slope when in Regime 4, and to the mechanisms behind and locations where assumptions
made when developing current theory fail towards advancing theory to regimes beyond
Regime 1.

Key findings include the following.

(i) Flow over isolated 2D forested hills produces larger amplitude vertical motions on
a hill’s windward and leeward faces and speed-up of the mean wind compared with
that over isolated 3D forested hills at hill-centreline. At canopy top, maximum speed
up max(
u/ub)hc occurs at approximately x/L = −0.3. A change in hill slope from
sm = 0.16 to 0.26 increases max(
u/ub)hc by approximately 30 % for 2D hills and
34 % for 3D hills. Flow separation induced by the steeper sm = 0.26 hills ensures that
mean flow fields require notably longer distances downstream of the hill before full
recovery (i.e. not until 6 � x/L � 8).

(ii) 3D hills generate surface pressure minima over hill-crest that are nearly half the
magnitude of those over 2D hills. The 3D hills influence the pressure field in the
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spanwise direction out to y/L ∼ ±3. Pressure gradients in the spanwise direction are
smaller than in the streamwise direction, but the spanwise pressure gradients are of
sufficient amplitude to overcome downward turbulent momentum transport into the
canopy and drive mean uphill within-canopy flow on the hill flanks. The spatial region
over which the hill-induced negative pressure drag acts increases with increasing hill
steepness, however, the horizontal extent over which this thrust force acts decreases
as the hills change from a 2D ridge to an axisymmetric 3D hill.

(iii) The perturbation analysis in § 7 suggests that the assumptions about the dominant
flow dynamics embodied in partitioning the flow into an upper layer with an inviscid
response to the hill’s pressure field, an inner layer where changes to the shear stress
and the mean flow are strongly coupled and a canopy layer where the nonlinear
treatment of velocity perturbations in the lower canopy affects flow throughout
the layer are robust inasmuch as they lead to solid predictions of hill-induced
perturbations to the mean flow. However, when we try to apply those assumptions
to predict the evolution of the turbulent moments, we find they provide approximate
explanations at best. This is especially true in the upper canopy, where additional
canopy-induced physics affects the transfer of TKE between orthogonal velocity
components.

The results presented only scratch at the surface of understanding how hill shape
and steepness modulate turbulent flow over low hills covered with a shallow forest
canopy (Regime 4 in the L/Lc versus hc/Lc parameter space) and how well current
theory predicts their interaction. In particular, this analysis focuses on neutrally
stratified conditions; inclusion of buoyancy forces would likely alter the current findings
substantially.

Acknowledgements. The authors thank T. Paul, T. Strand and B. Richardson of Scion (a New Zealand
Crown Research Institute) for guidance provided throughout the project, and M. Böhm and D. Hughes at
CSIRO for their assistance in performing the WT experiments.

Funding. The authors acknowledge support from the New Zealand Ministry for Business, Innovation and
Employment under the two Endeavour programmes C09X1611 and C04X2102. This material is also based
upon work supported by the U.S. National Science Foundation’s National Center for Atmospheric Research
under Cooperative Agreement no. 1852977. We also acknowledge high-performance computing support from
NSF NCAR’s Computational and Information Systems Laboratory (2019, 2023).

Declaration of interests. The authors report no conflict of interest.

Author contributions. E.G.P. designed, implemented, ran and analysed the numerical simulations. I.N.H.
designed, implemented, conducted and analysed the WT experiments. J.J.F. helped design the WT experiments
and interpret the results. P.P.S. developed the backbone of the LES code and helped interpret the results. E.G.P.
wrote the initial draft of the manuscript; J.J.F., I.N.H. and P.P.S. provided feedback and helped rewrite aspects
of the manuscript.

Data availability statement. Upon journal acceptance, the processed data used to produce the figures
contained within this manuscript will be made available on NCAR’s Geoscientific Data Exchange (GDEX).

Appendix A. Assessing background inflow conditions
Section 5 compares time-averaged profiles at a single location. Harman et al. (2016)
demonstrated that a single profile in the vicinity of a single canopy element does not
accurately represent the horizontal average due to variability of the time-mean with
position relative to the canopy element. To ascertain the potential spatial variability of
the observations collected over the 3D hills, Harman & Finnigan (2018) performed a
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detailed spatial sampling experiment upstream of the hills collecting profiles at 16 different
spatial locations surrounding a single peg – similar to that Harman et al. (2016) conducted
around their tombstone elements. The LES does not physically resolve individual canopy
elements, hence the wind fields averaged over these 16 different profiles should better
represent the LES predictions than would any individual observed profile. Therefore, to
more completely assess the numerical and physical inflow conditions approaching the
hills, figure 18 presents a comparison of the detailed spatial sampling WT measurements
and the LES, where the LES results reflect time-averaged flow fields that have been
horizontally averaged over the entire upwind fringe region. The horizontal bars on the WT
data reflect ± one standard deviation of each statistic associated with the 16 time-averaged
profiles.

Normalized mean wind fields in the approach flow compare well between the WT
and the LES and generally with expectation. Mean streamwise velocity is approximately
logarithmic with increasing height above the canopy and decays exponentially with
descent within. Spanwise and vertical velocity nearly vanish in the absence of a Coriolis
force and as a result of zero flow through the underlying surface. However, in the WT,
vertical velocity remains finite above the canopy resulting primarily from a combination
of slight errors in the matrix used to rotate from laser coordinates to Cartesian coordinates,
but Harman & Finnigan (2018) also speculate that the finite downward mean velocity
observed in the WT might reflect a small bias in the seed fog resulting from its continual
deposition to the underlying canopy element surface. The substantial variability of the
within-canopy spanwise and vertical velocity observations about the 16 profiles is also
notable.

Second-order moments in the LES adhere nicely to expectation (e.g. Raupach et al.
1996), and only differ slightly from the WT observations. Momentum flux above the
canopy is nearly constant with height; where compared with the zero-pressure gradient
WT, having imposed a finite pressure gradient in the LES ensures that 〈u′w′〉b/u2∗ falls
off linearly with height between canopy-top and the top of the domain such that the
minimal reduction of 〈u′w′〉b/u2∗ between z/hc = 1 and 3 in the LES speaks to the
fact that the domain is over 133 times taller than the canopy. Consistent with Harman
et al. (2016), 〈u′w′〉b/u2∗ in the WT shows a peak at canopy top thought to result from
insufficient sampling of flow in proximity to the canopy elements. Momentum absorption
through pressure drag induced by the canopy ensures that 〈u′w′〉b/u2∗ diminishes nearly
exponentially with descent into the canopy for both the WT and LES. Somewhat
counter to expectation (e.g. 〈v′w′〉b/u2∗ = 0) is that 〈v′w′〉b/u2∗ exhibits a small increase
with increasing height in the WT. Velocity standard deviations (σub , σvb , σwb)/u∗ also
generally agree well with each other and expectation, but diminish with decreasing height
from canopy top more rapidly in the LES than in the WT – a result that could again suggest
that as many as 16 observed profiles may still not reflect the total flow field variability.

Profiles of velocity skewness from the LES are consistent with most outdoor field
observations (i.e. positive streamwise velocity skewness Skub and negative vertical velocity
skewness Skwb at canopy top, which reflect the organized nature of the turbulence at
canopy top thought to be produced by an inflection point instability of the mean wind
profile (e.g. Raupach et al. 1996; Finnigan et al. 2009). Here Skwb in the WT is negative
within the canopy, but is positive at canopy top and above; such Skwb profiles have
been observed previously, but primarily in wind and water tunnel flows sampling in the
vicinity of sparse organized canopy element structure (e.g. the tombstone, rods and light-
bulb elements discussed in Raupach et al. (1996), Poggi et al. (2004) and Böhm et al.
(2013) suggesting that the flow sampled in the WT might be reflective of a wall-bounded
shear flow with canopy drag augmented by wakes shed in the element lee. Nevertheless,

1026 A16-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
98

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10989


Journal of Fluid Mechanics

0

1

2

3

0

1

2

3

0 5 –0.5 0 0.5 –0.2 –1 –0.1 0.10 00 0.2

1

2

3

0 1 2 3 –0.5 0.50–0.5 0.5010 210 2

1

2

3

canopy

WT ± 1σ3D–0.16 3D–0.26

z/
h c

z/
h c

z/
h c

z/
h c

〈u′w′〉b/u2∗〈w〉b/u∗〈v〉b/u∗〈u〉b/u∗

σub
/u∗ σvb

/u∗ σwb
/u∗ Skub

Skwb

〈v′w′〉b/u2∗

(a) (i) (ii) (iii) (iv) (v)

(b)

Figure 18. An intercomparison of WT profile statistics spatially averaged over 16 individual profiles that
spatially sample the within-canopy airspace surrounding a single canopy element and its neighbours, compared
with profile statistics derived from the LESs which have been horizontally averaged over the entire upwind
fringe region; these profiles represent the background inflow conditions (labelled as b). From (i) to (v), panels
(a) depict mean streamwise velocity 〈u〉b, spanwise velocity 〈v〉b, vertical velocity 〈w〉b, vertical flux of
streamwise momentum 〈u′w′〉b and the vertical flux of spanwise momentum 〈v′w′〉b, and panels (b) present
profiles of streamwise velocity standard deviation σub = 〈u′2〉1/2

b , spanwise velocity standard deviation σvb =
〈v′2〉1/2

b , vertical velocity standard deviation σwb = 〈w′2〉1/2
b , streamwise velocity skewness Skub = 〈u′3〉b/σ 3

ub
and vertical velocity skewness Skwb = 〈w′3〉b/σ 3

wb
. Where noted, quantities are normalized by the friction

velocity u∗ (or u2∗) to ensure proper comparison. Solid lines depict the LES results and symbols the WT results
along with horizontal bars marking ± one standard deviation associated with the 16 independently observed
profiles comprising the mean. Results from 3D–0.16 are in blue, and from 3D–0.26 are in green (the green lines
were drawn first, so they are hidden beneath the blue lines).

the results presented in figure 18 clearly demonstrate the comparability of the WT and
LES inflow conditions impinging on the hills and provide a measure of the variability
anticipated by sampling a single profile over the forested WT hills.

Appendix B. Defining the inner shear stress layer and middle layer depths
Small perturbation analyses of turbulent flow over low hills (Jackson & Hunt 1975; Hunt
et al. 1988; Belcher et al. 1993) divide the flow into separate layers with different physical
processes dominating the flow in each layer. Separate solutions to the flow equations are
found for each layer and the resulting integration constants are determined by asymptotic
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matching between the layers. Two main regions are defined, the outer, where the response
to the pressure field generated by flow over the hill is inviscid, and the inner, where
perturbations to the turbulent Reynolds stresses affect the perturbations to the mean flow.
Each region is further divided into layers. The middle layer of depth hm is the lower
part of the outer region and in this region the flow responses are inviscid but rotational
to accommodate shear in the approach flow. In the upper layer, which extends from hm
to the top of the boundary layer, flow responses are irrotational and can be computed
by potential theory. The inner region consists of the shear stress layer of depth hi , and
the thin inner surface layer, of depth ls , which allows formal matching with the surface
boundary condition. In the inner region, perturbations to the turbulent stresses affect the
perturbations to the mean flow.

Hunt et al. (1988) and Belcher et al. (1993) define the middle layer depth by an implicit
formula

hm
L

ln1/2
(
hm
z◦

)
∼ 1, (B1)

where z◦ is the roughness length of the surface and L the half-length or horizontal length
scale of the hill. If ln(L/z◦)� 1, (B1) can be approximated by an explicit relationship,

hm
L

ln1/2
(
L

z◦

)
∼ 1. (B2)

The shear stress layer depth hi is also defined by an implicit relationship,

hi
L

ln
(
hi
z◦

)
= 2κ2. (B3)

Where κ is von Kármán’s constant. Hunt et al. (1988) give two different ways of deriving
this definition while Belcher et al. (1993) arrive at the same formula by a slightly different
route.

Most variation of the shear stress perturbation with height occurs through hi above
the inner surface layer of depth ls 	 hi . However, across ls , the shear stress gradient
∂〈u′w′〉/∂z changes rapidly to match the surface streamwise pressure gradient at z = z◦.
The depths of the middle layer hm (B2) and the shear stress layer hi (B3) are derived
formally in Hunt et al. (1988) and Belcher et al. (1993) based on several assumptions.
First, that the ‘background’ velocity profile in the flow approaching the hill is assumed
to be in equilibrium with the upstream surface and so can be described by the standard
logarithmic law, viz.

ub(z)= u∗
κ

ln
(

z

z◦

)
(B4)

where u∗ is the friction velocity. Second, that in the shear stress layer the hill-induced
perturbations to the turbulent shear stress
uw and to the mean velocity gradient ∂
u/∂z
obey the same mixing length relationship as in the logarithmic approach flow (B4), and
third, that all the streamwise momentum is absorbed as drag or surface friction on the
ground (at z = z◦).

However, (B3) can yield physically implausible results for hi over surfaces covered with
tall roughness, hi from (B3) can be found at heights lower than the height of the roughness
elements (Finnigan et al. 1990). This is particularly problematic over hills covered with tall
canopies (e.g. Finnigan & Brunet 1995) or in the present experiment. Finnigan & Belcher
(2004) extended the Hunt et al. (1988) model structure by replacing the thin inner surface
layer ls by a deep plant canopy parameterized by linearized flow equations in the upper
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canopy but where the unavoidably nonlinear dynamics in the lower canopy were treated
heuristically.

Identifying the inner shear stress layer depth (hi ) and the middle layer depth (hm) is
critical to applying the asymptotic small perturbation theory to interpret measurements
or model results and so the definitions in (B1) and (B3) must be modified to account for
the presence of a deep canopy. The first and most obvious change is that, if (B4) is used
to describe the approach flow above the canopy, the origin of the z coordinate must be
shifted from z = 0 to z = d + z◦, where d is the displacement height (or mean height of
the within-canopy momentum sink, e.g. Kaimal & Finnigan (1994)) and z◦ now refers to
the roughness length of the canopy, so that (B4) becomes

ub(z)= u∗
κ

ln
(

z − d

z◦

)
, (B5)

so that ub(d + z◦)= 0. The second set of changes follows from the fact that the flux-
gradient relationship between turbulent shear stress and velocity shear in the RSL just
above a tall canopy is altered by the presence of energetic coherent turbulence, which
originates from the hydrodynamic instability of the inflection in the mean velocity profile,
which always develops at the top of the canopy because of the distributed pressure drag on
the foliage (Raupach 1994; Finnigan et al. 2009).

Harman & Finnigan (2007, 2008) have successfully parameterized this effect using RSL
functions, φ̂((z − d)/δω) and ψ̂((z − d)/δω), where δω is the vorticity thickness evaluated
at canopy top hc. These RSL functions are analogous to the familiar Monin–Obukhov
functions φ((z − d)/LMO) and ψ((z − d)/LMO), which are used to accommodate
diabatic stability in surface layer parameterizations, LMO being the Obukhov length (e.g.
Garratt 1992). After incorporating these RSL functions, the mixing length relationship and
the above-canopy log law in the approach flow become, respectively,

τb = u2∗ = κ u∗ (z − d) φ̂−1
(

z − d

δω

)
∂ ub
∂z

, (B6)

and

ub(z)= u∗
κ

[
ln

(
z − d

z◦

)
+ ψ̂

(
z − d

δω

)]
(B7)

where

ψ̂

(
z − d

δω

)
=

∫ ∞

z−d

1 − φ̂
(

z′
l/β

)
z′ dz′ (B8)

is the integrated form of φ̂((z − d)/δω). Harman & Finnigan (2007) define φ̂((z − d)/δω)
as

φ̂ = 1 − c1 exp
(

−β c2 z

l

)
, (B9)

where β = u∗/ub evaluated at hc, Lc = (cd a)−1, l = 2 β3 Lc and c1 = 1 − φ̂(0). Here Lc
is the momentum absorption length of the canopy, with cd a leaf level drag coefficient and
a the leaf area per unit volume of the foliage. In (B9), c1 is a constant of integration and c2
relates the vertical scale of the RSL to the vorticity thickness δω. Following Harman &
Finnigan (2008) we choose c2 = 1/2, therefore (B9) yields c1 = e1/4. ψ̂ is obtained
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from (B9). For example when φ̂ = 1,

ψ̂ = c1 Γ

(
0,

z

8 L2
c β

6

)
, (B10)

where Γ is the incomplete Gamma function.
The forms of the φ̂ and ψ̂ functions as well as the examples of the application of this

RSL theory to forest canopies of different form and density in Harman & Finnigan (2007,
2008) reveal that the presence of the φ̂ function in the flux-gradient relationship (B6)
reduces the mean velocity gradient ∂ ub/∂z in the RSL because the additional turbulent
mixing produced by the coherent eddies produced by the canopy-induced inflection point
instability (Raupach et al. 1996; Finnigan et al. 2009) allows the constant momentum flux
τb = u2∗ to be supported by a smaller velocity gradient, while at the same time the actual
velocity ub in the RSL is increased by the ψ̂ term in (B7).

These changes to both the log law and to the flux-gradient relationship are incorporated
in the following modified form of the implicit relationship for ĥi which is appropriate for
use over a canopy or other tall roughness:

ĥi
L

[
ln

(
ĥi
z◦

)
+ ψ̂

(
ĥi

)]
φ̂

(
ĥi

) = 2κ2. (B11)

Equation (B11) yields the depth of the inner shear stress layer but the origin of the vertical
coordinate is now the displacement height d and the location of the top of the shear stress
layer must be measured from that location.

Equivalent adjustments to the formulae for hm (B1) and (B2) should also be made.
However, because the changes to ub and ∂ ub/∂z are only significant within the RSL
(which occupies only the lowermost portion of the shear stress layer), the only sensible
change to hm results from the upward shift in the origin of the vertical coordinate of ĥm to
z = d + z◦.
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