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ABSTRACT

This study examines properties of gravity currents in confined channels with sheared environmental flow.

Under the assumptions of steady and inviscid flow, two-dimensional analytic solutions are obtained for a wide

range of shear values. The slope of a gravity current interface just above the surface increases as environ-

mental shear a increases, which is consistent with previous studies, although here it is shown that the interface

slope can exceed 808 for nondimensional shear a. 2. Then the inviscid-flow analytic solutions are compared

with two- and three-dimensional numerical model simulations, which are turbulent and thus have dissipation.

The simulated current depths are systematically lower, compared to a previous study, apparently because of

different numerical techniques in this study that allow for a faster transition to turbulence along the gravity

current interface. Furthermore, simulated gravity current depths are 10%–40% lower than the inviscid an-

alytic values. To explain the model-produced current depths, a steady analytic theory with energy dissipation

is revisited. It is shown that the numerical model current depths are close to values associated with the

maximum possible dissipation rate in the simplest form of the analytic model for all values of a examined in

this study. A primary conclusion is that dissipation plays an important and nonnegligible role in gravity

currents within confined channels, with or without environmental shear.

1. Introduction

Severe thunderstorms often have layers of relatively

cold air near the surface (typically called ‘‘cold pools’’)

that are created by evaporation and melting of hydro-

meteors. The relatively cold air usually sinks and spreads

along the surface, displacing relatively warmer environ-

mental air that is forced upward. These flow patterns,

called gravity currents (or density currents), have been

studied analytically for quite some time [see, e.g.,

Ungarish (2009) for a review]. Theoretical analytic studies

pioneered by vonK�arm�an (1940) andBenjamin (1968) are

often used to explain the propagation speed of the cold

pool’s surface gust front given parameters such as the ex-

cess density and depth of the relatively cold air.

In a landmark study of the problem, Benjamin (1968)

showed how steady gravity current propagation is af-

fected by a finite channel depth (the distance between

flat, rigid lower and upper boundaries) in unsheared

environments. Specifically, gravity currents propagate

more slowly as channel depth decreases (all else re-

maining fixed). Benjamin (1968) also showed that if one

neglects kinetic-energy dissipation (i.e., if the flow is

assumed inviscid) then only one solution is possible: the

dense air must fill exactly one-half of the channel at some

point behind the surface front where the flow is hydro-

static.When dense air fills less than one-half of the channel

depth in this region, steady solutions are still possible, but

kinetic-energy dissipation (or simply ‘‘dissipation’’) is re-

quired to maintain steady flow-force balance (i.e., con-

servation of total mass and momentum). From a series of

arguments, Benjamin (1968) concluded that dissipation is

likely in most cases, and that it plays an ‘‘essential role’’

(Benjamin 1968, p. 247) in gravity current dynamics.

In the atmospheric sciences, several analytic studies

have focused on the effects of environmental wind shear

on gravity currents, because both shear and cold pools

are prevalent in severe storm environments. In one

series of articles (Xu 1992, hereafter X92; Xu and

Moncrieff 1994; Xue et al. 1997, hereafter XXD97; and

Xue 2000) analytic study found, generally speaking, that

the depth and propagation speed of the relatively cold

air must increase as environmental shear increases to
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maintain steady flow–force balance. In a related series

of two-dimensional, time-dependent numerical simula-

tions that were initialized partly with the analytic results,

Xu et al. (1996, hereafter XXD96), XXD97, and Xue

(2000) showed support for the analytic results, and noted

that turbulence was prevalent along gravity current in-

terfaces, which implies the existence of dissipation (e.g.,

Wyngaard 2010).

A primary goal of the present study is to reexamine

how well the inviscid-flow analytic solutions from past

studies compare with numerical model simulations. Be-

cause of advances in computing technology, we are able

to use higher resolution than was used previously, and we

can conduct simulations in three dimensions (instead of

two, which was used in all the aforementioned studies).

These advances allow for a more-realistic treatment of

turbulence and its associated dissipation.

We also revisit analytic solutions for gravity currents

in shear that account for dissipation (i.e., do not as-

sume inviscid flow). Among the articles cited in pre-

vious paragraphs, only X92 (his section 4) studied this

problem analytically. We examine the simplest form

of his analysis, in which dissipation is uniform with

height [the same approach used by Benjamin (1968)],

and compare these results with numerical model out-

put. To our knowledge, the following comparison of

dissipative analytic results with numerical model out-

put has never been done previously for cases with en-

vironmental shear.

The scope of the present study is limited to uniform

environmental shear that completely fills a channel,

which is the same setup studied by X92 and XXD96.

Flow within the cold pool, which was considered by Xu

andMoncrieff (1994) and some later studies, is neglected

for simplicity and because such flow has only a small ef-

fect in most cases (e.g., Weisman 1992, p. 1840; Xue 2002).

2. Review of steady, inviscid analytic theory

In this section we briefly review steady, inviscid ana-

lytic theory for gravity currents. The conceptual frame-

work is shown schematically in Fig. 1. The relatively

dense air (i.e., cold pool, denoted by shaded region) is

assumed to move at speed c0 and has an approximately

constant depth h at some point behind the surface gust

front (which is located at xs). The gravity current is as-

sumed to exist in a channel of depth H. The cold pool is

assumed to have constant buoyancy b̂52gDu/u0 where g
is gravitational acceleration, u0 is the (constant) potential

temperature of the environment (which is assumed to

be isentropic and thus gravity waves are not considered),

and Du is the (constant) potential temperature differ-

ence across the gravity current interface. A constant value

for Du, and thus b̂, is technically not necessary but this

assumption is often made for the sake of simplicity. In

this framework, a convenient velocity scale U associ-

ated with specified parameters H and b̂ is defined as

follows: U[ (b̂H)1/2.

FIG. 1. Conceptual setup for the analytic study of a gravity current in a confined channel with environmental shear. The horizontal wind

speed at the bottom-right corner of the control volume is c0 and the horizontal wind speed just above the cold pool (i.e., bottom of the

outflow) on the left side of the control volume is u0. For this study, the flow is assumed stagnant in the relatively dense air (i.e., the cold

pool, indicated by gray shading).

1122 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 71



The Boussinesq approximation is made in this study,

which is applicable to atmospheric gravity currents

having depth h that is small compared to the density scale

height (;8 km). Free-slip boundary conditions are as-

sumed for the rigid lower and upper boundaries. Finally,

an assumption made for this section only is that the flow

is inviscid.

a. Flow–force balance

By integrating the governing equations for mass and

momentum over the entire volume shown in Fig. 1, it is

possible to determine required relationships between var-

iables such as current depth h and propagation speed c0,

assuming the flow remains steady. This analysis is done in

a frame of reference moving with the surface gust front.

The environmental flow (i.e., the flow on the right side

of the control volume) is assumed herein to have form

c(z)52c01 az for 0# z#H; that is, the incoming flow

varies linearly with height over the entire channel. The

parameter a, which is the vorticity in the environment, is

used herein to quantify the environmental shear, as inX92.

Results for a 6¼ 0 were first obtained by X92; further

details can be found in his section 2. Under the as-

sumptions noted above, for any specified shear a there is

only one solution for nondimensional current depth h/H

and propagation speed c0/U. For a 5 0 (no environ-

mental shear) these values are h/H 5 c0/U 5 0.5, which

were first determined by Benjamin (1968). The primary

discovery byX92 is that both h/H and c0/Umust increase

as a increases to maintain steady, inviscid flow–force

balance. Some values of these two variables are listed in

the first rows of Tables 1 and 2.

b. Interior flow solutions

Details of the interior flow (i.e., the flow within the

control volume) can also be determined under the

assumptions of steady and inviscid flow. The key step

in this type of analysis is to determine the shape of a

gravity current interface h(x) such that Bernoulli energy

is constant along the lowermost streamline in the flow

(i.e., the streamline that passes along the surface for x .
xs and along the top of the cold pool for x , xs). The

interior flow must also satisfy the equation =2c 5 a (i.e.,

the definition of vorticity), where c is streamfunction.

Details can be found in section 3 of X92.

To our knowledge, precise solutions for h(x) have

only been determined numerically. X92 used an iterative

method on a finite-element grid, as described by Xu et al.

(1992). The control-volume solutions for maximum height

hm and propagation speed c0 (see previous subsection) are

used as lateral boundary conditions. Results by X92 (his

Fig. 4) reveal two important conclusions that we evaluate

further in this study: 1) the slope of the interface must be

608 at the surface, regardless of the value ofa (X92, p. 515),

and 2) the slope of the interface above the surface (e.g., at

z 5 0.5hm/H) increases as a increases (X92, p. 515).

Here we reproduce the results of X92, and we also

consider larger values of a than were shown in his

study. To this end, we created two-dimensional solu-

tions that generally follow the technique of Xu et al.

(1992). Our overall approach to determine h(x) is es-

sentially the same; that is, we iteratively adjust the

lower surface of an analysis grid, assuming that this

lower surface represents the top of a gravity current

cold pool. The most notable difference from the meth-

odology of Xu et al. (1992) is that we use a grid with

strictly vertical columns, rather than the more gen-

eral finite-element mesh used by Xu et al. (1992). We

further use the coordinate transform of Gal-Chen and

Somerville (1975), such that the shape of the gravity

current interface is handled equivalently to terrain in

many atmospheric numerical models. The solution pro-

cedure is nearly identical to Xu et al. (1992) except

that our ‘‘guesses’’ for new current depth at each itera-

tion are simple additions or subtractions of a small value,

with the sign of the displacement based on the diag-

nosed value of Bernoulli energy along the lowermost

TABLE 1. Maximum values of nondimensional gravity current

depth h/H for specified environmental shear a. The first row lists

analytic values for steady inviscid flow (X92, section 2). The second

row lists two-dimensional numerical model results from XXD96

(their Table 1). All remaining results are from numerical simula-

tions in the present study, analyzed over23# x/H# 0, using time-

averaged output from 20 to 30min.

Simulations a520.84 a 5 0 a 5 0.88 a 5 2.26

Inviscid analytic 0.300 0.500 0.700 0.900

2D from XXD96 with

Dx 5 50m, Dz 5 25m

0.214 0.405 0.667 0.857

Dx 5 50m, Dz 5 25m 0.187 0.356 0.635 0.827

Dx 5 Dz 5 25m 0.191 0.364 0.583 0.826

Dx 5 Dz 5 12.5m 0.200 0.370 0.588 0.813

Dx 5 Dz 5 6.25m 0.205 0.366 0.602 0.829

Dx 5 Dz 5 3.125m 0.209 0.372 0.593 0.828

TABLE 2. As in Table 1, but for nondimensional propagation speed

c0/U.

Simulations a 5 20.84 a 5 0 a 5 0.88 a 5 2.26

Inviscid analytic 0.328 0.500 0.757 1.252

2D from XXD96 with

Dx 5 50m, Dz 5 25m

0.318 0.486 0.722 1.30

Dx 5 50m, Dz 5 25m 0.297 0.478 0.746 1.241

Dx 5 Dz 5 25m 0.296 0.473 0.745 1.246

Dx 5 Dz 5 12.5m 0.297 0.476 0.741 1.241

Dx 5 Dz 5 6.25m 0.298 0.477 0.741 1.241

Dx 5 Dz 5 3.125m 0.298 0.477 0.741 1.240
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streamline. Our iteration method is cruder than the one

used by Xu et al. (1992), and undoubtedly requires more

iterations, but solutions with errors in h less than 0.001H

are determined in a few minutes on a single-processor

workstation using a 1601 3 161 analysis grid.

Results for three different values of environmental

shear a are shown in Fig. 2. The close correspondence

between this figure and an analogous one by X92 (his

Fig. 4) demonstrates the ability of our approach to re-

produce his results.

Further results—including solutions for relatively

large environmental shear not considered by X92—are

shown in Fig. 3. Variables for this figure have been di-

mensionalized using the scaling parameters of XXD96

(channel depth H 5 1 km, velocity scale U 5 10m s21,

potential temperature difference Du 5 23K).

For Fig. 3a, there is no environmental shear (a 5 0).

Our interface (gray curve) is indistinguishable from that

determined by Benjamin (1968, his Fig. 11). The inset

shows the expected result at the surface (i.e., a 608 angle).
Figure 3b shows the highest-shear case examined by X92,

a 5 0.88. As noted by X92, the current interface has

roughly a 608 angle from the surface to approximately

0.5hm/H. For Fig. 3c, the difference in wind speed DU
across the domain in the environment matches the in-

tegrated cold-pool intensity C, determined by the equa-

tion C2 5 2
Ð h
0 b̂ dz (e.g., Rotunno et al. 1988). In this

case, the expected 608 angle is found at the surface, but

the interface is notably steeper than 608 just away from

the surface. For Fig. 3d, we show the ‘‘high shear’’ case

of XXD96 (a5 2.26). The interface slope exceeds 808 in
this case.

FIG. 2. (left) Current interface (gray contour) and nondimensional streamfunction (black contours every 0.025), and (right) environ-

mental wind profile (vectors), for steady inviscid flow with a 5 (a) 20.84, (b) 0, and (c) 0.88 (cf. Fig. 4 of X92). A vector length of 1H

corresponds to a vector magnitude of 1.5U.
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FIG. 3. Steady inviscid gravity current solutions for environmental shear a 5 (a) 0, (b) 0.88, (c) 1.22, and

(d) 2.26. Gray contour is the interface, black contours show vertical velocity every 1m s21, and vectors show

surface-front-relative flow where a vector length of 0.1 km represents a vector magnitude of 15m s21. The

inset in the lower-left corner shows a close-up view of the interface near the surface; the dashed line denotes

a 608 angle from the horizontal.
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The results in Fig. 3 reconfirm many conclusions from

previous studies. For example, the interface slope at

the surface is 608, regardless of the value for a (e.g.,

Rottman et al. 1985, p. 279; X92, p. 515). Also, as envi-

ronmental shear increases, the gravity current just be-

hind the surface gust front is ‘‘thicker’’ (Rottman et al.

1985, p. 273) or ‘‘deeper’’ (X92, p. 515); as noted by X92

(p. 515), this result implies that interface slope above the

surface (e.g., at 0.5hm/H) becomes steeper as shear in-

creases. And, for large shear (a* 1), the interface slope

at one-half the maximum height (hm) exceeds 608 (Xu

and Moncrieff 1994, p. 443).

In the sections that follow, we evaluate whether nu-

merical model simulations reproduce the analytic solu-

tions discussed in this section. We note that inviscid flow

has been assumed throughout this section but that time-

dependent numerical models of atmospheric flows typ-

ically (if not always) include viscous effects.

3. Numerical modeling methodology

a. The numerical model

The numerical model for this study uses the com-

pressible Boussinesq equations,
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where u, y, and w are the three components of velocity,

u0 is a constant reference potential temperature, u0 [
u 2 u0 is perturbation potential temperature, g is grav-

itational acceleration, f[ p0/r0 is the pressure variable,
r0 is a constant reference density, and cs is the speed of

sound (set to a constant 300m s21 herein). The pertur-

bation pressure, p0 [ p 2 p0, is defined relative to a

reference profile p0(z) that is determined from the hy-

drostatic equation, ›p0/›z 5 2r0g. These equations, in

which compressibility is retained and the Boussinesq

approximation is made for the pressure-gradient terms,

have been used in several other numerical modeling stud-

ies of gravity currents (e.g., Droegemeier and Wilhelmson

1987; Klemp et al. 1994; XXD96).

The model is integrated using the three-step Runge–

Kutta scheme, with the split-explicit method for com-

pressible flows, following Wicker and Skamarock (2002).

Advection terms are calculated using the fifth-order

scheme from their study, except advection for u0 is

calculated using a weighted essentially nonoscillatory

(WENO) scheme (Shen and Zha 2010). All other gra-

dients are calculated using a second-order centered

scheme for the standard staggered C grid.

Although there are no explicit viscous terms in the

model equations, viscous effects do occur in our simula-

tions via the odd-ordered numerical algorithm used for

advection. As explained later, the odd-ordered scheme

has implicit diffusion of form =6 with a diffusion coef-

ficient proportional to Courant number (e.g., Wicker and

Skamarock 2002, p. 2089). We decided to neglect explicit

diffusion terms based on a similar decision by XXD96

(although they used explicit =4 terms for numerical rea-

sons) and because this model setup produces the mini-

mum necessary dissipation for this modeling system.

b. Model setup and initial conditions

Except for one difference (explained below) we use the

same initial conditions as XXD96. In short, the initial

interface is a simple mathematical relation [XXD96’s

Eq. (3.3)] that features a 608 angle from the horizontal

at the surface and roughly approximates the shape of

energy-conserving solutions. A comparison of precise in-

viscid interfaces from section 2b with the initial interfaces

using XXD96’s Eq. (3.3) is shown in Fig. 4. (We choose to

use the same initial interfaces as XXD96, rather than the

solutions from section 2 herein, to allow for straightfor-

ward comparison with their previously published results.)

The initial two-dimensional (2D) flow field satisfies the

equation =2c5 a at all points, and the initial 2D pressure

(f) field is determined from the equation =2f5 ›Fui /›xi,

where Fui (i 5 1, 2, 3) represents the right-hand sides of

Eqs. (1)–(3) (excluding the pressure gradient terms).

The one difference we made, compared to XXD96, is

to extend the initial block of cold air all the way to the

left boundary, thereby eliminating the need to consider

a left-moving front. Because we use open lateral bound-

ary conditions, it is straightforward to allow cold air at the

left boundary.Wehave also conducted all 2D simulations

with the exact XXD96 initial state (i.e., cold air in the

middle part of the domain only, with both left-moving

and right-moving fronts) and found very similar results to

those shown herein.

For nondimensionalization, we use the same scaling

parameters as XXD96. For reference, they are as fol-

lows: the length scale H is 1 km, the velocity scale

U[ (Hb̂)1/2 is 10m s21, the time scale T [ H/U is 100 s,

and the potential temperature differenceDu is23K. All
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results are presented nondimensionally using these scal-

ing parameters. We set r0 5 1 g kg21 and u0 5 300K.

The domain size is 40km in the direction perpendicular

to the gravity current front and is 1 km deep (the same

size as in XXD96). For three-dimensional (3D) simula-

tions, the domain size parallel to the initial front is 1 km

(i.e., the same as the channel depth), which is consistent

with our previous work (Rotunno et al. 2011). We show

the sensitivity to grid spacing in upcoming sections. Free-

slip boundary conditions are used at the bottom and top

of the domain, and open boundary conditions are used on

the left and right sides of the domain. For 3D simulations,

periodic boundary conditions are used in the y direction.

Random small-amplitude perturbations in u and y are

added along the interface in the initial conditions of 3D

simulations to initiate 3D motions. All simulations are

integrated to at least 1800 s (18T). Following XXD96, we

study four nominal values for environmental shear: a 5
20.84, 0, 0.88, and 2.26, corresponding to steady, inviscid

gravity current depths of h/H 5 0.3, 0.5, 0.7, and 0.9.

c. Analysis techniques

Model output is saved every 15 s (0.15T). For time-

average plots, the output is first shifted horizontally so

that the surface gust front is in the same location, which

is here denoted as x/H 5 0. The location of the surface

gust front is defined as the Du 5 21.5K contour at the

lowest model level (i.e., one-half the initial potential

temperature difference).

Gravity current depth h is determined quantitatively

using the formula

h(x, y)5
1

b̂

ðH
0
B(x, y, z) dz , (6)

where B(x, y, z)5 g[u(x, y, z)2 u0]/u0. This method was

also used by Crook and Miller (1985), Klemp et al.

(1994), and Bryan and Rotunno (2008, hereafter BR08),

and usually yields similar values to the method of XXD96

(who used the 0:53 b̂ contour). An advantage of Eq. (6),

compared to XXD96’s method, is that Eq. (6) always

yields single-valued results.

4. Two-dimensional simulations

We first examine results from 2D simulations, which

were used for all simulations by XXD96. The primary

goals of this section are to reexamine their results in light

of different numerical techniques and higher resolution,

and to assess how well the inviscid analytic solutions

(section 2 of X92 and section 2 herein) compare with

simulated gravity currents.

Table 1 lists maximum values of nondimensional

gravity current depth h/H; the first row lists the inviscid

analytic solutions (which are used in the construction of

the initial conditions following XXD96); the second row

lists the results from the 2D numerical simulations of

XXD96 (as reported in their Table 1); all other results

are from our numerical simulations, where we have av-

eraged h from 20 to 30min and list the maximum value

from23# x/H# 0. The most notable conclusion drawn

from Table 1 is that all model simulations (including

those by XXD96) produce lower values of h/H than the

steady inviscid analytic results of X92. This difference is

almost certainly attributable to kinetic-energy dissipa-

tion, which seems inevitable in Boussinesq gravity cur-

rents because turbulence develops on the sheared

current interface (e.g., XXD96, p. 784). Output from 2D

simulations for a5 0 and 2.26 are shown in Figs. 5 and 6.

For the highest resolution used in this study (Dx5 Dz5
3.125m; Figs. 5a and 6a) turbulent eddies clearly de-

velop near the leading edge (x/H ’ 20.2) of the gravity

current.

FIG. 4. Comparison of steady, inviscid analytic interfaces (black, from section 2b) with the approximate interfaces

used for initial conditions following XXD96 [gray, their Eq. (3.3)] for a 5 (a) 20.84, (b) 0, (c) 0.88, and (d) 2.26.
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A second notable result from Table 1 is that all sim-

ulations from the present study produce lower values of

h/H than the numerical simulations of XXD96. To test

whether this difference was attributable to resolution,

we repeated our simulations using the same grid spacing

as XXD96 (Dx 5 50m, Dz 5 25m); these simulations

(Figs. 5b and 6b) still produce lower values of h/H than

reported by XXD96. We then modified the numerical

techniques of our model to more closely match those

of XXD96. Ultimately, we found that the =4 diffusion

scheme of XXD96 inhibits the growth of turbulence

along the gravity current interface. For example, with

their diffusion scheme (and their settings for diffusion

coefficients) added to our model, the turbulent eddies

are only apparent away from the surface gust front (i.e.,

for x/H # 21) (Figs. 5c and 6c); the same qualitative

results can be seen in the figures of XXD96. Maximum

values of h/H from these simulations (see values listed on

right side of Figs. 5c and 6c) aremore comparable to values

reported by XXD96. Hence, there is some ambiguity in

gravity current simulations due to numerical techniques,

with the comparatively higher-order schemes (and flow-

dependent diffusion) in our model yielding faster-growing

turbulence and smaller values of current depth h/H.

The no-shear case (a 5 0) is particularly interesting

because it is the case studied in detail by Benjamin

FIG. 5. Two-dimensional numerical model simulations for a5 0 (no environmental shear). Vectors show gust-front-relative flow at t5
30min and gray contours show potential temperature every 0.5K at the same time. The dashed black contour shows the diagnosed gravity

current depth averaged from 20 to 30min; the number on the right side of each panel is the maximum value. The solid black contour is

the analytic interface for steady inviscid flow. Using (a) Dx 5 Dz 5 3.125m; (b) Dx 5 50m and Dz 5 25m (as in XXD96); (c) as in (b),

except =4 diffusion is included following XXD96.
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(1968), who concluded that h/H . 0.347 would be

‘‘difficult, if not impossible to produce’’ (p. 219) because

of the likely effects of turbulence, and thus energy dis-

sipation, on the highly sheared current interface. Our

model results (Table 1) support this conclusion in the

sense that current depths are much closer to 0.347 (the

value corresponding to maximum possible dissipation

rate) than to 0.5 (the inviscid value) (Table 1). If we

calculate h/H at a distance far enough behind the gravity

current for the flow to be hydrostatic (typically x/H ,
21.5) then h/H is less than 0.347 for all simulations.

Figures 5 and 6 also show, as thick black lines, the

analytic current interfaces for steady, inviscid flow (see

section 2b). The model simulations only conform to this

shape very close to the surface where turbulent eddies

are necessarily weak. Once the turbulence develops, and

mixing occurs between the cold and warm fluid, then the

simulated current interface departs from the inviscid

analytic interface. For the zero-shear case, this departure

happens sooner (i.e., closer to the surface) with higher

resolution (cf. Figs. 5a and 5b). Furthermore, we note

that for heights between 0.35 and 0.5, the mean flow is

clearly from right to left (relative to the surface gust

front), even when using the =4 scheme of XXD96

(Fig. 5c). All these points considered, we conclude that

the inviscid analytic results are not being maintained by

the numerical model.

Another notable result from several analytic studies

(e.g., Rottman et al. 1985; X92) is that the gravity cur-

rent interface must be 608 from the horizontal where the

current intersects the surface (assuming free-slip bound-

ary conditions), regardless of environmental shear a.

FIG. 6. As in Fig. 5, but for a 5 2.26 (strong environmental shear).
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Time-averaged results for a 5 0 and 2.26 are shown in

Figs. 7 and 8. The slope of the interface (i.e., slope of

potential temperature contours) at the surface is not en-

tirely clear for the relatively low-resolution simulations

(Figs. 7a,b and 8a,b), but clearly asymptote to 608 for the
relatively high-resolution simulations (Figs. 7c,d and 8c,d).

In the absence of shear (Fig. 7), the interface slope quickly

becomes less than 608 away from the surface, which is

consistent with the inviscid-flow interface shape (solid

contour). For the high-shear case (Fig. 8), the interface

slope quickly becomes greater than 608, which is consistent

with Rottman et al. (1985) and Xu and Moncrieff (1994).

We conclude that the 608 slope occurs (as expected) in the

model simulations, but that this shape is not retained for

nondimensional heights greater than roughly 0.02 (i.e.,

;20m for the scaling parameters of XXD96).

5. Three-dimensional simulations

Present-day computing resources now allow for three-

dimensional simulations of gravity currents without

much effort. The primary anticipated difference be-

tween 2D and 3D simulations is a more-realistic repre-

sentation of turbulence. For 2D, vortex stretching is not

possible, with a typical consequence being turbulence

that grows unnaturally upscale (e.g., Moeng et al. 2004).

This interpretation is supported by a comparison of snap-

shots fromour 2Dand 3D simulations (Figs. 9 and 10). The

turbulent eddies are clearly larger in 2D, especially away

from the surface (z/H * 0.2).

Despite the differences in turbulence structure, the

model-produced propagation speeds are practically the

same in our 2D and 3D simulations, regardless of reso-

lution. All of our simulated gravity currents propagate

slightly slower than the inviscid analytic results. We

show nondimensional propagation speed c0/U over time

from our highest-resolution 3D simulations (Dx5 Dy5
Dz 5 6.25m) in Fig. 11, where we determine c0 by

tracking the surface gust front at the lowest model level.

All simulations undergo an adjustment period in the first

;5min, likely because of the somewhat arbitrary initial

interface shape (Fig. 4) for which flow cannot remain

steady. For t . 10min the propagation speeds (solid

lines in Fig. 11) are approximately steady.

Time series of diagnosed current depth h/H are shown

in Fig. 12 where the solid line is the average value and

gray shading illustrates minimum and maximum values

from any individual gridpoint. Values for Fig. 12 are

determined at some location behind the surface gust

front where the flow is hydrostatic, and viscous dissipa-

tion is negligible, so a fair comparison can be made with

analytic theory. After the initial adjustment, which takes

;15min, the mean current depth becomes quasi steady.

To be clear, we note that maximum andminimum values

in Fig. 12 are primarily associated with localized, tran-

sient turbulent eddies [see, e.g., Figs. 9 and 10 herein and

Fig. 10 of Rotunno et al. (2011)].

As with 2D simulations, the most significant quanti-

tative difference between simulations and inviscid ana-

lytic theory is the gravity current depth h/H. Specifically,

values of h/H from numerical simulations (for t .
20min) are 0.10H20.15H lower than values from in-

viscid analytic theory (i.e., 10%–40% lower than the

inviscid values). This difference seems likely attribut-

able to dissipation associated with turbulence, which is

inevitable and persistent in all our simulations (2D and

3D). Time-averaged plots of dissipation rate � are shown

in Fig. 13, where this variable is calculated as follows:

�5 tij
›ui
›xj

(7)

for i5 1, 2, 3 (the three coordinate dimensions), and the

stress can be expressed as

tij 5 g sign(1, uj)
F(ui)

D
, (8)

where g 5 ujD/60 is the flow-dependent diffusion co-

efficient, D is the grid spacing, and F(�) represents the
diffusive flux that is implicit in this model’s fifth-order

advection scheme; the exact form of F(�) is given by

Wicker and Skamarock [2002, p. 2089, their Eq. (4c)].

We note that dissipation occurs primarily in a thin layer

near the diagnosed current depth (denoted by the

dashed red line in Fig. 13). The maximum value of (av-

eraged) � occurs close to the leading edge of the gravity

current (i.e., x/H.21). Also, of particular relevance for

analytic studies that account for dissipation, we note that

� is found primarily within receding flow—that is, where

flow is from right to left (relative to the surface current).

6. Analytic theory with dissipation

Themost notable result from the preceding analysis of

model simulations is that the current depths are always

lower than the inviscid analytic solutions. The same result

was found byXXD96 for analogous simulations although,

as noted above, our simulations produce systematically

lower current depths than their simulations, presumably

because of different numerical techniques. Because tur-

bulence (and associated dissipation) is prevalent in our

simulations, it seems clear that a proper theoretical de-

scription of these flows should include dissipation.

Dissipation in analytic models of gravity currents is

notoriously complicated, primarily because there is no
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FIG. 7. Close-up view of 2D numerical simulations near the surface. Vectors and potential temperature contours are as in Fig. 5. The

solid black contour is the analytic interface for steady inviscid flow. The dashed line denotes a 608 angle from the horizontal.
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FIG. 8. As in Fig. 7, but for a 5 2.26.
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unique way to include viscous effects. For the zero-shear

case, Benjamin (1968) assumed that the downstream

(i.e., receding) flow remained unsheared, which is equiv-

alent to assuming the dissipation occurs uniformly with

height. Although dissipation is actually localized near

the current interface in realistic gravity currents, which

Benjamin acknowledged (p. 220), his assumption of uni-

form dissipation with height simplifies the mathematics

considerably and yields results (such as the well-known

h/H 5 0.347 depth for maximum possible dissipation

rate) that subsequent studies have shown to be qualita-

tively accurate and useful in practice (e.g., Klemp et al.

1994). Other approaches to include dissipation are cer-

tainly possible; for example, Klemp et al. (1994; see their

appendix) allowed for localized dissipation near the

current interface, but found that results are ‘‘nearly in-

distinguishable’’ from Benjamin’s results.

For sheared environments, the only analytic study

with dissipation (to our knowledge) is X92’s (see his

section 4). He considered dissipation in a comprehen-

sive manner by including two additional parameters:

a magnitude of energy loss �0 and a vorticity generation

parameter Da, which essentially accounts for diffusion

of vorticity between the lowest streamline (i.e., that

FIG. 9. As in Fig. 5, except at t 5 20min using 6.25-m grid spacing for (a) a two-dimensional simulation, (b) a three-dimensional

simulation (showing instantaneous fields at the first grid row), and (c) a three-dimensional simulation (showing fields averaged in y). The

diagnosed gravity current depths (black dashed contours) in this figure are instantaneous values at t 5 20min.
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passing along the top of the cold air) and the inviscid

flow above. Constraints imposed by flow–force balance

provide closure to this framework and allow for deri-

vation of additional parameters, like the depth Dh of

the interfacial layer where diffusion of vorticity occurs.

Benjamin’s approach (i.e., uniformenergy losswith height)

exists in X92’s framework and corresponds to Da 5 0.

(X92, p. 518, proved that uniform energy loss is only

possible in this framework when Da 5 0.)

X92’s approach allows for realism (e.g., dissipation

confined near the current interface) and flexibility (in

the sense that different flow structures are permitted,

which in principle could bematched to simulated gravity

current structure). However, we decided not to explore

the complete range of possible solutions in his frame-

work, but opted to examine only the case of Da 5 0

(i.e., the case of uniform energy loss) in the spirit of

Benjamin’s study. Although Benjamin (1968, p. 220)

clearly notes the shortcomings of this approach, primarily

because dissipation is usually confined near the gravity

current interface (e.g., Fig. 13 herein), nevertheless, in

the spirit of Klemp et al. (1994), we find results to be

encouragingly close to our model simulations, as demon-

strated below.

Here, we briefly review a derivation of this limiting

case (Da 5 0), focusing on some dynamical aspects of

FIG. 10. As in Fig. 9, but for a 5 2.26.
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the derivation; further details are available in X92’s

section 4. The velocity profile on the right side of a

control-volume c(z), and that on the left side u(z), are

given simply by

c(z)52c0 1az and (9)

u(z)52u01a(z2 h) for z$ h

5 0 for z,h , (10)

where c0 and u0 represent front-relative flow at the

bottom of the respective layers. To be clear, even though

shear (i.e., vorticity) is the same in the inflow and out-

flow layers, vorticity conservation is not assumed along

streamlines. Dissipation and diffusion processes are

permitted, and assumed to occur, inside the control

volume. The assumption of identical shear (vorticity)

profiles is made for the sake of simplicity, and we eval-

uate the merits of the subsequent results below.

Flow–force balance is done in the usual way (e.g.,

Benjamin 1968; X92) using the conceptual setup as

shown in Fig. 1, except now it is recognized that dissipa-

tion occurs somewhere inside the control volume (and,

incidentally, the current interface is not smooth). We use

the governing equations and methodology from section 2

of BR08 except that the incompressible approximation is

made here by setting density to a constant value.

FIG. 11. Nondimensional gravity current propagation speed (c0/U) for a 5 (a) 20.84, (b) 0, (c) 0.88, and (d) 2.26.

The solid line is the value from 3D simulations with 6.25-m grid spacing. The long-dashed line denotes the (constant)

analytic value for steady inviscid flow (section 2 of X92), and the short-dashed line denotes the (constant) analytic

value for maximum dissipation rate (see section 6 herein).
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In brief, integration of the mass continuity over the

control volume, using the sheared profiles given by Eqs.

(9) and (10), yields a relation between c0 and u0:

c05 u0

�
12

h

H

�
1a

h

H

�
H2

h

2

�
. (11)

The vertical velocity equation is integrated vertically on

the left side of the control volume to give perturbation

pressure f as a function of height. Pressure at the lower-

left corner fL,0 is equated to the surface stagnation

pressure at the gravity current gust front fs, which is

then related to propagation speed c0 in the usual way by

considering conservation of energy along a streamline at

the surface in the environment, which yields c20/25fs.

These steps (see p. 538 of BR08 for more details) pro-

vide the solution for perturbation pressure f on the left

side of the control volume:

fL(z)5
c20/22 b̂z for z, h ;

c20/22 b̂h for z$ h .
.

(
(12)

The main solution is then determined by integration of

the horizontal momentum equation over the control

volume as conceptualized in Fig. 1. Although viscous

effects are included in the analysis, all terms with vis-

cosity drop out early in the derivation because these

FIG. 12. Nondimensional gravity current depth (h/H) for a5 (a)20.84, (b) 0, (c) 0.88, and (d) 2.26. The solid line

shows the average value, and gray shading encloses minimum andmaximum values, from 3D simulations with 6.25-m

grid spacing. The long-dashed line denotes the (constant) analytic value for inviscid flow (section 2 of X92), and the

short-dashed line denotes the (constant) analytical value for maximum dissipation rate (see section 6 herein).
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FIG. 13. Dissipation rate � (contours every 0.005m2 s23) from 3D simulations with 6.25-m grid spacing. Shading denotes u0 ,20.3K. The

red dashed line denotes the diagnosed gravity current depth. All fields are averaged in y and then averaged in time from 20 to 30min.
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terms are considered negligible (i.e., the flow is laminar)

on the left and right boundaries of the control volume,

and zero stress is assumed along the lower and upper

boundaries. The remaining expression,

ðH
0
c2 dz2

ðH
h
u2 dz5

ðH
0
fL dz , (13)

is the usual expression for flow–force balance, although

here we recognize that u and c are functions of height.

We then insert Eqs. (9), (10), and (12) into Eq. (13) and

rearrange, making use of Eq. (11). A quadratic equation

for c0 can be derived, analogous to the one derived by

X92 (p. 517). Expressed as Ac20 1Bc0 1C5 0, we find

the coefficients

A[2H(H1 h) ,

B[ 2aH2h ,

C[ b̂h(H2 h)(2H2 h)2a2h2 H22
2

3
hH1

1

6
h2
�
.

�
(14)

A physically realistic solution (i.e., positive propagation

speed) is found for one of the roots:

c05
2B2 (B22 4AC)1/2

2A
. (15)

In contrast to inviscid-flow solutions (e.g., section 2 of

X92 and section 2a herein), which permit only one value

of h/H for any given value of a, analytic models with

dissipation permit multiple values of gravity current

depth. [See also the appendix of Klemp et al. (1994)

for a 5 0, and section 4b of X92 for a 6¼ 0.] We sum-

marize all possible states from the analytic solutions

examined herein for four values of a in Fig. 14. We plot

propagation speed nondimensionalized in two ways:

1) c0/(b̂H)1/2 5 c0/U is plotted as a solid-black curve,

which is the traditional nondimensionalization based

on external parameters, and 2) c0/(b̂h)
1/2 is plotted as

a solid gray curve, which readily shows whether results

are finite as h/H / 0 (i.e., the case of infinite channel

depth). We also plot dissipation rate e, which is deter-

mined by the difference in energy flux between the two

sides of the control volume,

e[

ðH
0
cER dz2

ðH
h
uEL dz , (16)

where energy on the right and left sides are, respec-

tively, ER(z) [ c2(z)/2 and EL(z) [ u2(z)/2 1 fL(z).

This variable is also nondimensionalized in two ways:

1) e/(b̂3H5)1/2 is plotted as a dashed black curve and

2) e/(b̂3h5)1/2 as a dashed gray curve. Steady results that

require net kinetic energy input [negative values of e as

defined by Eq. (16)] are unphysical and are not shown in

Fig. 14; these states correspond to most of the empty

‘‘white space’’ in Fig. 14. We further exclude solutions

that permit u(H) . 0—that is, flow from left to right on

the outflow side of the control volume (Fig. 1)—which

occurs only when a. 0. This latter configuration allows

for circulations above the cold pool that feature sinking

air somewhere above the cold pool, which are outside

the scope of the present analysis. We note that c(H) .
0 is permitted—that is, flow from left to right on the

inflow side of the control volume—which is consistent

with ascent everywhere to the right of the gravity cur-

rent (see, e.g., Fig. 2c).

We reiterate that these solutions represent a small

subset of the results derived by X92. For example, the

rightmost point of all curves in Fig. 14 corresponds to

the inviscid solutions from section 2 of X92 (note that

e5 0 at these points), our solid-black curves are subsets

of X92’s Fig. 7b (if plots of his Fr0 are constructed along

a constant a), and our black dashed curves correspond

with the energy loss (�0) contours in his Fig. 7a (if his

�0 is plotted as a function of h along a constant a). Of

particular interest here, the maximum-dissipation so-

lutions (which are discussed further below) are easily

identifiable by the maximum in the black dashed curves

in our plots, and can be identified by the leftmost con-

tour for a given a on X92’s Fig. 7. For example, for a5
0 (Fig. 14b) the maximum dissipation rate e/(b̂3H5)1/2

occurs for h/H 5 0.347, which is point M on X92’s

Fig. 7a.

We now consider the full range of possible solutions

for a given a. For a 5 0 (Fig. 14b) our results are iden-

tical to results by Benjamin (1968) (cf. his Figs. 5–7).

From Fig. 14b the following well-documented conclu-

sions can be drawn: 0# h/H# 0.5 is required for steady

flow, the maximum possible dissipation rate e/(b̂3H5)1/2

occurs for h/H 5 0.347 and solutions are obtained for

a gravity current in an infinitely deep channel (h/H5 0).

For the case of negative environmental shear (Fig.

14a), steady flows are possible for 0 # h/H # 0.3, the

maximumpossible dissipation rate e/(b̂3H5)1/2 occurs for

h/H5 0.197, and (like the no-shear case) nonzero results

are obtained for h/H 5 0.

For the two cases of positive environmental shear

(Figs. 14c,d) the maximum-dissipation solutions (peaks

of black dashed curve) and inviscid-flow solutions

(rightmost points on all curves) are shifted toward larger

values of h/H as a increases. But the most notable dif-

ference from the other cases is that solutions are not

possible for infinitely deep domains (h/H 5 0) for a . 0.

[Infinite-depth solutions are also not possible for any
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u(H) . 0 (shaded region in Figs. 14c,d).] This curious

result occurs for all a . 0 and is attributable to the as-

sumption in this study that shear fills the entire channel.

For an infinitely deep channel with a . 0, flow on the

upper-right corner of the control volume becomes positive

for z . c0/a [from Eq. (9)]. Further, and more important,

the total energy flux on the right side of the control-

volumeER,t [first term on right-hand side of Eq. (16)] can

become positive for deep channels (i.e., small values

of h/H); this situation corresponds to net energy loss

through the right side of the control volume and would

require net energy input within the domain to balance,

which is not physically possible (under the equation set

used herein). In contrast, for a # 0, it is impossible to

have c. 0, and thus ER,t , 0, and so steady solutions are

possible for h/H/ 0.We reiterate that this curious result

(i.e., no solutions for infinitely deep domain witha. 0) is

attributable to the assumption that shear fills the entire

channel and is not necessarily associated with other shear

profiles (e.g., shear near the surface only).

FIG. 14. Complete range of solutions for a steady analytical theory with dissipation for environmental shear a 5
(a)20.84, (b) 0, (c) 0.88, and (d) 2.26. Solid curves show propagation speed and dashed curves show dissipation rate,

both nondimensionalized in different ways, as indicated in the legend. The dashed black curve has beenmultiplied by

10 for clarity. The rightmost points of all results correspond to the inviscid solutions from section 2 of X92 (cf. first line

of Tables 1–2); see text for explanation of how these results compare to figures in section 4 of X92. The shaded region

shows where solutions are possible with e . 0, but u(H). 0 (i.e., the flow is from left to right on the outflow side of

Fig. 1), which is outside the scope of this study.
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Results corresponding to the maximum dissipation

rate [i.e., maximum value of e/(b̂3H5)1/2] are plotted for

23 # a # 3 in Fig. 15 (dashed line) and are compared

with inviscid analytic solutions (solid line). We note that

the dashed curve in Fig. 15a connects the ‘‘turning

points’’ of contours (i.e., ‘‘cusp points’’ where contours

are exactly vertical) in Fig. 7a of X92, and the dashed

curve in Fig. 15b connects the turning points of the Fr0
contours in Fig. 7b of X92. Results from our numerical

simulations (specifically our highest-resolution 3D sim-

ulations) are also included as dots. For propagation

speed c0/U (Fig. 15b) there is a very small difference

between the two analytic solutions, and the model sim-

ulations are reasonably described by either one. For

current depth h/H (Fig. 15a), there is a notable differ-

ence in the inviscid and maximum-dissipation solutions,

although both curves have the same qualitative trend

(i.e., h/H increases as a increases). The average model

results (dots) are much closer to the maximum-dissipation

results. (As noted in the previous section, the higher

and lower values, denoted by vertical bars in Fig. 15a,

are primarily associated with transient turbulent eddies.)

The better correspondence of model results with the

steady maximum-dissipation analytic results supports

the conclusion that dissipation plays an essential role in

gravity currents [to borrow a phrase used by Benjamin

(1968, p. 247)]. A similar conclusion was reached in

section 5 of XXD96.

In our previous studies (BR08; Rotunno et al. 2011)

we also found that simulated gravity current depths

tended to be similar to the analytic maximum-dissipation

value hm, specifically for simulations in which initial

cold-pool depth exceeds hm (as in simulations herein).

This conclusion is somewhat ‘‘in the eye of the beholder’’

in the sense that model results do not always match

perfectly (e.g., Fig. 13 of BR08), and model simulations

are not precisely steady (e.g., Fig. 12 herein). To be clear,

we have viewed the maximum-dissipation solutions as

a likely upper bounds on steady gravity current depth

rather than an expected result for any particular simu-

lation; see BR08 (p. 543) and Rotunno et al. (2011) for

further explanation.

Future work could examine analytic solutions with the

more-realistic scenario in which energy dissipation is

localized near the top of the cold pool (i.e., Da . 0 in

section 4 of X92). There are some shortcomings asso-

ciated with our assumption of uniform energy loss

with height, particularly for relatively deep domains

(h/H / 0; see, e.g., p. 220 of Benjamin 1968). Never-

theless, the results (Fig. 15a) seem clearly superior to

inviscid analytic results as descriptors of the model

simulations, especially with regards to gravity current

depth. We further reiterate that turbulence (and asso-

ciated dissipation) is common in both observations and

simulations of gravity currents (at least for high Reynolds

number and Boussinesq flow), and thus some treatment

of dissipation is clearly warranted in analytic studies.

7. Summary and conclusions

We have examined properties of gravity currents in

confined channels with sheared environments, following

FIG. 15. Comparison of steady analytic solutions for inviscid flow (solid lines) and for

maximum dissipation rate as determined in section 6 (dashed lines): (a) nondimensional

current depth h/H; (b) nondimensional propagation speed c/U. See text for explanation of

how these results compare with Fig. 7 of X92. Dots show average results from 3D numerical

simulations with 6.25-m grid spacing; vertical lines in (a) denote minimum and maximum

values.
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the previous studies by X92 and XXD96. Steady inviscid

solutions, for which the entire 2D flow can be deter-

mined [following Xu et al. (1992)], show that the gravity

current interface just above the surface becomes steeper

as environmental shear a increases (consistent with

some results of past studies; e.g., Rottman et al. 1985,

X92, and Xu andMoncrieff 1994; see section 2b herein).

In an examination of a broad range of shear values, we

find that interface slope can exceed 808 for a . 2.

We then evaluated numerical model simulations to

see whether they could reproduce the steady, inviscid

analytic results. Using essentially the same initial con-

ditions as XXD96, our 2D numerical simulations pro-

duce lower values of gravity current depth h/H as

compared to values from their study. We attribute this

difference primarily to different numerical techniques in

our numerical model that allow for a faster transition to

turbulence. We also examined 3D simulations, which

produce 10%–40% lower values of h/H than steady,

inviscid analytic theory.

To explain why gravity currents are always shallower

in our simulations than the steady inviscid results, we

reexamined the analytic flow–force balance with dissi-

pation from section 4 of X92. We examined only the

simple, but seemingly effective, assumption of uniform

energy loss with height [used for the zero-shear case by

Benjamin (1968)], which corresponds to Da5 0 in X92’s

framework. We further showed that simulated current

depths are similar to the value associated withmaximum

possible dissipation rate in this analytic framework. A

primary conclusion from this comparison is that dissi-

pation plays an important and nonnegligible role in

gravity current dynamics, with or without environmental

shear.

A confined channel was assumed throughout this study,

which is a common assumption for studies of gravity

currents. By using higher resolution, three dimensions,

and by evaluating dissipative as well as inviscid analytic

models, this article has broadened the perspective on this

approach to studying gravity currents. However, a con-

fined channel is generally acknowledged to be problem-

atic when applying relatively high-shear (a * 1) results

to atmospheric gravity currents. XXD96 referred to

the rigid upper boundary as ‘‘an important limitation’’

(p. 785) and noted that, for the high-shear case (a 5
2.26), the rigid upper boundary ‘‘clearly limit(s) the

applicability of this particular experiment to atmo-

spheric flows’’ (p. 779). Similarly, Davies-Jones and

Markowski (2013) noted how the flow of environmental

air can be affected by an ‘‘artificial lid’’ (p. 1214). For

these reasons, we have addressed a different approach

to studying gravity currents in shear in a separate study

(Bryan and Rotunno 2014).
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