
Axisymmetric Tornado Simulations at High Reynolds Number

RICHARD ROTUNNO AND GEORGE H. BRYAN

National Center for Atmospheric Research,a Boulder, Colorado

DAVID S. NOLAN AND NATHAN A. DAHL

Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

(Manuscript received 22 January 2016, in final form 6 May 2016)

ABSTRACT

This study is the first in a series that investigates the effects of turbulence in the boundary layer of a tornado

vortex. In this part, axisymmetric simulations with constant viscosity are used to explore the relationships

between vortex structure, intensity, and unsteadiness as functions of diffusion (measured by a Reynolds

number Rer) and rotation (measured by a swirl ratio Sr). A deep upper-level damping zone is used to prevent

upper-level disturbances from affecting the low-level vortex. The damping zone is most effective when it

overlaps with the specified convective forcing, causing a reduction to the effective convective velocity scale

We. With this damping in place, the tornado-vortex boundary layer shows no sign of unsteadiness for a wide

range of parameters, suggesting that turbulence in the tornado boundary layer is inherently a three-

dimensional phenomenon. For high Rer, the most intense vortices have maximum mean tangential winds

well in excess ofWe, and maximummean vertical velocity exceeds 3 timesWe. In parameter space, the most

intense vortices fall along a line that follows Sr ;Re21/3
r , in agreement with previous analytical predictions

by Fiedler and Rotunno. These results are used to inform the design of three-dimensional large-eddy

simulations in subsequent papers.

1. Introduction

The recent review of tornado dynamics by Rotunno

(2013, hereafter R13) put heavy emphasis on the low-

Reynolds-number, mostly laminar flow seen in labora-

tory experiments. Figure 1 illustrates the basic model:

The flow at some distance from the ground (the outer

flow) is in rotation about a vertical axis; at the lower end

of the vertical axis is the ‘‘end-wall boundary layer,’’

over which the outer flow comes to satisfy the no-slip

condition on the lower bounding surface; the reduction

of centrifugal force in the boundary layer allows the

radial pressure gradient force to accelerate boundary

layer fluid toward the center, whereupon it turns to the

vertical and achieves the largest vertical and tangential

wind speeds in the ‘‘end-wall vortex’’; the latter transi-

tions through a ‘‘vortex breakdown’’ to a more slowly

rotating, ‘‘two-celled vortex’’ (downdraft at the center).

Turbulent flow occurs downstream (upward) of the

vortex breakdown but not in the end-wall boundary

layer. As the end-wall boundary layer directly influences

end-wall-vortex intensity, it is important to know the

conditions under which the end-wall boundary layer

may become turbulent. This paper is the first in a series

aimed at understanding the nature of turbulence in the

end-wall boundary layer and how that turbulence affects

vortex intensity.

According to the review in R13, the Reynolds number

for laboratory experiments and numerical simulations

thereof is O(104), which is much lower than that in

natural flows, whichmay beO(109). Fiedler andGarfield

(2010) carried out axisymmetric tornado simulations for

atmospherically relevant Reynolds numbers with sev-

eral different turbulence parameterizations, and, in each

case, the parameterizations indicated small turbulence
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intensities in the end-wall boundary layer (see their

Fig. 8). Lewellen et al. (2000), using large-eddy simula-

tions (LESs) (which, in principle, attempt to simulate

flow at infinite Reynolds number), found structures

similar to that schematized in Fig. 1; their Fig. 5 and the

analyses in their Figs. 6a, 12a, and 15a show little evi-

dence of resolved turbulent flow in the end-wall

boundary layer. Although there is parameterized

subgrid-scale turbulence in LES, one must rely on its

ability to represent faithfully the effects of turbulence.

However, in the absence of direct turbulence measure-

ments from real tornadoes, there is no way to determine

the efficacy of such parameterizations. In the sequel to

this work, we report on LES of tornado-like vortices

with special attention to the requirements of resolving

turbulence in the end-wall boundary layer. In this first

part, we describe the numerical setup for constant-

viscosity, axisymmetric simulations, which were used

to help design our LES experiments. In the course of

setting up the axisymmetric simulations, we took ad-

vantage of the opportunity to explore much higher

Reynolds numbers than previously achieved in such

numerical simulations to investigate the possibility of

axisymmetric instability of the end-wall boundary layer.

As in the numerical experiments described in R13, the

present experiments are also carried out in a closed

domain. Numerical simulations of tornado-like vortices

in a closed domain have the advantage that boundary

conditions are unambiguous and put definite constraints

on the solution. On the other hand, one desires the do-

main size to not significantly influence the simulated

vortex dynamics. Thus, one must use a domain large

enough for artificially enhanced viscous effects to damp

disturbances originating near the vortex top (which is of

little physical interest) to prevent them from propagat-

ing downward and/or recirculating to the region of in-

terest. In the course of the present investigation, it

became clear that simulations at higher Reynolds

numbers than used previously would require even more

damping for a reasonable domain size. We find the re-

quired damping to be a significant drain on the pre-

scribed forcing that should be accounted for when

estimating the thermodynamic speed limit (TSL; Fiedler

and Rotunno 1986) on vortex intensity. When this is

taken into account, the effective TSL is much lower and

easily exceeded by the present simulated vortices.

For ease of comparison with atmospheric obser-

vations, spatial scales will be given in dimensional

terms. However, the present experiments are guided by

previous studies, pointing to the importance of the

nondimensional input parameters characterizing the

imposed rotation, updraft forcing, and viscous effects:

namely, a swirl ratio Sr and the Reynolds number Rer.

The present series of numerical experiments allow the

construction of a vortex-type regime diagram in (Sr, Rer)

extending over a large range of Rer. (The subscript r

refers to use of the radial length scale of the updraft

forcing in the definitions.) These experiments cover a

range of Rer that is nearly two orders of magnitude

greater than in previous studies. This extended range in

Rer, together with a large number of simulations with

fine increments in Sr, adds further support for the the-

oretical relation for the optimal state, Sr ;Re21/3
r [Eq.

(10) of Fiedler (2009)].

The plan of this paper is to first describe in section 2

the physical problem, put it in its meteorological con-

text, and consider the necessary trade-offs involved in its

numerical solution. The governing equations and simu-

lation design are described in section 3; sensitivity tests

demonstrating the need for and effects of the damping

layer are described in the appendix. Examples of the

numerical solutions are described in section 4 and

summarized in a vortex-type regime diagram for a wide

range of the control parameters (Sr, Rer). A summary is

given in section 5.

2. Physical problem

Figure 2 shows a schematic diagram of the physical

problem following the basic design of Fiedler (1995).

The entire domain rotates at the rate V, with nonslip,

impermeable walls at the bottom and top boundaries

and an impermeable free-slip wall at r5R. The solution

for the three velocity components in the rotating

FIG. 1. A schematic diagram of the streamsurfaces in the radial–

vertical plane of a laboratory vortex. The various parts of the

vortex are labeled and described in the text. A photograph of

a laboratory vortex (Pauley and Snow 1988) is shown in the

background.
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reference frame and in the cylindrical coordinates (r, u, z)

is (u, y, w) 5 (0, 0, 0) in the absence of forcing. The pre-

scribed forcing F(r, z) is placed in the vertical momentum

equation as a surrogate for the buoyancy and/or dynamic

pressure gradient forcing in a supercell thunderstorm

(Klemp 1987), while the domain rotation is intended to

represent the rotation of the supercell.With F(r, z). 0, an

in–up–out circulation is created, which, in turn, transports

angular momentum inwards below the forcing maximum

and locally intensifies the tangential velocity y. A bound-

ary layer forms at the bottom and top boundaries to bring

the fluid into zero motion relative to the rotating domain.

The conceptualmodel embodied in Fig. 2 is that the in–

up meridional flow brings angular momentum inwards in

the lower portion of the domain in analogy to the low-

level flow (below cloud base) in a rotating thunderstorm.

The flow in the upper and outer portions of the domain is,

however, a much poorer analog for the complex pro-

cesses occurring in a real thunderstorm, as the actual up–

out flow is in cloud, subsequently exits to a stratified at-

mosphere, and does not return to the low-level inflow

during the lifetime of the thunderstorm. Hence, a mod-

eling device must be used to make sure that disturbances

near the domain topZ do not make their way back to the

simulated vortex (near the origin). In Fiedler (1995), the

fluid viscosity was enhanced near the domain top, which

required resolution of a topside boundary layer. In the

present study, we choose to use a linear relaxation in time

(with time constant t) of the flow back to its unforced

solution above the height zd (Fig. 2).

3. Governing equations and numerical setup

a. Governing equations

The governing equations for a constant-density, ef-

fectively incompressible fluid in the rotating domain

reference frame are
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wheref[ p/r,p is thepressure,r is the (constant) density,n

is the kinematic viscosity, and cs5 300ms21 is the speed of

sound in air. Although maximum simulated wind speeds

Vmax ’ 100m s21, the flow is effectively solenoidal (i.e.,

= � u 5 0) since (Vmax/cs)
2 � 1; the assumption of sole-

noidal u is used in the formulation of the diffusion terms

(e.g., Batchelor 1967, p. 604).

The equations above describe themotions of a fluid that

is compressible and for which density is assumed to be

constant. This equation set was chosen for two main rea-

sons. First, we are interested primarily in flow in the lowest

;1kmAGL for which the constant-density assumption is

valid. Second, this set of equations allowsus to use existing

numerical techniques in themodeling framework used for

this study—Cloud Model 1 (CM1) and, in particular, the

split-explicit time integration technique for compressible

flows (e.g., Wicker and Skamarock 2002)—as well as ex-

isting parallelization methods for distributed-memory

supercomputers for three-dimensional simulations that

will be reported in future papers. In addition, there are

several ancillary benefits, such as a simpler equation set

for analysis purposes and a weaker upper-level response

FIG. 2. Definition of the physical problem for the numerical

simulations. The small red square is the 1 km 3 1 km display do-

main used in Figs. 6 and 9.

TABLE 1. Parameter settings for the domain shown in Fig. 2.

R Z zb lz lr zd t W V n

20 000m 15 000m 8000m 7000m 3000m 8000m 100 s 80m s21 Variable Variable
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to the updraft forcing that does not need to be damped as

aggressively.

The last terms on the right-hand sides of Eqs. (1a)–

(1c) are the linear damping terms in which the co-

efficient a(z) regulates the distance over which the full

damping with time constant t is achieved. The damping

function

a(z)5

8>><
>>:
1

2

�
12 cos

�
p
z2 z

d

Z2 z
d

��
for z. z

d

0 for z# z
d

, (2)

where 0 # zd # Z defines the damping layer.

Finally, the updraft forcing is defined following Nolan

(2005) as

F(r, z)5

8<
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The forcing function F(r, z) is prescribed such that the

maximum Fmax occurs at (r, z) 5 (0, zb), which defines

the center of an elliptically shaped region (vertical and

horizontal axes lz and lr, respectively), over which the

forcing goes to zero. The basic velocity scale W is given

by the vertical integral

TABLE 2. Nondimensional parameters based on the dimensional parameters in Table 1.

lr /lz lr/zb lr/R zb/Z zd/zb tW/lr Sr 5 Vlr/W Rer 5 Wlr/n

0.429 0.375 0.150 0.533 1.0 2.7 Variable Variable

FIG. 3. Solution matrix in (Sr, Rer) for the maximum tangential velocity divided by We;

contour lines are overlaid in intervals of 0.2. The black solid line in this figure and the following

two figures shows Sr }Re21/3
r dependence.
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W2 5

ðzb1lz

zb2lz

2F(0, z) dz. (5)

With Eq. (3) substituted into Eq. (5), the velocity scale

W5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8F

max
l
z

p

r
. (6)

The boundary conditions are u 5 0 on the upper and

lower bounding surfaces, while the normal velocity and

stress components are zero at r 5 R.

Altogether there are 10 input parameters, V, W, lr, lz,

zb,R,Z, n, t, and zd, and, by Buckingham’sP theorem, 8

nondimensional parameters that determine the solution.

With some hindsight, we choose the following:

Vl
r
/W, Wl

r
/n, l

r
/l
z
, l

r
/z

b
, l

r
/R, z

b
/Z, z

d
/z

b
,

and tW/l
r
. (7)

The first parameter is a swirl ratio Sr, and the second is

the Reynolds number Rer, which respectively represent

system rotation and diffusive effects (the subscript r

signifies that we use lr for the length scale in the swirl

ratio and Reynolds number instead of Z, as used in

previous studies); these are the two principle solution

control parameters to be varied in the present work. The

third and fourth parameters characterize the geometry

of the forcing and will be fixed in rough analogy to the

forcing of vertical acceleration in a supercell thunder-

storm. The fifth parameter measures the forcing hori-

zontal scale against domain width, and small values will

be used to ensure there are no significant domain-size

effects. The sixth parameter measures forcing location

against domain depth. Ideally, one would like this pa-

rameter to be small; however, computational expense

militates against it. Thus, the seventh and eighth pa-

rameters are chosen to damp disturbances before they

can reflect from the domain top and/or recirculate to the

lower inflow layer.

b. Numerical-solution method

The prognostic Eqs. (1a)–(1d) are integrated in time

using a third-order Runge–Kutta scheme, using split-

explicit integration for the acoustic modes following

FIG. 4. Solution matrix in (Sr, Rer) for the maximum vertical velocity divided by We; contour

lines are overlaid in intervals of 0.5.
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Wicker and Skamarock (2002). To improve the sta-

bility of the split-explicit time integration method, a

weak three-dimensional divergence damper on the

acoustic time steps is included following Skamarock

and Klemp (1992).

The radial grid spacing is 5m for r , 1 km and in-

creases gradually to 495m between r5 1 and r5 20km.

For most simulations, the vertical grid spacing is 5m for

z , 1 km and increases gradually to 495m between z 5
1 km and z 5 15km. An exception is that most simula-

tions with Rer $ 320 000 were run with vertical grid

spacing of 2.5m for z, 0.5 km, which better resolves the

shallow boundary layers for these cases. The time step

varies throughout each simulation to maintain numeri-

cal stability, taking into account both advective and

diffusive processes.

c. Parameter settings

The dimensional parameters settings are given in

Table 1; the fixed values are chosen to conform to the

physical considerations in section 2 (details on the

damping layer are given in the appendix); these values

thus determine six of the eight nondimensional param-

eters given in Table 2. The variable dimensional

parameters V and n are chosen to explore the range of

solutions in the nondimensional parameter space (Sr,

Rer). With the fixed dimensional values ofW5 80ms21

and lr 5 3000m, we have therefore V 5 Sr 3 0.026 s21

and n 5 Re21
r 3 2.4 3 105m2 s21.

4. Results

Figures 3 and 4 contain matrices in (Sr, Rer) showing

the respective maxima of the tangential and vertical

velocities averaged from 5 3 104 to 6 3 104 s in the

lowest 1 km; unless otherwise mentioned, the velocities

reported herein are nondimensionalized by the effective

forcing valueWe5 66m s21 (see the appendix).We note

that the present experimental range of Rer is much

greater than in previous studies. Specifically, the highest

Reynolds number, Reh 5Wh/n, where h is the height of

the domain, used in Fiedler (2009) is 40 000. Estimating

from lr/h5 1/
ffiffiffiffiffi
10

p
fromEq. (1) of Fiedler (1998), we find

that the highest Rer 5 Reh 3 lr/h ’ 12 800 in Fiedler

FIG. 5. Solution matrix in (Sr, Rer) for the minimum pressure divided byW2
e ; contour lines are

overlaid in intervals of 1.0.
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(2009). Comparison with the highest value of Rer 5
640 000 used here indicates a factor of 50 increase in the

present experiments.

Figure 5 shows the pressure minimum (nondimen-

sionalized by W2
e ) averaged over the same time in-

terval. Focusing first on the latter, there is a clearly an

optimal combination of Sr and Rer that produces the

greatest pressure drop; these solutions are the optimal

solutions that correspond to the vortex shown in Fig. 1,

in which the pressure minimum occurs above the lower

surface in the end-wall vortex (Church and Snow 1985).

These optimal solutions tend to occur along a diagonal

FIG. 6. Selected solutions showing the time-averaged tangential velocity divided by We (red shades) and radial–vertical velocity vectors.

For clarity, the radial velocity component has been magnified by a factor of 2.
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line in the (Sr, Rer) matrix; solutions below this line in

the matrix are single-cell solutions, while those above

the line are predominantly two-celled solutions. Figure 3

indicates that the optimal solutions can exceed the

TSL, while Fig. 4 shows that the vertical velocity

maxima are about twice the corresponding tangential

velocity maxima, consistent with the theory of Fiedler

and Rotunno (1986).

Figure 6 depicts the flow (display domain indicated in

Fig. 2) for several solutions that span across the optimal

solutions indicated in Figs. 3–5. These solutions

generally conform to the behavior expected from previous

work. As reviewed in R13, the boundary layer thickness

d is proportional to
ffiffiffiffiffiffiffiffi
n/V

p
, which can be expressed as d/lr}

1/
ffiffiffiffiffiffiffiffiffiffiffiffi
RerSr

p
in the present notation; scanning Fig. 6 across

(constant Sr, varying Rer) or vertically (constant Rer,

varying Sr) generally shows this expected behavior of the

vortex boundary layer. Also consistent with the theory

reviewed in R13, conservation of angular momentum ap-

plied to the two-celled vortex gives rcyc }Vl 2r , where rc is

the radius and yc the tangential velocity of the two-celled

vortex; with yc ’ W based on energetics, one expects

therefore that rc/lr} Sr; this too is generally consistent with

the behavior seen by scanning Fig. 6 vertically (constant

Rer, varying Sr). The optimal solution at the middle of

Fig. 6 is the result of the solution finding the appropriate

relation between the radius of the end-wall vortex (} d/lr}
1/

ffiffiffiffiffiffiffiffiffiffiffiffi
RerSr

p
) and that of the two-celled vortex (}Sr): that is,

by finding the combination in Sr–Rer space where

S
r
}Re21/3

r (8)

[Fiedler (2009), his Eq. (10)]. As the (Sr, Rer) matrices

are constructed on a log–log scale, a power law is rep-

resented by a straight line; the line drawn in Figs. 3–5

corresponds to a 21/3 dependence in basic agreement

with Eq. (8). Note that the constant of proportionality

implied in Eq. (8) is not universal and is expected to

change for parameters settings different from those

given in Table 2. For example, changes in domain size or

upper-level damping could change the wind speeds and

pressures shown in Figs. 3–5, although we expect the

relation given by Eq. (8) to hold true.

To obtain a more refined estimate for the Sr 5 Sr(Rer)

that produces the optimal vortex, additional simula-

tions were conducted holding Rer fixed but with finer

FIG. 7. Results for Rer 5 640 000: (a) maximum tangential ve-

locity divided byWe; (b) maximum vertical velocity divided byWe;

(c) minimum pressure divided by W2
e .

FIG. 8. A refined estimate of the validity of optimal vortex cri-

terion [Eq. (8)]. The red crosses indicate fmin(Sr, Rer) from the

numerical solutions, and the blue line is a reference line based on

Eq. (8).
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intervals of Sr than were used in Figs. 3–5. An example is

shown for Rer 5 640 000 in Fig. 7. From a series of such

figures (not shown), the minimum value of pressure was

used to define the optimal vortex. Overall results are

shown in shown in Fig. 8; the agreement of the data with

Eq. (8) adds further confidence in this theoretical

estimate.

In earlier studies, Nolan and Farrell (1999) and Nolan

(2005) claimed that the optimal configuration should

follow along lines of Sr }Re21
r , which would appear as a

one-to-one diagonal line on Figs. 3–5. They argued that

vortex structure was largely controlled by the boundary

layer, which the scaling analysis shown inNolan (2005) is

controlled by ReV 5Vl 2r /n5 SrRer. While their numer-

ical results seemed to support this claim, their simula-

tions were confined mostly to the range 0.02 , Sr , 0.1

and 400 , Rer , 1600. In fact, some of the contours on

the left (low Rer) sides of Figs. 3–5 appear to be bending

upward, suggesting some agreement in this range. The

vastly higher Reynolds numbers used in the present

simulations find much better agreement with the ana-

lytical predictions of Fiedler (2009) and also produce

sustained wind speeds well above the convective

velocity scale.

A feature of primary importance to the present work

and its sequel is the effects of turbulence. The present

axisymmetric model is, of course, incapable of simulat-

ing turbulent flow; however, axisymmetric-solution un-

steadiness is an indication of an axisymmetric instability

that would likely lead to three-dimensional turbulence

in an LES context. Figure 9 shows the standard de-

viation away from the time-averaged tangential velocity

for three of the cases shown in Fig. 6, corresponding to

the two-celled and optimal solutions (the two single-cell

solutions are steady). It is clear that the vortex column is

unsteady; however, there is no indication of un-

steadiness in the end-wall boundary layer. Further tests

with a fourfold reduction of vertical grid size (not

shown) confirm the latter conclusion. The axisymmetric

and three-dimensional instabilities associated with vor-

tex breakdown and the two-celled vortex have been

documented in the literature [most recently by Nolan

(2012)]; however, Fig. 9 suggests the absence of an axi-

symmetric instability of the end-wall vortex.

The present results suggest that turbulence in the end-

wall boundary layer of actual tornadoes must originate

through some combination of three-dimensional in-

stabilities and flow separation from surface roughness

elements. We expect the effects of the consequent tur-

bulent diffusion of momentum on the end-wall bound-

ary layer to conform qualitatively to the present case of

laminar diffusion over a smooth surface. However, for

quantitative estimates, some other approach is required.

In the following companion papers, the focus will be on

investigating the effects on mean vortex intensity of

three-dimensional turbulence over rough surfaces in the

end-wall boundary layer using LES.

5. Conclusions

The present study of axisymmetric tornado simula-

tions has established the basic model rationale and

numerical setup for our companion studies using the

technique of large-eddy simulation (LES), in which

FIG. 9. Standard deviation of the tangential velocity divided by We, corresponding to three of the cases shown in Fig. 6. The cases with

Rer 5 160 000, Sr 5 0.0025 and Rer 5 20 000, Sr 5 0.005 were essentially steady with zero standard deviation.
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the effects of three-dimensional turbulence can be

explicitly calculated. Working within the closed-

domain design of Fiedler (1995), we find for simula-

tions with much reduced physical diffusion that an

enhanced upper-level damping is generally required

to prevent spurious reflections and/or recycling of

disturbances from affecting the solutions in the region

of physical interest. This damping, when taken into

account, lowers the estimate for the thermodynamic

speed limit (TSL; Fiedler and Rotunno 1986) in the

simulations, making the degree to which the maximum

wind exceeds the TSL (Fig. 3) under the ‘‘optimal’’

condition [Eq. (8)] all the more impressive. The opti-

mal condition [Eq. (10) of Fiedler (2009)] is validated

here over a range of Reynolds numbers that is almost

two orders of magnitude greater than previously

demonstrated.

With respect to our companion studies, the most im-

portant result is that, even with Reynolds numbers

O(106), there is no indication of axisymmetric instability

in the vortex boundary layer in the present solutions. The

implication is that instability and turbulence in the high-

Reynolds-number vortex boundary layer must arise

through three-dimensional effects. Currently, these ef-

fects are totally or largely parameterized even in LES-

type studies (Lewellen et al. 2000). The authors are

unaware of any practical way to evaluate the efficacy of

such parameterizations other than with an LES model

capable of resolving the large eddies in the vortex

boundary layer. The latter is the subject of our following

companion papers.

Acknowledgments. D. Nolan and N. Dahl were sup-

ported by the NSF through Grant AGS-1265899. The

FIG. A1. (top) Tangential velocity from a simulation without an upper-level damper at indicated times. The contour interval is 2m s21,

the zero contour is excluded, and negative values are dashed. (bottom) Hovmöller diagrams of tangential velocity, normalized by We, at

500m AGL from (d) a simulation without an upper-level damper and (e) a simulation with an upper-level damper.
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APPENDIX

The Damping Layer

As discussed in Fiedler (1995), given the necessarily

finite numerical-model domain, effects of wave re-

flection from the upper and/or outer boundaries should

be controlled through enhanced dissipation. Within the

current model setup, in which grid spacing is relatively

small and Reynolds number is relatively high compared

to recent studies, the most convenient method to

achieve this outcome was to use the linear damping

terms in Eqs. (1a)–(1c). After experimenting with sev-

eral configurations, we decided to overlap the updraft

forcing and damping layer, as illustrated in Fig. 2, which

acts to draw eddies up into the damping layer. A con-

sequence of this configuration on the effective forcing

velocity is discussed below.

To demonstrate the problem with insufficient upper-

level dissipation, a simulation without the upper-level

damper is shown in Figs. A1a–c. In this case, Rer 5
10 000 and Sr 5 0.01. A low-angular-momentum ‘‘eddy’’

is triggered along the upper boundary by the initial up-

draft forcing, which then propagates along the outer

boundary, and later the lower boundary. Although not

shown here, there are also eddies that can propagate up

the main updraft, reflect off the upper boundary, and

propagate downward into the area of interest near the

surface. AHovmöller plot at z5 500m (Fig. A1d) shows

highly unsteady behavior in this case. In contrast,

when the upper-level damper is used, the aforemen-

tioned eddies do not propagate into the lower-left corner

of the domain, and the resulting flow is nearly steady

(Fig. A1e).

With the present damping layer [or with enhanced

viscosity near the upper boundary used by Fiedler

(1995)], energy is removed from the flow. To get a

quantitative estimate of this effect, Fig. A2 shows the

dimensional vertical velocity in theV5 0 case, bothwith

and without the upper damping layer. In the case with-

out the damping layer, in which the upper boundary was

placed at 25 kmAGL tominimize its impact on the flow,

the vertical velocity reaches a peak value of 80m s21

(black), precisely the value calculated from Eqs. (5) or

(6) (Table 1). However with the upper-layer damper,

and our nominal domain depth of 15 km, the peak ver-

tical velocity ’ 66ms21 (red). This latter velocity is the

effective driving velocity for the tornado-like vortex

solutions found here. Hence, solution velocities are re-

ported herein nondimensionalized by the effective

forcing velocity We 5 66ms21.
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