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ABSTRACT

Extant theoretical work on the steady-state structure and intensity of idealized axisymmetric tropical cy-

clones relies on the assumption that isentropic surfaces in the storm outflow match those of the unperturbed

environment at large distances from the storm’s core. These isentropic surfaces generally lie just above the

tropopause, where the vertical temperature structure is approximately isothermal, so it has been assumed that

the absolute temperature of the outflow is nearly constant. Here it is shown that this assumption is not jus-

tified, at least when applied to storms simulated by a convection-resolving axisymmetric numerical model in

which much of the outflow occurs below the ambient tropopause and develops its own stratification, unrelated

to that of the unperturbed environment. The authors propose that this stratification is set in the storm’s core

by the requirement that the Richardson number remain near its critical value for the onset of small-scale

turbulence. This ansatz is tested by calculating the Richardson number in numerically simulated storms, and

then showing that the assumption of constant Richardson number determines the variation of the outflow

temperature with angular momentum or entropy and thereby sets the low-level radial structure of the storm

outside its radius of maximum surface winds. Part II will show that allowing the outflow temperature to vary

also allows one to discard an empirical factor that was introduced in previous work on the intensification of

tropical cyclones.

1. Introduction

The nearly circular symmetry of mature tropical cy-

clones, together with the observation that they can exist

in a quasi-steady state for some time, provides an oppor-

tunity for a relatively simple description of their physics

and structure. Further assumptions of hydrostatic and

gradient wind balance and convective neutrality of the

vortex lead to strong constraints on its intensity and

structure, as elucidated by Kleinschmidt (1951), D. Lilly

(1973, unpublished manuscript, hereafter L73), Shutts

(1981), and Emanuel (1986), among others. When

coupled with formulas for surface fluxes of enthalpy and

momentum, the radial distribution of boundary layer

gradient wind is given as a function of the local air–sea

enthalpy disequilibrium, the difference in absolute tem-

perature between the top of the boundary layer and the

outflow level, and nondimensional surface exchange co-

efficients.

One issue that arises in constructing solutions of this

kind is the specification of the so-called ‘‘outflow tem-

perature’’—the absolute temperature attained by stream-

lines flowing upward and outward from the storm’s core

as they asymptotically level out at large radii. L73 and

Emanuel (1986) both assumed that a streamline ema-

nating from the storm’s core would asymptote to the

unperturbed environmental isentropic surface whose

entropy matches that of the streamline, under the as-

sumption that the vortex is ‘‘subcritical’’—that is, that

internal waves are fast enough that they can propagate

from the environment inward against the outflow, so

that the structure of the core is, in effect, partially
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determined by the unperturbed environmental entropy

stratification. (In supercritical flow, information about

the environment cannot propagate inward against the

outflow and so the interior vortex cannot ‘‘know’’ about

the environmental stratification. In this case, some kind

of shock must develop in the outflow, providing a tran-

sition from the interior flow to the environment.) In

developing solutions to the interior equations, Lilly as-

sumed that the upper tropical troposphere has sub-

moist-adiabatic lapse rates, so that entropy is increasing

upward, and that therefore the outflow would be in the

upper troposphere, with outflow temperature increasing

with decreasing entropy. By contrast, Emanuel (1986)

regarded the whole ambient troposphere as being neu-

tral to moist convection, so that any streamline reflecting

elevated boundary layer entropy would have to flow out

of the storm at levels above the tropopause. Since the

temperature structure of the atmosphere above the

tropopause is approximately isothermal, Emanuel ap-

proximated the outflow temperature as a constant. Shutts

(1981) arbitrarily specified the radial profile of gradient

wind in the vortex and determined the outflow temper-

ature that was consistent with such a profile.

Whichever assumption is used, the radial structure of

the solutions is sensitive to the dependence of outflow

temperature on the entropy of the outflowing stream-

lines. In particular, the assumption of constant outflow

temperature leads to a highly unrealistic radial profile of

gradient wind, unless additional assumptions are made

about the entropy budget of the boundary layer, as in

Emanuel (1986). Moreover, attempts to find time-

dependent solutions under the assumption of constant

outflow temperature lead to the conclusion that all na-

scent vortices should decay with time, unless an empir-

ical factor is introduced that keeps the boundary layer

entropy low outside the storm’s core (Emanuel 1997).

The intensity of storms also depends on the radial

structure of the vortex because it influences the radial

gradient of boundary layer entropy, which in turn affects

the degree of air–sea thermodynamic disequilibrium at

the radius of maximum winds.

The poor solutions that result when constant outflow

temperature is assumed, together with the great sensi-

tivity of the solutions to the stratification of the upper

troposphere when it is assumed to be positive, motivate

a reexamination of the problem. After reviewing the

steady-state theory, we begin by examining the structure

of the outflow in a tropical cyclone simulated using a

convection-resolving axisymmetric model and show that

the outflow attains an entropy stratification that appears

to be independent of any small stratification that may be

present in the unperturbed environment. We then pos-

tulate that this stratification arises from small-scale

turbulence and tends toward a value consistent with the

hypothesis that the Richardson number is near a critical

value. We test this hypothesis using data generated by

the numerical simulations and proceed to examine its

implications for the structure and intensification of the

vortex. The paper concludes with a brief summary.

2. Review of analytic axisymmetric models

Analytical models of steady, axisymmetric vortices

date back to L73, Shutts (1981), and Emanuel (1986).

The most sophisticated of these, developed originally by

Lilly, is based on conservation of energy, entropy, and

angular momentum above the boundary layer and is

reviewed in Bister and Emanuel (1998) and Emanuel

(2004). It makes no assumption about hydrostatic or

gradient balance above the boundary layer but is diffi-

cult to solve. For this reason, and because real and nu-

merically simulated tropical cyclones are observed to be

nearly in hydrostatic and gradient wind balance above

the boundary layer, we follow Emanuel (1986) in as-

suming that such balances apply and further that the

saturation entropy above the boundary layer does not

vary along surfaces of constant absolute angular mo-

mentum. Where air is flowing upward out of the bound-

ary layer, it is likely to be saturated and the coincidence

of entropy and angular momentum surfaces is then de-

manded by conservation of both quantities. Here and

elsewhere in the vortex this state is also the condition

for neutrality to slantwise moist convection (Emanuel

1983). Saturation entropy is defined as

s* 5 cp lnT 2 Rd lnp 1
L

y
q*

T
, (1)

where T is the absolute temperature, p the pressure, q*

the saturation specific humidity, cp the heat capacity

at constant pressure, Rd the gas constant of dry air, and

Ly the latent heat of vaporization. In (1) we have ne-

glected the small effect of condensed water on heat ca-

pacity and the gas constant. Absolute angular momentum

per unit mass is defined as

M 5 rV 1
1

2
f r2, (2)

where V is the azimuthal velocity, r the radius, and f the

Coriolis parameter.

The condition that s* is a function of M alone, together

with hydrostatic and gradient wind balance, places strong

constraints on the structure of the vortex. This can be

seen by integrating the thermal wind equation along

angular momentum surfaces. To develop an appropriate

form of the thermal wind equation, we begin by writing
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the equations of hydrostatic and gradient balance in

pressure coordinates:

›f

›p
5 2a (3)

and

›f

›r
5

V2

r
1 f V 5

M2

r3
2

1

4
f 2r. (4)

Here a is the specific volume, f is the geopotential, and

its gradient with respect to r in (4) is taken holding

pressure constant. The thermal wind equation is ob-

tained by differentiating (3) with respect to r and sub-

tracting the derivative of (4) with respect to p to obtain

1

r3

›M2

›p
5 2

›a

›r
. (5)

Since s* is a state variable, we may express a as a

function of it and of pressure,1 p, so that by the chain rule

(5) becomes

1

r3

›M2

›p
5 2

›a

›s*

� �
p

›s*

›r
. (6)

Using one of Maxwell’s relations (Emanuel 1986),

›a

›s*

� �
p

5
›T

›p

� �
s*

,

we may write (6) as

1

r3

›M2

›p
5 2

›T

›p

� �
s*

›s*

›r
. (7)

But s* is a function of M alone in a slantwise neutral

vortex, so (7) can be rewritten as

1

r3

›M2

›p
5 2

›T

›p

� �
s*

ds*

dM

›M

›r
. (8)

Dividing each side of (8) by ›M/›r yields an equation for

the slope of angular momentum surfaces:

2

r3

›r

›p

� �
M

5
›T

›p

� �
s*

1

M

ds*

dM
. (9)

Since neither M nor ds*/dM varies on angular momen-

tum surfaces, (9) may be directly integrated in pressure

to yield

1

r2
b

5
1

r2
2 (Tb 2 T)

1

M

ds*

dM
, (10)

where rb and Tb are the radius and temperature where

a given angular momentum surface intersects the top of

the boundary layer. Multiplying (10) through by M and

using its definition [(2)] yields

Vb

rb

5
V

r
2 (Tb 2 T)

ds*

dM
, (11)

where Vb is the azimuthal velocity where the angular

momentum surface in question intersects the top of

the boundary layer. This equation may be regarded as

yielding the dependence of the angular velocity V/r on

the effective altitude in temperature space Tb 2 T.

The form of (11) suggests two possible definitions of

outflow temperature. The first is to define it as the

temperature along an angular momentum surface where

it passes through the locus of points defined by V 5 0. In

that case, (11) may be written as

Vb

rb

5 2(Tb 2 To)
ds*

dM
, (12)

where To is the outflow temperature thus defined. A

second choice is to define the outflow temperature as the

temperature along an angular momentum surface in the

limit as r / ‘. In that case, from (11) and using V 5 M/r2

(1/2) fr, we have

Vb

rb

5 2
1

2
f 2 (Tb 2 To)

ds*

dM
. (13)

For angular momentum surfaces originating near the

storm’s core, where V/r� f, the two definitions of out-

flow temperature leading to (12) and (13) yield almost

identical results. Either way, one should think of To as an

upper or outer boundary condition, and note that it may

be a function of s*, M, and/or streamfunction.

The relation (12) or (13) yields the distribution of

angular velocity at the top of the boundary layer pro-

vided that s* is a known function of M and that To is

a known function of s* (or M). L73, Emanuel (1986),

and subsequent papers have argued that the function

ds*/dM is determined by the boundary layer entropy

and angular momentum balance. In particular, neutral-

ity to moist convection requires that the saturation en-

tropy above the lifted condensation level equal the

actual entropy s of the boundary layer. The budget

equation for boundary layer entropy, written in angular

momentum–pressure coordinates and neglecting dissi-

pative heating, is

1 Here we are neglecting the direct effect of water substance on

specific volume.
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›s

›t
1 _M

›s

›M
1 v

›s

›P
5 2g

›F

›P
, (14)

where _M is the total time derivative of angular mo-

mentum and F is the vertical turbulent flux of entropy.

(Partial derivatives with respect to time and pressure

hold angular momentum constant.) The former may be

derived from the azimuthal momentum equation:

_M 5 2gr
›t

u

›P
, (15)

where tu is the tangential stress. Substituting (15) into

(14) and assuming a steady state yields

2gr
›t

u

›P

›s

›M
1 v

›s

›P
5 2g

›F

›P
. (16)

We now make two important assumptions about the

distributions of entropy and angular momentum in the

turbulent boundary layer. The first is that entropy is well

mixed along angular momentum surfaces, which are

approximately vertical in the boundary layer, so that the

second term on the left-hand side of (16) is nearly zero

while at the same time ›s/›M ffi ds/dM is not a function

of pressure. The second assumption is that the radius of

angular momentum surfaces does not vary greatly with

altitude within the boundary layer. To the extent that

these two approximations hold,2 (16) may be integrated

through the depth of the boundary layer to yield

ds

dM
5

Fs

rt
us

, (17)

where Fs is the surface entropy flux,3 tus is the surface

azimuthal stress, and r is the vertically averaged radius

of angular momentum surfaces, weighted by the con-

vergence of the turbulent flux of momentum; also, we

have defined the top of the boundary layer as the level at

which the turbulent fluxes of entropy and momentum

vanish. But note that we would obtain a different result

if the turbulent fluxes of enthalpy and angular momen-

tum were to vanish at different altitudes. Bryan and

Rotunno (2009a) showed that (17) is well satisfied in

axisymmetric numerical simulations. Substitution of (17)

into (12) yields

r

rb

Vb 5 2(Tb 2 To)
Fs

t
us

. (18)

Thus, if the surface fluxes of momentum and enthalpy

are known, if the outflow temperature is a known

function of entropy, and if one can relate r to rb, then the

gradient wind at the top of the boundary layer Vb can be

found.

To close the problem, we need to formulate surface

fluxes in terms of known variables and to say something

about the outflow temperature. For surface fluxes, we

use the classical aerodynamic flux formulas:4

Fs 5
CkrjVj(k0

* 2 k)

Ts

, (19)

t
us 5 2CDrjVjV, (20)

where Ck and CD are dimensionless exchange coef-

ficients for enthalpy and momentum, r is the air density,

jVj is the wind speed at the flux reference level, k
0
* is the

saturation enthalpy of the sea surface, k is the actual

enthalpy of air at the reference level at which the wind

speed and exchange coefficients are defined, and Ts is the

sea surface temperature. Using (19) and (20) in (18) gives

r

rb

VVb 5
Ck

CD

(Tb 2 To)
(k0

* 2 k)

Ts

. (21)

Note that jVj has dropped out, but the unsubscripted V

on the left-hand side of (21) is the azimuthal wind

evaluated at the flux reference height.

It has become traditional to make several more ap-

proximations in (21), and we pause here to examine

their credibility. First, we might approximate V by Vb.

As pointed out by Smith et al. (2008) and others, this

may not be a very good approximation, especially near

the radius of maximum winds, where the wind speed

may appreciably exceed its gradient value. Let us sup-

pose, for the sake of argument, that V exceeds Vb by

30%. Making the approximation that V 5 Vb in (21)

would then yield an error of about 15%, owing to the

fact that one is taking the square root of the right-hand

side of (21). But in reality the error would not be that

large, owing to a compensation that occurs in the first

factor on the left of (21), r/r
b
. When the actual wind is

supergradient, r , r
b
, and this works to compensate the

fact that V . Vb in (21). (In the special case that r is the

radius of the angular momentum surface where it passes

through the flux reference level, the compensation is

exact.) Thus if we make both of the two approximations

2 Note that we have not at this point assumed anything about

gradient wind balance in the boundary layer, contrary to the as-

sertion of Smith et al. (2008).
3 Formally, the surface enthalpy flux divided by the surface

temperature.

4 But note that under hurricane-force winds, these may not be

appropriate. On the other hand, they are used in the numerical

simulations against which we will test the theory.
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r ffi r
b

and V ffi Vb in (21), we can write an approximate

equation for the gradient wind that is likely to be in error

by less than 10%:

V2
b ffi

Ck

CD

(Tb 2 To)
(k0

* 2 k)

Ts

. (22)

We emphasize that this is a relation for the gradient wind,

and not the actual wind in the boundary layer, which, as

noted above, can appreciably exceed its gradient value

near the radius of maximum winds. We should also point

out that the specification of Vb as a function of radius

would allow a complete calculation of the actual bound-

ary layer wind were it used to drive a complete boundary

layer model, as in Kepert (2010). We also note that if the

dissipative heating were included in the derivation of

(22), then, as shown by Bister and Emanuel (1998), the Ts

that appears in (22) would be replaced by To.

The relation given by (22) is still not a closed solution

for the gradient wind, because a) k is not known a priori,

and b) the outflow temperature must be specified. The

first problem can be addressed by integrating (17) inward

from some specified outer radius, using (19) and (20) to

specify the surface fluxes and with the gradient wind

specified along the way by solving (22) and using a ther-

modynamic relationship between enthalpy and entropy.

But this procedure also requires knowledge of To as a

function of entropy or angular momentum. It is the prob-

lem of that specification that we address here.

3. The outflow temperature

As mentioned in the introduction, previous work has

treated hurricane outflow as subcritical, in the sense that

internal waves can propagate inward against the outflow

and thereby transmit information from the environment

inward to the core. It was assumed that this subcriticality

would ensure a match between the entropy stratification

of the outflow and that of the unperturbed environment:

air flowing out of the core would attain an altitude such

that its saturation entropy matched that of the distant

environment. Lilly assumed that the upper tropical tro-

posphere has a temperature lapse rate less than moist

adiabatic, so that saturation moist entropy would be in-

creasing with altitude, and the outflow would therefore be

mostly or entirely in the upper troposphere. Emanuel

(1986) and subsequent work assumed that the whole

tropical troposphere is nearly neutral to moist convec-

tion and thus would have nearly constant saturation en-

tropy; boundary layer air with entropy larger than that of

the unperturbed environment would therefore have to

flow out of the storm above the level of the unperturbed

tropopause. Since the absolute temperature can be

nearly constant with height just above the tropopause,

one could assume constant outflow temperature as a first

approximation.

But consider the consequences of constant outflow

temperature for the radial structure of the gradient wind

as given by (22). Since the quantity k0
* 2 k usually in-

creases monotonically with radius, then V would there-

fore also have to increase monotonically with radius,

which of course does not happen. Emanuel (1986) and

subsequent work addressed this obvious problem by pos-

tulating that outside the storm’s core, turbulent fluxes of

entropy out of the top of the boundary layer keep the

boundary layer entropy relatively low and invalidate

(17) in that region. This idea is supported qualitatively

by the boundary layer entropy budget of a cloud-

resolving, axisymmetric model simulation by Rotunno

and Emanuel (1987, hereafter RE87), which showed that

outside the core, surface enthalpy fluxes are balanced

mostly by convective fluxes out of the top of the boundary

layer. On the other hand, the recent successful simula-

tion of a completely dry hurricane by Mrowiec et al.

(2011) calls into question whether the import of low

entropy air to the boundary layer by convective down-

drafts is really essential to hurricane physics.

The poor prediction of the radial structure of the gra-

dient wind by (22) with constant To motivates us to re-

examine the question of outflow temperature. We begin

by carrying out a numerical simulation of a tropical cy-

clone using a nonhydrostatic, convection-permitting axi-

symmetric model. The model is that of RE87 modified so

that the finite difference equations conserve energy; this

modification generally results is slightly weaker vortices.

The model is run on a uniform grid in the radius–altitude

plane, with radial and vertical grid spacings of 3.75 km and

312.5 m, respectively, in a domain extending to 1500 km

in radius and 25 km in altitude. The Coriolis parameter is

set to 5 3 1025 s21. To better compare with the theory

developed in section 4, we here omit dissipative heating as

well as the pressure dependence of the sea surface po-

tential temperature and saturation specific humidity, so

that the surface saturation entropy is constant. In RE87,

the vertical mixing length was 200 m but here we set it

and the horizontal mixing length to 1000 m. Experi-

ments with smaller vertical mixing lengths show only

a weak dependence of storm structure and peak wind

speed, consistent with the results of Bryan and Rotunno

(2009b), but the effect we wish to illustrate here is more

clearly defined for the larger mixing length. As has been

documented by Bryan and Rotunno (2009b), there is

sensitivity to the value of the horizontal mixing length,

and the value used here was chosen to give broadly

reasonable results. While the formulation of turbulence

is clearly an important issue in understanding tropical
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cyclone intensity and structure, we here focus narrowly

on the issue of the outflow temperature. Also, the surface

exchange coefficients, which depend on wind speed, are

both capped at 3 3 1023, but they approach this value at

a faster rate of 6 3 1025 (m s21)21. All other parameters

are set to the values listed in Table 1 of RE87, and the

same Newtonian relaxation to the initial vertical tem-

perature distribution is used here. Note that the use of

such a relaxation does not permit the environmental

temperature field to adjust to the presence of the vortex

as it would in a closed domain when an actual radiative

transfer scheme is applied, as in Hakim (2011).

The initial atmospheric temperature is specified to lie

along a pseudomoist adiabat from the lifted condensa-

tion level of air at the lowest model level to a tropopause

at an altitude just below 15 km and having a temperature

of 286.78C. For simplicity, the stratosphere is initially

isothermal, having the same temperature as the tropo-

pause. The sounding is dry adiabatic from the sea surface

to the lifted condensation level, and the sea surface tem-

perature is held constant at 24.898C, yielding a potential

intensity calculated using the algorithm described by

Bister and Emanuel (2002), but with the sea surface sat-

uration enthalpy held constant, of 67.9 m s21. The initial

sounding is shown in Fig. 1.

The simulation is initialized with a weak, warm-core

vortex and is integrated forward in time until a quasi-

steady state is achieved. The time evolution of the max-

imum wind in the model domain and the maximum wind

at the lowest model level are shown in Fig. 2 and com-

pared to the aforementioned theoretical potential in-

tensity. As shown by Bryan and Rotunno (2009b), the

intensity achieved in such simulations is usually close

to the theoretical potential intensity if the horizontal

mixing length is sufficiently large, as it is here. For smaller

mixing lengths, the actual boundary layer wind can be

appreciably larger than its gradient value near the radius

of maximum winds. While the existence of supergradient

winds is clearly of interest, our purpose here is to focus

on those deficiencies of the existing theory that are re-

lated to outflow temperature; thus, we choose to exam-

ine a simulation that does not otherwise exhibit serious

discrepancies with theory.

Figure 3 shows the distribution in the radius–altitude

plane of saturation equivalent potential temperature

averaged over the last 24 h of the integration, together

with the contour representing the loci of vanishing azi-

muthal wind, likewise averaged over 24 h. We note sev-

eral features of interest. First, it is clear that while some

of the contours of saturation equivalent potential tem-

perature erupting from the boundary layer near the ra-

dius of maximum winds (about 34 km) intersect the V 5 0

contour above the altitude of the ambient tropopause

(also shown in Fig. 3), many such surfaces erupting out-

side the radius of maximum winds flow out below the

ambient tropopause. Moreover, the stratification of sat-

uration equivalent potential temperature near the V 5 0

contour does not seem to be related in any obvious way

to the ambient stratification, which is zero below the

tropopause and large and nearly constant above it; thus

we regard the outflow as self stratifying. Figure 4 shows

the mass streamfunction averaged over the final 24 h of

the integration, together with the V 5 0 contour; clearly,

much of the outflow is below the tropopause and the

absolute temperature increases monotonically with the

value of the streamfunction, and with decreasing satu-

ration entropy. Remember that, according to (12), the

FIG. 1. Initial sounding used in simulations with an updated

version of the RE87 numerical model. The thick solid line shows

temperature; dashed line shows dewpoint temperature.

FIG. 2. Evolution with time of the peak wind speed (m s21) at the

lowest model level (dashed) and within the whole domain (solid) in

a simulation using an updated version of the RE87 axisymmetric

model. Thin horizontal line shows potential intensity.
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outflow temperature is defined as the temperature at

which saturation entropy (or angular momentum) sur-

faces pass through the V 5 0 contour.

The supposition that the outflow temperature increases

with angular momentum is borne out by interpolating

absolute temperature onto angular momentum surfaces.

Figure 5 traces the changes in absolute temperature and

azimuthal velocity along each of a family of angular mo-

mentum surfaces separated by equal increments of an-

gular momentum. The surfaces span roughly the interval

between the radius of maximum surface wind and the

radius of gale-force winds. The angular momentum sur-

faces fall into two groups. The leftmost group, repre-

senting relatively small values of angular momentum,

consists of surfaces along which the mean flow is up-

ward, whereas the rightmost group consists of angular

momentum surfaces along which the mean flow is di-

rected downward. In between and above the boundary

layer is a region of nearly constant angular momentum.

The thick gray curve in Fig. 5 shows the solution to (10)

with (17) for the conditions of this simulation; clearly the

angular momentum surface originating from the radius

of maximum winds is close to that given by thermal wind

balance above the boundary layer.

From Fig. 5, it is clear that within the upflow, outflow

temperature increases with angular momentum; slowly

at first and then more rapidly as angular momentum in-

creases. The outflow temperature of the angular momen-

tum surface erupting at the radius of maximum surface

wind is very close to the ambient tropopause temperature

in this simulation, but the assumption of constant outflow

temperature for angular momentum surfaces originat-

ing outside the radius of maximum winds is poor. And,

since in this simulation the ambient atmosphere above

the tropopause is isothermal while there is no stratification

of saturation entropy below the tropopause, one cannot

assume that the outflow streamlines asymptote to absolute

temperatures corresponding to those of the undisturbed

saturation entropy surfaces of the environment. (Doing

so for this simulation would yield a constant outflow

temperature.)

FIG. 3. Distribution in the radius–altitude plane of saturation

equivalent potential temperature (K) averaged over the last 24 h of

the numerical simulation described in the text. The thick gray curve

represents the V 5 0 contour and the thick white line represents the

altitude of the ambient tropopause. For clarity, values of saturation

equivalent potential temperature have been capped at 370 K.

FIG. 4. Mass streamfunction (black contours) and absolute

temperature (K; shading) averaged over the last 24 h of the simu-

lation described in the text. The white contour represents V 5 0.

FIG. 5. Family of surfaces (thin black curves) of constant absolute

angular momentum traced versus absolute temperature and azi-

muthal velocity. The thick gray curve shows the shape of the an-

gular momentum intersecting the boundary layer top at the radius

of maximum winds, calculated assuming thermal wind balance. The

dashed vertical line represents vanishing azimuthal wind, while the

dashed horizontal line shows the ambient tropopause temperature.

The innermost angular momentum surface originates near the ra-

dius of maximum wind.
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Figure 5 presents strong evidence that hurricane out-

flow is self-stratifying, at least when the ambient upper

troposphere has a moist adiabatic lapse rate. But what

determines the stratification of the outflow? Specifica-

tion of the dependence of outflow temperature on sat-

uration entropy (or angular momentum) is sufficient

to determine the radial profile of gradient wind in the

boundary layer through (22); conversely, if one had an

independent means of specifying the radial profile of

boundary layer gradient wind, then the outflow temper-

ature would be determined by (22). As we can think of

no independent principle to determine the radial profile

of gradient wind, we focus our attention on physical

constraints on the outflow stratification.

Consider what would happen if all of the outflow

streamlines asymptotically approached environmental

isentropic surfaces corresponding to their own values of

entropy, as originally postulated. Then, referring to Fig. 3,

there would be large gradients of saturation entropy,

angular momentum, and streamfunction in the outflow.

The Richardson number Ri would be small, suggesting

that small-scale turbulence would occur, mixing velocity

and entropy and thereby expanding the depth of the out-

flow. Such an outcome is also possible in our numerical

simulation, since the subgrid-scale turbulence parame-

terization of RE87 is sensitive to Ri. It is also possible that

horizontal mixing in the upflow contributes to the phys-

ical spacing of angular momentum and entropy surfaces.

The distribution of
ffiffiffiffiffiffi
Ri
p

calculated from fields aver-

aged over the last 24 h of the simulation is shown in Fig. 6a.

Here Ri is defined as

Ri [
Gm(›s*/›z)

(›U/›z)2
1 (›V/›z)2

, (23)

where Gm is the moist adiabatic lapse rate and U is the

radial velocity. In the region where the eyewall upflow

turns outward, becoming outflow, Ri is relatively small.

Figure 6b shows the vertical diffusivity v as formulated in

RE87, likewise averaged over the last 24 h of the simula-

tion. This quantity is positive only where Ri is less than

unity, but because it also depends on strain, its average in

time may be nonzero even when the time average of Ri is

greater than unity. Thus Fig. 6b demonstrates that the

Richardson number is below its critical value for at least

some of the time in broad sections of the outflow. Figure 7

shows a scatterplot of the numerator of (23) against the

denominator, for a region bounded by the black box shown

in Fig. 6a. The value of Ri seldom falls below about 1,

which is shown by the black line in the figure. The critical

value of Ri for the onset of turbulence in the RE87 model

is 1, but several aspects of the computation performed

here may distort the calculated value of Ri. First, we

have neglected the contribution to Ri of vertical gradi-

ents in condensed water content, as it appears in Eq. (28)

of RE87. Second, we have calculated Ri from the time-

averaged wind and entropy fields rather than taking the

time average of the instantaneous values of Ri. Never-

theless, Fig. 6 shows that Ri may be systematically lim-

ited by a critical value in some regions of the storm’s

outflow. We can now show that this region is likely to

include the eyewall. First, we neglect ›U/›z compared to

›V/›z in the denominator of (23), and substitute

›V

›z
5

1

r

›M

›z
.

Since s* is a function of M alone,

FIG. 6. (a) Square root of the Richardson number calculated

from flow fields averaged over the last 24 h of the simulation de-

scribed in the text. Values are bounded below by 0 and above by 3.

The small black box shows the region from which the data plotted

in Fig. 7 are drawn. (b) Contours of vertical diffusivity (m2 s21)

averaged over the last 24 h of the simulation.
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›s*

›z
5

ds*

dM

›M

›z
.

Using these in (23) gives

Ri ffi
r2Gm(ds*/dM)

›M/›z
. (24)

Thus, along any given streamline, Ri will be small at

small radius and where ›M/›z is large. This corresponds

well with the location of the box in Fig. 6a. In the fol-

lowing sections, we will explore the implications of the

hypothesis of critical Richardson number for the struc-

ture and intensity of tropical cyclones.

4. Implications of critical Richardson number for
steady-state structure

Suppose that the Richardson number is held to be at

some fixed, critical value Ric at some radius rt. Then (24)

implies that

›M

›z
ffi

r2
t Gm(ds*/dM)

Ric
. (25)

Using

›s*

›z
5

ds*

dM

›M

›z
,

we can write (25) as

›s*

›z
ffi

r2
t Gm(ds*/dM)2

Ric
. (26)

Thus the assumption of critical Richardson number at

some radius rt constrains the vertical gradient of satu-

ration entropy there. But since s* is a state variable, its

vertical gradient dictates the vertical gradient of tem-

perature, from which one can deduce the gradient of

temperature with respect to s*. Using the chain rule, we

first write

›T

›s*
5

›T

›s*

� �
p

1
(›T/›p)s*

›s*/›p
, (27)

where the subscripts denote the quantity being held

constant. Using the definition of saturation entropy and

the Clausius–Clapeyron equation, we can write the first

term as

›T

›s*

� �
p

5
T/cp

1 1 (L2
yq*/R

y
cpT 2)

, (28)

where Ry is the gas constant for water vapor. Using the

hydrostatic approximation for the second term in (27)

and substituting (28), (27) can be written as

›T

›s*
5

T/cp

1 1 (L2
yq*/R

y
cpT2)

2
Gm

›s*/›z
. (29)

For vertical gradients of s* that are consistent with

(26), the second term on the right side of (29) is roughly

an order of magnitude greater than the first. fNote that

eliminating ds*/dM between (12) and (26) and substitut-

ing (26) into (29) shows that the last term in (29) will be

much larger than the first term if V2
b � c

p
[(T

b
2 T

o
)2/T

b
]

[1 1 (L2
yq*/R

y
cpT2)][Ric(r2

b/r2
t )]. Assuming that the last

term in square brackets is of order unity, this is well sat-

isfied at hurricane wind speeds.gUsing this approximation

and substituting (26) into (29) gives

›To

›s*
ffi 2

Ric
r2

t

dM

ds*

� �2

. (30)

This yields the dependence of To on saturation en-

tropy consistent with the critical Richardson number

hypothesis.

Strictly speaking, this relationship applies to the re-

gion where the Richardson number is near its critical

value, and this may not correspond to the location along

an angular momentum surface at which the azimuthal

velocity vanishes, which according to (12) is where the

outflow temperature is defined. On the other hand, the

FIG. 7. The buoyancy frequency squared plotted against the

square of the vertical shear of the horizontal wind calculated from

quantities averaged over the last 24 h of the simulation described in

the text. The data are drawn from the region shown by the black

box in Fig. 6. The straight line corresponds to a Richardson number

of 1.
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absolute temperature does not vary much from that

point outward; otherwise, the alternative definition of

outflow temperature based on (13) would be quite dif-

ferent. Thus, as long as the Richardson number is near

its critical value somewhere near or outside the radius at

which the azimuthal velocity vanishes, (30) should ap-

ply. On the other hand, we would not expect that the

stratification is set by a critical Richardson number cri-

terion where there is little mixing. Examination of Fig.

6b suggests that this is the case below about 7-km alti-

tude and outside of about 70-km radius. For the present,

we simply assume that (30) is valid on each angular

momentum surface at rt and return later to examine the

validity of this assumption.

Using

›T

›s*
5

›T

›M

dM

ds*
,

we may write (30) alternatively as

›To

›M
ffi2

Ric
r2

t

dM

ds*

� �
. (31)

This will allow us to solve for the outflow temperature in

angular momentum coordinates.

A complete model for the steady-state structure of a

tropical cyclone whose outflow temperature is specified

by (31) may now be formulated. We begin with the def-

inition of angular momentum, given by (2), and substitute

(12) for the gradient wind at the top of the boundary

layer:

Mb 5 r2
b

1

2
f 2 (Tb 2 To)

ds*

dM

#
,

"
(32)

where Mb is the angular momentum at the top of the

boundary layer. Substituting (19) and (20) into (17) and

making use of (12) gives

ds*

dM

� �2

5
Ck

Cd

s0* 2 s*

r2
b(Tb 2 To)

, (33)

in which we have also used the approximation

k0
* 2 k

Ts

ffi s0* 2 s*,

where s
0
* is the saturation entropy of the sea surface and

we have equated the boundary layer entropy with the

saturation entropy of the free troposphere. Eliminating

r2
b between (32) and (33) gives a quadratic equation for

ds*/dM:

ds*

dM

� �2

1 2x
ds*

dM
2

xf

Tb 2 To

5 0, (34)

where

x [
Ck

CD

s0* 2 s*

2M
.

The physically relevant solution to (34) is

ds*

dM
5 2x 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1

xf

Tb 2 To

s
. (35)

Starting from some outer angular momentum surface

Mo, (35) and (31) can be marched inward to yield s* and

To as functions of M. Once these quantities have been

obtained, rb can be found using (32) and then the gra-

dient wind can be found from the definition of angular

momentum [(2)]. One complication is that s0* depends

on pressure, so that, in principle, one should also march

the gradient wind equation inward to find the local sur-

face pressure. For simplicity, we take s
0
* to be a specified

constant here, and we also assume that Ri
c
/r2

t and Tb are

constants. A more serious problem is that the condition of

Richardson number criticality may not apply to the re-

gion of downflow, which for the aforementioned nu-

merical simulation begins at about 120 km from the storm

center. We shall return to this problem presently.

One must also satisfy boundary conditions. Given that

(31) and (35) are first-order differential equations, two

boundary conditions must be specified. The first might be

to require the gradient wind to vanish at some outer ra-

dius ro. Marching (35) inward will result in a monotonic

increase in s*, which will eventually reduce x in spite of

decreasing M. Thus, according to (22), the gradient wind

will achieve a maximum value at some particular value of

M. On the other hand, the outflow temperature should

achieve the ambient tropopause temperature Tt at or near

the radius of maximum winds, but there is no guarantee

from integrating (31) that this will be so. Thus, a ‘‘shoot-

ing’’ method is applied in which an outer radius is first

specified, the system integrated, and the outflow tem-

perature at the radius of maximum winds is noted. If it is

not equal to Tt, the integration is restarted with a new

value of ro, and so on, until the outflow temperature at

the radius of maximum winds equals Tt. Alternatively, one

could simply specify ro and adjust the value of rt in (31)

until the boundary conditions are met; this may make more

sense since rt is somewhat arbitrary in the first place and

might be related, on physical grounds, to the radius

of maximum wind. As discussed previously, the value

of rt will be consistent with the assumption that outflow
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stratification is determined by the critical Richardson

number condition as long as it is near or outside the

radius of vanishing azimuthal wind along angular mo-

mentum surfaces.

Before discussing numerical solutions of (31) and (35)

with the imposed boundary conditions, it is helpful to

derive analytic solutions valid in the region for which

V � fr. In this case, it is easily shown that one can ne-

glect the second term in the square root appearing in

(35) as well as the first term on the right side of (32).

Then (31) and (35) can be directly integrated and the

boundary conditions

V 5 0 at r 5 ro

and

T 5 Tt at r 5 rm

applied, where rm is the radius of maximum winds. The

resulting expression for V can be maximized with re-

spect to r to find the radius of maximum gradient winds

and the maximum gradient wind. The outer radius can

also be found. Of the parameters rt, rm, and ro, only one

may be regarded as a free parameter; once one is spec-

ified, the other two are determined. [Note also that the

quantity rt only occurs in the combination r2
t /Ric in (31).]

We choose to regard ro as the free parameter of the

problem, given that it is more or less randomly distrib-

uted in nature (Chavas and Emanuel 2010), and de-

termine rm and rt as part of the solution.

The asymptotically valid solution is most easily writ-

ten in terms of angular momentum:

M

Mm

� �22(C
k
/C

D
)

5
2(r/rm)2

2 2 (Ck/CD)1(Ck/CD)(r/rm)2
,

(36)

where Mm is the angular momentum at the radius of

maximum winds, whose relationship to ro may be found

from (36) by requiring that M 5 (1/2)fr2
o at the outer

radius:

fr2
o

2Vmrm

� �22(C
k
/C

D
)

5
2(ro/rm)2

2 2 (Ck/CD) 1 (Ck/CD)(ro/rm)2
.

(37)

For a reasonably intense vortex for which Vm � frm

(which must be satisfied in any case for this asymptotic

solution to be valid), and for which ro� rm, (37) reduces

approximately to

rm ffi
1

2
fr2

oV21
m

1

2

Ck

CD

� �1/[22(C
k
/C

D
)]

. (38)

The maximum wind speed Vm found from maximizing

the radial dependence of wind speed in the solution (36)

is given by

V
22(C

k
/C

D
)

m 5 V2
p

2rm

fr2
o

� �C
k
/C

D

, (39)

where Vp is a velocity scale derivable strictly from en-

vironmental parameters:

V2
p [

Ck

CD

(Tb 2 Tt)(s0* 2 s*e ). (40)

Substituting (38) into (39) gives

V2
m ffi V2

p

1

2

Ck

CD

� �(C
k
/C

D
)/[22(C

k
/C

D
)]

. (41)

Note that when Ck 5 CD, the maximum intensity is re-

duced from the ‘‘nominal’’ potential intensity given by

(40) by a factor of 1/
ffiffiffi
2
p

. On the other hand, the nominal

potential intensity derived here does not include the

effects of dissipative heating or the pressure dependence

of s0*, both of which would increase intensity; also, the

environmental saturation entropy se* that appears in (40)

is that of the actual unperturbed environment rather

than the boundary layer entropy at the radius of maxi-

mum winds that appears in (22). In the limit CD / 0, the

potential intensity approaches
ffiffiffi
2
p

times the nominal

value given by (40) evaluated with Ck 5 CD. Also note

that with the approximations made in going from (37) to

(38), the outer radius (or, equivalently, rt) drops out of

the expression for maximum wind speed.

Using (41) and (40) in (38) gives

rm ffi
1

2

� �3/2 fr2
offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(Tb 2 Tt)(s0* 2 s*e )
p . (42)

Remarkably, the relationship between the radius of max-

imum winds and the outer radius does not depend on the

exchange coefficients, to the extent that the applied ap-

proximations are valid.

One final relationship that comes from application of

the boundary conditions is

r2
t 5 r2

m

CD

Ck

Ric. (43)

This completes the specification of the asymptotic so-

lution valid where V� fr. There are several noteworthy

aspects of this solution. First, the factor multiplying the

nominal potential intensity in (41) somewhat reduces the
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sensitivity of the overall solution to the ratio Ck/CD.

While at first glance it appears that (41) contains a sin-

gularity, it is in fact continuous through Ck 5 2CD. Figure 8

compares the dependence of the maximum wind speed

divided by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(T

b
2 T

t
)(s

0
* 2 s*

e
)

q
on this ratio to the square

root dependence that would be inferred from a naive ap-

plication of (22). As noted by Bryan and Rotunno (2009b)

and others, the dependence of numerically simulated peak

hurricane winds on the ratio of exchange coefficients is

weaker than the square root dependence in regimes for

which the actual wind is approximately equal to the gra-

dient wind (although they noted that this dependence is

also a function of the turbulent mixing lengths). This can

be understood by close examination of (22). As the drag

coefficient increases, the multiplicative factor in front of

the right side decreases, but so too does k because of

increased inflow. This second effect tends to increase the

surface enthalpy flux, partially offsetting the increased

dissipation associated with increased drag coefficient.

The radius of maximum winds given by (42) increases

with the square of the outer radius, and linearly with the

Coriolis parameter. It becomes smaller with increasing

(nominal) potential intensity.

Figure 9 compares the aforementioned analytic ap-

proximate solution to a numerical solution of (31) and

(35). The analytic solution is such a good approximation

to the full numerical solution through the whole range of

radii that one might suspect that it is an exact solution.

Experiments varying the ratio of exchange coefficients

indeed show that the two solutions are almost identical

through a wide range of conditions, but if the potential in-

tensity is made small enough, differences begin to appear.

For hurricane-strength vortices, the analytic solution

given by (36), (41), and (42) is an excellent approxima-

tion to the full solution.

Figure 10 compares full steady-state solutions for the

radial profile of gradient wind in the steady-state model

to radial profiles of azimuthal wind 12 grid points (3.75

km) above the surface, averaged over the last 24 h of the

FIG. 8. Dependence (nondimensional) of wind speed on the ratio

of exchange coefficients calculated from (41) (solid) compared to

a square root dependence (dashed).

FIG. 9. Numerical solution of (31) and (35) (solid) compared to

the analytic solution (dashed) described in the text. Gradient wind

has been normalized by its peak value, and radius has been nor-

malized by the radius of maximum winds.

FIG. 10. Solutions of the steady-state model described in the text

(dashed) compared to the radial profiles of azimuthal wind 12 grid

points above the surface, averaged over the last 24 h of three

simulations using the RE87 model (solid). The three pairs of curves

correspond to three different ratios of the surface exchange co-

efficients, as given by the values in the boxes. The outer radius of

the steady-state model has been chosen in each case to yield a good

match between the predicted and modeled radii of maximum

winds.
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numerical integration of the RE87 model described in the

previous section. The comparison is carried out for three

different values of the ratio of the surface exchange co-

efficients of enthalpy and momentum. The theory and

model solutions agree well, except in the outer region

where the vertical motion is downward into the bound-

ary layer; in such regions there is little reason to expect

that the critical Richardson number argument applies.

What determines the radial structure of hurricanes in the

downflow region? One argument, presented by Emanuel

(2004), is that the Ekman suction velocity corresponding

to the radial profile of gradient wind must match the

subsidence velocity that balances clear-sky radiative

cooling in the regions devoid of deep convection. Also

note in Fig. 10 that the match between the theoretical

and model solutions is not so good when Ck/CD 5 1.5,

but the predicted peak winds match the model results

quite well in all three cases.

Some aspects of the dependence of tropical cyclones

on the ratio of exchange coefficients that emerge from

the steady-state model can be easily tested in the full

RE87 numerical simulation. Figure 11a shows the evo-

lution of the domain peak wind speed with time in five

simulations that differ only in the ratio of the exchange

coefficients. The simulations with higher values of the

ratio develop more quickly and to higher intensities.

Figure 11b shows the same fields but with the wind speeds

normalized by

212(C
k
/C

D
) Ck

CD

� �1/[22(C
k
/C

D
)]

(44)

according to (40) and (41), and time normalized byffiffiffiffiffiffiffiffiffiffi
1/Ck

p
(for reasons to be described in Emanuel 2011,

manuscript submitted to J. Atmos. Sci., hereafter Part II).

Bear in mind that while the simulations begin with the

same actual intensity, their normalized initial intensities

differ. Even with this caveat, the scaled intensity evolu-

tions collapse nearly into a common evolution. This

suggests that the steady-state model successfully pre-

dicts the dependence of the steady-state gradient wind

on the ratio of exchange coefficients.

5. Summary

Analytic models of idealized, steady-state, axisym-

metric tropical cyclones have assumed that the outflow

streamlines asymptotically approach altitudes at which

their entropy values match those of the undisturbed en-

vironment. This assumption was based on the idea that

hurricane outflow is subcritical, in the sense that internal

waves can communicate information about the environ-

mental stratification inward to the vortex core. We here

showed that this is not the case in numerically simulated

tropical cyclones, in which the outflow entropy stratifi-

cation appears to be a product of the internal storm

dynamics. We postulate that the entropy stratification is

determined by a requirement that the Richardson num-

ber not fall below a critical value, and analysis of nu-

merically simulated storms suggests that this hypothesis

has merit. A new steady-state model was developed

based on this hypothesis and shown to produce physi-

cally realistic results; asymptotic solutions to this model

are available for the case in which dissipative heating is

neglected. As was true in all previous analytic models of

this kind, a single radial length scale must be externally

specified, but given this specification, the radial geom-

etry of the storm is determined by the model. Given an

outer radius ro at which the storm’s gradient wind is taken

to vanish, the radial profile of the gradient wind is given to

a good approximation by (42), (41), and (36). The revised

model exhibits a weaker dependence on the ratio of

FIG. 11. (left) Evolution with time of the peak surface wind in simulations of varying surface enthalpy exchange

coefficient. (right) As in the left panel, but wind speeds have been normalized using (44) and time has been nor-

malized by the inverse square root of the enthalpy exchange coefficient.
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exchange coefficients than the square root dependence

cited in earlier literature but is consistent with the results

of numerical simulations using full-physics models. The

increase in outflow temperature with radius outside the

storm’s core dictates the falling off of gradient wind with

radius; this radial profile of gradient wind is in good

agreement with that produce by full-physics models. In

Part II we shall examine the consequences of outflow self-

stratification for the intensification of tropical cyclones.
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