
Effects of Parameterized Diffusion on Simulated Hurricanes

RICHARD ROTUNNO AND GEORGE H. BRYAN

National Center for Atmospheric Research,* Boulder, Colorado

(Manuscript received 28 July 2011, in final form 9 March 2012)

ABSTRACT

In this study the authors analyze and interpret the effects of parameterized diffusion on the nearly steady

axisymmetric numerical simulations of hurricanes presented in a recent study. In that study it was concluded

that horizontal diffusion was the most important control factor for the maximum simulated hurricane in-

tensity. Through budget analysis it is shown here that horizontal diffusion is a major contributor to the angular

momentum budget in the boundary layer of the numerically simulated storms. Moreover, a new scale analysis

recognizing the anisotropic nature of the parameterized model diffusion shows why the horizontal diffusion

plays such a dominant role. A simple analytical model is developed that captures the essence of the effect. The

role of vertical diffusion in the boundary layer in the aforementioned numerical simulations is more closely

examined here. It is shown that the boundary layer in these simulations is consistent with known analytical

solutions in that boundary layer depth increases and the amount of ‘‘overshoot’’ (maximum wind in excess of

the gradient wind) decreases with increasing vertical diffusion. However, the maximum wind itself depends

mainly on horizontal diffusion and is relatively insensitive to vertical diffusion; the overshoot variation with

vertical viscosity mainly comes from changes in the gradient wind with vertical viscosity. The present con-

siderations of parameterized diffusion allow a new contribution to the dialog in the literature on the meaning

and interpretation of the Emanuel potential intensity theory.

1. Introduction

Given the near axisymmetry of most mature hurri-

canes, the axisymmetric model continues to be the basis

of analytical and numerical studies of hurricane intensity

as a function of its environment (Emanuel 2004). While

analytical models can give a clear picture of the inter-

dependency among the variables characterizing a steady-

state hurricane (e.g., Emanuel 1986, hereafter E86),

quantitative estimates of maximum hurricane intensity

for a given environment depend sensitively on the ap-

proximations needed to obtain analytical solutions

(Persing and Montgomery 2003; Bryan and Rotunno

2009a, hereafter BR09a). On the other hand, numerical

models, which make fewer approximations, do give definite

predictions of maximum hurricane intensity as a func-

tion of environmental (external) parameters; however,

those predictions depend on poorly known internal pa-

rameters representing principally the effects of turbulence

and cloud microphysics. Bryan and Rotunno (2009b,

hereafter BR09b), using an axisymmetric numerical model

with fixed external parameters, conducted a systematic

study of the dependence of simulated nearly steady hur-

ricane intensity on the internal modeling parameters.

BR09b found the strongest sensitivity of simulated

structure and maximum intensity coming from the pa-

rameterized diffusion. In the present article, the authors

take a closer look at this sensitivity through budget

analysis of the BR09b numerical simulations and com-

parison of these with simpler fluid dynamical analogs.

By far the most studied effect of turbulent diffusion on

hurricanes is that occurring in the hurricane boundary

layer. The latter shares many features with the general

class of boundary layer that forms at frictional boundaries

normal to the rotation axis of a vortex flow [0, V‘(r), 0]

where the respective radial, azimuthal, and axial

(vertical) velocity components (u, y, w) refer to the sys-

tem of cylindrical coordinates (r, f, z). A general review

of the problem may be found in Rott and Lewellen

(1966); hence only the most important features are re-

called here. In the steady-state vortex flow [0, V‘(r), 0],

the centrifugal force per unit mass r21V2
‘(r) is balanced by
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the radial pressure gradient force per unit mass 2r21dp/dr,

where r and p represent the fluid density and pressure, re-

spectively. However, near the rotation-axis-normal fric-

tional boundary, the azimuthal velocity is reduced while the

(inward-directed) radial pressure gradient force remains

almost unchanged; the latter force must then be balanced

by radial friction and acceleration, which in turn require

radial inflow. This boundary layer radial inflow can be

convergent, implying upward vertical motions that in turn

may modify the assumed ‘‘interior’’ flow [0, V‘(r), 0]. In

principle, a recalculation of the boundary layer with the

modified interior flow is then required until both interior

and boundary layer flows are mutually adjusted.

Numerical models such as the one examined in BR09b

of course produce both the interior flow and boundary

layer as components of one unified solution. In the

BR09b numerical solutions, the effects of vertical dif-

fusion in the boundary layer and interior are regulated

by a specified vertical mixing length ly; herein we ex-

amine the variation of the numerical solution features

as a function of ly and show they are to a large degree

consistent with classical rotating-flow boundary layer

theory in which there is radial inflow, ‘‘overshooting’’

[y(r, z) in the boundary layer locally greater than V‘(r)],

and upward flow from the boundary layer to the interior

where the direct influence of boundary friction is small.

A major finding of BR09b is that the maximum sim-

ulated hurricane intensity is a weak function of ly but

a strong function of the specified horizontal mixing

length lh. Consistently, the present analysis shows that

the parameterized horizontal diffusion is a significant

contributor to the budget of angular momentum in the

hurricane boundary layer near the eyewall. Such hori-

zontal diffusion effects have in the past not been con-

sidered significant since conventional boundary layer

scale analysis, based on an isotropic eddy viscosity, holds

that they are small (Batchelor 1967, section 5.7; Vogl

and Smith 2009). However, to our knowledge all NWP

models used in the study of hurricanes distinguish a

horizontal and vertical eddy diffusivity (e.g., Skamarock

et al. 2005, ch. 4) to ensure that horizontal diffusion is

operative to prevent the formation of frontal disconti-

nuities. Emanuel (1997) has shown that the hurricane

eyewall is a type of front and, consistent with the latter,

we find that horizontal diffusion is most important in the

simulated eyewall in the boundary layer.1 We show here

that this horizontal diffusion in the boundary layer is felt

throughout the vortex as air parcels near the eyewall

flowing upward out of the boundary layer adjust the

radial distribution of V‘(r) accordingly.

One feature of the hurricane boundary layer not

shared with the prototypical rotating-flow boundary

layer is the baroclinicity of the interior flow [i.e., V‘ 5

V‘(r, z)]. E86 devised a model for V‘(r, z) taking into

account thermal wind balance, moist thermodynamics,

and certain assumptions on the gross effects of vertical

heat and angular momentum transport in the boundary

layer. The present analysis allows a more precise inter-

pretation of the role and nature of the simulated hurri-

cane boundary layer in the E86 theory.

The present paper is organized as follows. Section 2

presents a scale analysis for numerical models applied to

the hurricane. Section 3 examines some typical numer-

ical solutions from BR09b as a function of the mixing

lengths (lh, ly) and presents analyses of the momentum

budgets. Section 4 examines the solution response to

variations of ly through the lens of classical rotating-flow

boundary layer theory. Section 5 considers the BR09b

numerical solution response to variations of lh and

develops a simple analytical model that qualitatively

captures the important effect of horizontal diffusion on

the maximum simulated azimuthal wind speed. Section

6 reconsiders the E86 theory (and its extension in

BR09a) in light of the present considerations of the

effects of parameterized diffusion. Section 7 provides

a comparison of the simulated boundary layers in the

BR09b simulations with some recent observations.

Section 8 provides a summary of the main points.

2. Scale analysis of the governing equations

a. Nondimensionalized form of the simplified set

The full governing equations are given in section 2 of

BR09b; here we consider only the equations for u, w,

angular momentum m (5ry), buoyancy b, and continuity

in their Boussinesq, anelastic form in order to isolate

cleanly the effects of parameterized diffusion. Further-

more, we will focus on the inner region of the hurricane

where velocities are large enough, and horizontal length

scales small enough, to neglect the Coriolis accelerations.

With horizontal velocities nondimensionalized by V (a

characteristic interior velocity), radius by lh (the distance

over which the interior velocity field undergoes signifi-

cant variation), height by the vertical scale ly, vertical

velocity by (ly/lh)V, the pressure variable f by V2, and

buoyancy by V2/ly, the nondimensional governing

equations are

du

dt
5 2

›f

›r
1

m2

r3
1 Du, (1)

1 Observations (Marks et al. 2008) and large-eddy simulations of

idealized hurricanes (Rotunno et al. 2009) support the idea that the

eyewall in the hurricane boundary layer is particularly turbulent.
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1

Reh

1

r

›

›r
fhr

›b

›r

� �
1

1

a2Re
y

›

›z
f
y

›b

›z

� �
. (9)

The horizontal and vertical Reynolds numbers are de-

fined as

Reh 5 Vlh/~nh, Re
y

5 Vlh/~n
y
, (10)

where (~n
h
, ~n

y
) denote the maximum eddy viscosities, and

all spatial variation in the eddy viscosities is absorbed

in the O(1) nondimensional functions fh and fy; that is,

(nh, n
y
) 5 (~nh fh, ~n

y
f
y
). The eddy viscosities (nh, ny) are

parameterized by standard mixing length theory and are

given by BR09b’s (16) and (17); from these it may be

deduced that

~nh 5 l2
h

~Sh, ~n
y

5 l2
y

~S
y
,

fh 5 Sh/ ~Sh, f
y

5 (S
y
/ ~S

y
)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 Ri,

p
(11)

where ~S
h

and ~S
y

are the maximum values of the hori-

zontal and vertical deformations, respectively, and Ri is

the Richardson number.

b. Scale analysis

In classical boundary layer analysis (e.g., Batchelor

1967, p. 306), Reh 5 Rey 5 Re [ Vlh/n and m 5 b 5 0.

Accommodation of the frictional lower boundary

conditions requires the retention of the term involving

vertical derivatives in (6); therefore one sets a 5 1/
ffiffiffiffiffiffiffi
Re
p

.

In the limit Re / ‘, the boundary layer equations

consist of (1) with Du 5 ›z( fy›zu), (5), and (2) with (7)

(indicating ›zf 5 0).

In weather and climate models (where m, b 6¼ 0) one

often encounters sharp horizontal gradients (e.g., fronts);

therefore, all (to our knowledge) such models treat hori-

zontal diffusion differently than they do vertical diffusion.

To prevent gradients in simulated fields from falling below

the grid resolution, the horizontal viscosity is chosen so

that in effect Reh ; O(1) and the variable function fh in

(11) ensures that horizontal diffusion is active only in

places where the horizontal velocity gradients are large.

To account for frictional boundary conditions at the lower

surface, one lets a 5 1/
ffiffiffiffiffiffiffiffi
Re

y

p
; in the limit Rey / ‘, (2)

now reduces to hydrostatic balance and, in addition to the

terms involving only vertical derivatives, there now remain

the first terms on the right-hand sides of (6), (8), and (9),

which represent horizontal diffusion.

The requirement that Reh ; O(1) readily gives an

estimate for lh: substituting the first term of (11) into the

first term of (10) and estimating ~Sh ; V/lh yields

lh ; lh. (12)

3. Solution features and budget analysis

a. Solution dependence on (lh, ly)

To carry out a detailed analysis of vertical structure, in

the present paper we have run the suite of simulations in

BR09b at much higher vertical resolution (the vertical

grid interval varies from 20 m at z 5 0 km to 250 m at

z 5 6.5 km) and show the results in Figs. 1a–c, which, in

addition to the nearly steady-state (8–10-day averaged)

maximum (dimensional) azimuthal velocity, include its

radius r̂m and height ẑm.2 Comparison of Fig. 1a with the

results of BR09b indicates little quantitative change

with higher vertical resolution and the same qualitative

conclusion that ŷm has little variation with ly but is

a strong function of lh. Herein we examine the flow

structure underlying the data.

Figure 2 shows a representation of the radial–vertical

velocity vectors and the angular momentum field for the

innermost 100 km and lowermost 8 km for four selected

simulations. For ly 5 200 m, comparison of the lh 5

1500 m case (Fig. 2a) with the lh 5 3000 m case (Figs.

2b) shows the strong effect horizontal diffusion has on

2 Dimensional independent and dependent variables are hence-

forth denoted by the hat symbol.
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the radial distribution of m̂ and therefore on ŷm and r̂m.

In both cases, however, ẑm is nearly identical; moreover,

the vertical structure of the velocity field near r̂ 5 r̂m is

characterized by an oscillation whose wavelength is

nearly the same in each case. With ly reduced to 50 m,

Figs. 2c and 2d indicate that ẑ
m

is reduced as well as the

vertical wavelength of the above described oscillation.

As in the case with ly 5 200 m, Figs. 2c and 2d indicate

a significantly smoother radial distribution of m̂, a de-

crease in ŷm, and an increase in r̂m with increasing lh.

b. Budget analysis

In this section we examine the balances in the steady-

state equations for û and m̂ choosing the case lh 5 1500 m

and ly 5 200 m as a representative example. Figure 3 is

constructed so that the left column contains the total

derivative of û (Fig. 3a) and its contributors (Figs. 3b–d)

while the right column contains the total derivative of m̂

(Fig. 3e) and its contributors (Figs. 3f,g); Fig. 3h shows

three selected streamlines. Beginning with the budget for

dû/dt̂, Fig. 3d shows the sum of the first two terms on the

rhs of (1).3 Figure 3d indicates that beyond r̂ 5 r̂m, and in

the lowermost kilometer, the radial pressure gradient

accelerates the flow inward; Fig. 3b shows that the latter

inward acceleration is largely balanced by vertical dif-

fusion. Near r̂ 5 r̂
m

, Fig. 3d indicates that the centrifugal

acceleration overcomes the inward pressure gradient

acceleration; at steady state, this outward acceleration

largely accounts for the total acceleration (û›r̂ û 1 ŵ›ẑû)

(Fig. 3a) with a small contribution from horizontal diffusion

(Fig. 3c). Note that while (m̂2/r̂3 2 ›
r̂
f̂)

max
’ 0:041 m s22,

the individual terms at that location, m̂2/r̂3 ’ 0:253 m s22

and ›
r̂
f̂ ’ 0:212 m s22, so that the flow is, to a first ap-

proximation, in cyclostrophic balance.

FIG. 1. Nearly steady-state (8–10-day average) data from the BR09b numerical model for (a)

maximum azimuthal velocity ŷm(m s21); (b) its radius r̂m(km); (c) its height ẑm(km); (d) Vg,m

(m s21), the gradient wind at (r̂
m

, ẑ
m

); (e) yBR
m (the superscript BR signifies the ym analyzed

from the BR09b simulations), the maximum azimuthal wind nondimensionalized by Vg,m; and

(f) E-PI (m s21) (calculated as in BR09a) as functions of horizontal and vertical mixing lengths,

lh (m) and ly (m), respectively.

3 The present analysis uses the exact equations as described in

BR09a; we have verified that the Coriolis acceleration is negligible

as assumed in (1).
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Figure 3e shows that dm̂/dt̂ is largely negative, in-

dicating the loss of angular momentum for fluid parcels

traveling in the vicinity of r̂ 5 r̂m (Fig. 3h); comparison of

Figs. 3f and 3g shows that horizontal diffusion is a major

contributor. Beyond r̂ 5 r̂
m

, horizontal diffusion is small

compared with vertical diffusion, which is confined to

the lowermost kilometer or so. For further reference we

show in Figs. 4a and 4b the individual terms û›r̂m̂ and

ŵ›ẑm̂ contributing to dm̂/dt̂.

4. Analysis of solution variation with ly

Although both horizontal and vertical diffusion are

important contributors to the solutions under study, in

this and the following section we look at simple fluid

dynamical analogs treating each effect separately with

the goal of isolating the features that uniquely attach to

each. In this section we consider just the effects of ver-

tical diffusion and hence the traditional boundary layer

equations (section 2) apply.

All existing analytical solutions for the boundary layer

of a rotating flow assume negligible buoyancy effects

in the boundary layer, constant viscosity, and zero hor-

izontal diffusion. In the typical analysis, there is a given

interior flow V‘(r) at a large distance from the lower

(frictional) boundary. The qualitative behavior of the

boundary layer solution was described in section 1 but

only a few analytical solutions exist for V‘(r) relevant to

the hurricane. Perhaps the most ambitious analytical

attack on the problem was made by (Kuo 1971, hereafter

K71); we defer to his excellent summary of the rotating-

flow boundary layer problem and only highlight a few of

the features we find most relevant to the current anal-

ysis. The object of the K71 analysis was the boundary

layer beneath a vortex characterized by a strong (weak)

increase of m‘(r) [5rV‘(r)] with r in the inner (outer)-

core region. The similarity of the K71 vortex to the

distributions of m̂(r) above the boundary layer found in

the BR09b numerical simulations (Fig. 2) motivates the

present revisiting of the K71 study.

a. Inner-core region (r̂ ’ r̂
m

)

Most relevant to the inner-core region are power-law

vortices of the type V‘(r) 5 rn. Here we focus for simplicity

on the case n 5 1 (solid-body rotation), which was first

solved by U. T. Bödewadt in 1940 and discussed in detail

by (Schlichting 1968, ch. 11).4 The Bödewadt solution us-

ing the present nondimensionalization and notation is

(u, y, w) 5 [rF(z), rG(z), H(z)],

z 5 ẑ/l
y
, l

y
5

ffiffiffiffiffiffiffiffiffi
v

y
/v

q
, (13)

where v is the constant (solid body) rotation rate. Set-

ting v 5 V/lh, the last term of (13) is equivalent to the

FIG. 2. Nearly steady-state angular momentum m̂ [thick solid lines; contour interval (CI) 5 0.5 3 106 m2 s21) and radial–

vertical wind vectors (û, ŵ) for (a) (lh, ly) 5 (1500 m, 200 m), (b) (lh, ly) 5 (3000 m, 200 m), (c) (lh, ly) 5 (1500 m, 50 m),

and (d) (lh, ly) 5 (3000 m, 50 m). The open circles mark the local maxima of ŷ with the values indicated in m s21.

4 Similarity solutions to the Navier–Stokes equations of this kind

belong to a general category known as von Kármán swirling flows

(Zandbergen and Dijkstra 1987); their realizability has been con-

firmed by numerical simulations over finite-radius discs.
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requirement a 5 1/
ffiffiffiffiffiffiffiffiffi
Re

y

p
and it may be verified that

the nondimensional variables (u, y, w) and (r, z) are the

same as those used in section 2. Figure 5a shows the

classic Bödewadt boundary layer profiles characterized

by the low-level inflow, rising motion, and an azimuthal

velocity that overshoots the cyclostrophically balanced

solution to which it tends as z / ‘. We observe through

(13) that the viscosity only determines the dimensional

vertical scale of the solution and has no effect on the

maximum azimuthal velocity rGmax. The budgets for u

and m are shown in Figs. 5b and 5c and indicate a broad

similarity with the budget analysis of the numerical so-

lutions shown in Fig. 3 in the region near r̂ 5 r̂
m

.

A major difference between the Bödewadt boundary

layer and those characteristic of hurricanes is the lower

boundary condition. K71 argued that the partial-slip

condition (Taylor 1915),

(u, y) 5 K(›zu, ›zy), (14)

FIG. 3. Budget analysis for the radial velocity û and angular momentum m̂ for the case (lh, ly) 5 (1500 m, 200 m)

showing (a) dû/dt̂; (b) the vertical diffusion of û; (c) the horizontal diffusion of û; (d) the sum of the centrifugal,

Coriolis, and pressure gradient accelerations; (e) dm̂/dt̂; (f) the vertical diffusion of m̂; and (g) the horizontal

diffusion of m̂. (h) Three selected streamlines. In (a)–(d), CI 5 0.0075 m s22 and in (e)–(g), CI 5 75 m2 s22 with

negative values indicated by dashed lines (zero contour not plotted). The solid gray lines are contours of m̂; CI 5

0.5 3 106 m2 s21. The open circle marks the location of ŷ
m

.
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applied at z 5 0 would produce solutions more in line

with observations. This boundary condition has the at-

tractive feature that the Bödewadt solution with a no-

slip condition at the surface is produced with K 5

0 whereas, in the limit K / ‘, (14) becomes a free-slip

condition with the solution (F, G, H) 5 (0, 1, 0). We have

reproduced and extended K71’s results over the range

0 # K # 4 (details are given in the appendix and results

summarized in Table 1) and show the solution in Fig. 5d

for the case K 5 1. Aside from the nonzero values of the

horizontal velocity (F, G) at the surface, the most no-

table features are the reductions in the inflow (2Fmin),

rising motion (Hmax), and overshoot (Gmax 2 1). Although

the heights of these extrema decrease with increasing K,

the wavelength of the vertical oscillation is relatively

independent of K.5 Figures 5e and 5f indicate that the

budgets for u and m with K 5 1 are qualitatively similar

to their K 5 0 counterparts.

The most important feature of the BR09b-solution

boundary layer is the dependence of ŷm and ẑm on (lh, ly)

(Figs. 1a,c). To compare this behavior with that of the

K71 solutions (Table 1), we need to relate the non-

dimensional parameter K in (14) to the dimensional

parameters used in the BR09b numerical simulations.

The dimensional form of (14) implies K 5 K̂/l
y
5

K̂/
ffiffiffiffiffiffiffiffiffi
n

y
/v

p
, where K̂ represents a second vertical scale.

For a lower boundary condition that is compatible with

(14), we approximate the surface stress used in BR09b,

C
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
û2 1 ŷ2
p

(û, ŷ), by C
D

(V
0
)V

0
(û, ŷ) and equate the

latter to the internal surface stress n
y
›

ẑ
(û, ŷ) so that

K̂ 5 n
y
/CDV0 (15)

and therefore

K 5

ffiffiffiffiffiffiffiffi
n

y
v

p

CDV0

, (16)

where CD(V0) is the drag coefficient and V0 is the surface

wind speed. Our analysis (not shown) of the BR09b

simulations indicates that for fixed lh, the variables v, V0,

and CD vary only slightly with ly (consistent with Fig. 1a);

hence K increases with ny and, by the second term of (11),

with ly. Moreover, for fixed ly, our analysis indicates that

K is not very sensitive to variations in lh and that therefore

the BR09b-solution dependence on lh is outside the reach

of the K71 boundary layer theory. In short, the BR09b

simulations indicate that K is an increasing function of

ly and has no significant variation with lh.

Turning first to the dimensional height of the maxi-

mum azimuthal wind speed ẑm 5
ffiffiffiffiffiffiffiffiffi
n

y
/v

p
zm(K), we use

(16) to substitute for ny to obtain

ẑm(K) 5 (CDV0/v)Kzm(K). (17)

As mentioned above, the parameters v, V0, and CD vary

little for fixed lh; hence, as seen in Table 1, Kzm(K) in-

creases with increasing K (and thus ly) and therefore the

K71 ẑ
m

is expected to increase with ly, consistent with

the BR09a numerical solutions (Fig. 1c).

The dimensional maximum azimuthal wind speed

ŷm 5 Vym(K) is more difficult to determine since it de-

pends on a ‘‘given’’ interior flow velocity scale V as well

as on the parameter K. If we take V 5 Vg,m, the gradient

wind at (r̂m, ẑm), then we need to know Vg,m(lh, ly) in order

to compare the K71 theory with the BR09b simulations;

Figs. 1d–e show Vg,m(lh, ly) and yBR
m 5 ŷ

m
/V

g,m
(l

h
, l

y
).

Comparing Fig. 1e for lh fixed with Table 1, we observe

that yBR
m decreases with increasing ly (increasing K) and

therefore is consistent with the K71 theory. We have not

yet found an explanation for the variation of Vg,m with

ly but suspect it occurs through boundary layer effects on

the thermodynamics as well as the dynamics.

FIG. 4. The terms (a) û›
r
m̂ and (b) ŵ›

z
m̂; CI 5 75 m2 s22, with

negative values indicated by dashed lines (zero contour not plot-

ted). The solid gray lines are contours of m̂; CI 5 0.5 3 106 m2 s21.

The open circle marks the location of ŷ
m

.

5 This suggests that the dimensional vertical wavelength of the

oscillation should vary in proportion to
ffiffiffiffiffiffiffiffiffi
n

y
/v

p
for any K. Since we

expect ny to increase with ly in the BR09b simulations, the increase

with ly of the vertical scale of the oscillations seen in Fig. 2 is

consistent with the K71 theory.
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The foregoing analysis suggests that traditional bound-

ary layer theory can describe much about the vertical

structure of the solutions in the inner core of the simu-

lated hurricane. However, that analysis also reminds us

that the success of boundary layer theory depends crit-

ically on the knowledge of an interior flow V‘(r). In the

BR09b simulations, the strong variation of the presumed

interior flow, Vg,m, with lh (Fig. 1d) suggests that hori-

zontal diffusion, which is not included in traditional

boundary layer theory, may act as a governor on V‘(r)

by reducing the angular momentum of parcels in the

inner-core boundary layer and thereby smoothing the

FIG. 5. Similarity solutions and their budget analyses for (a)–(c) the Bödewadt (K 5 0, no-slip lower boundary condition) boundary layer

and (d)–(f) the K71 (K 5 1, partial-slip lower boundary condition) boundary layer.

TABLE 1. Major features of the K71 similarity solutions as a function of K including the maximum azimuthal velocity ym and its height

above the lower surface zm, the maximum (negative) inflow velocity um and its height zu
m, the vertical velocity at large z, and the surface

values of y and u. The inflow angle b 5 2tan21u(0)/y(0).

K ym zm Kzm um zu
m w(‘) y(0) u(0) b (8) z

m
/zu

m

0.00 1.28 2.75 0.00 20.48 1.15 1.26 0 0 — 2.4

0.25 1.24 2.45 0.61 20.45 0.90 1.20 0.19 20.17 42 2.7

0.50 1.18 2.25 1.13 20.39 0.65 1.04 0.37 20.24 34 3.5

0.75 1.14 2.08 1.56 20.33 0.50 0.87 0.49 20.25 27 4.2

1.00 1.11 1.98 1.98 20.29 0.40 0.74 0.59 20.24 22 5.0

1.25 1.09 1.90 2.38 20.25 0.35 0.63 0.65 20.22 19 5.4

1.50 1.07 1.85 2.78 20.22 0.30 0.55 0.70 20.21 16 6.2

1.75 1.06 1.81 3.17 20.20 0.25 0.48 0.74 20.19 14 7.2

2.00 1.05 1.78 3.56 20.18 0.24 0.43 0.77 20.17 13 7.4

2.25 1.05 1.76 3.96 20.17 0.21 0.39 0.79 20.16 12 8.4

3.00 1.04 1.72 5.16 20.14 0.16 0.31 0.84 20.13 9 10.8

4.00 1.03 1.68 6.72 20.11 0.12 0.23 0.88 20.11 7 14.0

JULY 2012 R O T U N N O A N D B R Y A N 2291



radial distribution of angular momentum carried up-

ward (Figs. 3g,h); in this way horizontal diffusion may

adjust V‘(r) to a value consistent with that implied by

the boundary layer solution. We believe this process is

a good example of the interactive nature of rotating-flow

boundary layers described in section 1. Effects of hori-

zontal diffusion will be further discussed in sections 5

and 6.

b. Outer-core region (r̂� r̂m)

The outer-core region has much reduced interior flow

velocities and so one might expect Ekman layer dy-

namics to apply there. As the Ekman layer is the bound-

ary layer for a flow in solid-body rotation over a lower

boundary having nearly the same rotation rate, it is

essentially the linearized version of the Bödewadt

boundary layer. Eliassen (1971) solves for the Ekman

layer in cylindrical coordinates using a partial-slip lower

boundary condition. Eliassen and Lystad (1977) study

more general interior flows V‘(r) through a heuristic

analysis leading to their result for the vertical scale
ffiffiffiffiffiffi
n/I
p

,

where I2 5 r23›r(rV‘)2 and n is the eddy viscosity.

For typical parameter values, the partial-slip Ekman

solutions of Eliassen and Lystad (1977, their Fig. 4) in-

dicate û(ẑ) increasing from a negative minimum near

the surface to zero in the interior and ŷ(ẑ) increasing

from its surface value to its interior value with very slight

overshoot in both components. In a further elaboration

on the Ekman-type model, Kepert (2001) solves for

degree of overshoot [his (27) and Fig. 1] and finds it is in

the range of 2%–4%. The profiles for [û(ẑ; l
y
), ŷ(ẑ; l

y
)]

for lh 5 1500 m for the BR09b simulations are shown

in Fig. 6 for the outer-core region (r̂ 5 100 km) and are

fairly well captured by the latter descriptions.

Kepert (2001) derives the height of the Ekman layer

[his (27)]. Using the partial-slip, linearized-Bödewadt

solution given by (4.10) of K71 we arrive at the same

formula [K 5 x21 in Kepert (2001)’s notation],

zm(K) 5 p 2 tan21(1 1 2K), (18)

which gives zm(0) 5 3p/4 5 2.35 and zm(4) 5 1.68 and

thus compares favorably with the values listed for the

nonlinear K71 solution (Table 1). Replacing v in (16)

and (17) by an I0 characterizing the outer-core region

and applying the same logic as that following (17), we

deduce that the linear Ekman solution also predicts ẑm

to increase with ly in the outer-core region, consistent

with Fig. 6.

5. Analysis of solution variation with lh

Figure 4 indicates that in the inner-core boundary

layer, horizontal advection dominates vertical advection

of m̂ near the level of maximum horizontal diffusion

(ẑ ’ 0:5 km). Here we consider the consequences of a

FIG. 6. Profiles at r̂ 5 100 km of (a) û and (b) ŷ for ly 5 25 m (open circles), ly 5 50 m (filled circles), ly 5 100 m

(open squares) and ly 5 200 m (filled squares) for the case lh 5 1500 m.
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model that balances horizontal advection with hori-

zontal diffusion of angular momentum [i.e., a simplified

form of (3) and (8)], which, with the definition of vor-

ticity z 5 r21›rm, is

Rehu(r)z 5
›z

›r
, (19)

where, in the same spirit as in the simple boundary la-

yer solutions, we have assumed a constant viscosity [ fh 5

1 in (8)].

Before examining solutions to (19) it will prove useful

to first examine the BR09b numerical solutions just

‘‘upstream’’ of ẑ
m

which for cases with ly 5 200 m we

take to be at ẑ 5 0:5 km; Figs. 7a–d show respectively

radial profiles of û, ẑ, m̂, and ŷ for lh 5 375, 750, 1500, and

3000 m. Beginning with Fig. 7a we observe a converging

inflow that in all cases goes to zero at some finite radius

r̂0; as lh becomes small it appears that r̂0 reaches an as-

ymptotic limit of approximately 12 km. Figure 7b shows,

consistent with (19), that ẑ takes its maximum value near

r̂ 5 r̂
0
. Although r̂

0
slightly increases with lh, the main

changes are the increasing width of the convergence

zone, the diminishing peak strength of the vorticity and

its outward spreading. Consistently, Figs. 7c and 7d show

the outward spreading of the distribution of m̂(r) and

the diminishing peak intensity in ŷ and its outward dis-

placement.

There is a long history of solutions to (19) for profiles

u(r) that also satisfy (1), (2), and (5) with the constant

viscosity forms of (6) and (7) (i.e., exact solutions to the

Navier–Stokes equations; Craik 2009). In the present

application, the flow is hydrostatic and, according to the

analysis in Fig. 3c, horizontal diffusion plays a minor role

in the radial momentum balance; hence we have some

liberty in the choice for u(r). For the radial velocity we

consider the simplest function representing horizontal

convergence and a stagnation point at r0:

u(r) 5

0 if r # r0,

2
glh

V
(r 2 r0) if r $ r0,

8<
: (20)

where g (s21) is the specified constant rate of conver-

gence. Although ẑ / f (the Coriolis parameter 5 0.5 3

1024 s21 in the BR09b simulation) as r̂ / ‘, Fig. 7b

suggests that letting ẑ(‘) / 0 is a reasonable approxi-

mation, at least in the vicinity of the radius of maximum

winds. With the latter condition and (20), (19) can be

integrated once to obtain

z(r) 5 z0 exp

"
2

gl2
h

2~nh

(r 2 r0)2

#
, (21)

where the definition of Reh in (10) has been used and

z0 [ z(r0), which is as yet unknown. Setting the argu-

ment of the exponential to 21 in (21), one can deduce

the viscous length scale l
h

5
ffiffiffiffiffiffiffiffiffiffiffiffi
2~n

h
/g

p
, which is typical of

solutions of the type under consideration (e.g., Drazin

and Riley 2006, p. 82). Adapting as before this constant

viscosity solution to the variable viscosity BR09b nu-

merical solutions, we expect that ~nh ; l2
hV/lh and that

g ; V/lh, and that therefore lh ; lh, as expected from

(12). As a simple check on this scaling we computed

from Fig. 1b the quantity dr̂ [ r̂m(lh, l
y
) 2 r̂m(lh 5 94 m,

l
y
) with the supposition that r̂

m
(l

h
5 94 m, l

y
) represents

the inviscid limit; the result for ln(dr̂) plotted against

ln(lh), shown in Fig. 8, indicates an exponent of 1.1,

which is close to the expected value of 1.0.

To complete the solution for m(r) we need to use the

inner boundary condition m(0) 5 0; here we assume that

z(r) 5 z0 for 0 # r # r0 (solid-body rotation) which, given

(20), is a solution of (19). With the inner condition

m(0) 5 0 and the outer condition m(‘) 5 m‘ (a constant),

it is clear that m
‘

5
Ð ‘

0 r9z(r9) dr9 5 0:5z
0
(r2

0 1 r
0

ffiffiffiffi
p
p

1 1)

and that therefore we know z0 in terms of m‘. The solution

for m(r) is therefore

m(j) 5

1

2
z0r2

0j2 if j # 1,

1

2
z0fr

2
0 1 r0

ffiffiffiffi
p
p

erf[r0(j 2 1)] 1 1 2 exp[2r2
0(j 2 1)2]g if j $ 1,

8><
>: (22)

where j 5 r/r0. The solution for m(r)/m‘ [and the cor-

responding y(r)] is shown in Fig. 9a for several values of

r0, which we recall is r̂
0
/
ffiffiffiffiffiffiffiffiffiffiffiffi
2~n

h
/g

p
, the ratio of the stag-

nation radius to the viscous length scale. The qualitative

similarity of these analytic solutions as a function of

changing viscosity to the BR09b simulations (Figs. 7c,d)

is apparent.

Up to this point we have not discussed thermody-

namics. As mentioned in the introduction, the hurricane

vortex boundary is distinguished from other rotating-

flow boundary layer problems by the importance of

baroclinicity in the interior flow. In preparation for the

discussion in the next section of the present results as

they relate to the E86 theory, we show in Figs. 7e and 7f
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the radial distribution of the entropy ŝ and the quantity

x̂ 5 r̂›r̂ ŝ (which plays an analogous role to ẑ in the hor-

izontal diffusion term) at ẑ 5 0:5 km for the cases with

ly 5 200 m and lh 5 375, 750, 1500, and 3000 m, re-

spectively. As for ẑ, the general correspondence be-

tween the location of the maximum in 2x̂ and r0 is

evidence that the horizontal advection–diffusion bal-

ance is roughly correct.

Following a similar route to the derivation of (22) by

balancing horizontal advection and diffusion in (4) and

using the radial velocity in (20), the variable x(r) 5 r›rb

can be expressed in an analogous manner to z(r) in (21),

namely x 5 x
0

exp[2r2
0(j 2 1)2]. To complete the solu-

tion for b(j), we take the overall change in b, Db, as

a given, so that x0 5 Dbf
Ð ‘

1 j921 exp[2r2
0(j9 2 1)2] dj9g21.

The solution analogous to (22) is thus

FIG. 7. Profiles at ẑ 5 0:5 km of (a) û, (b) ẑ, (c) m̂, (d) ŷ, (e) ŝ, and (f) 2 x̂ for lh 5 375 m (open circles), lh 5 750 m

(filled circles), lh 5 1500 m (open squares), and lh 5 1500 m (filled squares) for the case ly 5 200 m.
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b(j) 5
Db if j # 1,

x0

Ð‘

j j921 exp[2r2
0(j921)2] dj9 if j $ 1,

(

(23)

and is plotted in Fig. 9b with Db 5 y2
m.6 The qualitative

correspondence between this analytical solution and the

BR09b simulations (Fig. 7e) is evident.

6. Horizontal diffusion and the E86 theory

The E86 theory has been critically reviewed in Smith

et al. (2008, hereafter SMV) and in BR09a. The basic

elements of the E86 theory are gradient wind/hydro-

static balance and conservation of m̂ and ŝ above the

boundary layer and a mixed layer model to obtain a re-

lation of the form (dŝ/dm̂)z5h 5 g(ŝ, m̂), where h is the

top of the boundary layer. According to SMV, ‘‘a major

deficiency of the E86 theory is the tacit assumption of

gradient wind balance in the boundary layer.’’ BR09a

find that, in the limit of small horizontal diffusion, nu-

merical solutions exhibit gradient wind imbalance in

and above the boundary layer, while for larger values

of horizontal diffusion, they find that nongradient wind

effects are minimal (see Fig. 12 of BR09a).

Based on the present analysis we offer the following

interpretation. The E86 theory and its later extensions

(most recently Emanuel and Rotunno 2011) is a theory

for the ‘‘interior’’ flow. The theory uses a mixed layer

model, with no assumption of gradient wind balance,

to derive (dŝ/dm̂)
z5h

5 g(ŝ, m̂). Up to this point the E86

theory is both physically and mathematically self-

consistent. To take the theory a step further, SMV are

correct in their criticism that the radial velocity should

not be obtained by a simple inversion of the m̂ mixed

layer equation, but rather a system of boundary layer

equations must be solved. Based on the evidence pre-

sented herein, that system would be the steady version

of (1)–(5) with a 5 1/
ffiffiffiffiffiffiffiffiffi
Re

y

p
� 1 and Reh 5 1; the in-

terior flow would appear explicitly through the radial

pressure gradient in (1) and through the upper boundary

conditions on (m̂, ŝ).

A boundary layer calculation of the type suggested

would in general need to be followed by a recalculation

of the interior flow to accommodate the distributions of

FIG. 8. Analysis of the dependence of the distance dr̂ [ [r̂m(lh) 2

r̂
m

(l
h

5 94 m)] on lh for the cases lh 5 188, 375, 750, 1500, and

3000 m and ly 5 25, 50, 100, 200, and 400 m. Points that are su-

perimposed are slightly displaced from the actual position, in-

dicated by the open circles.

FIG. 9. Analytical solution for (a) m(r) (thick lines) and y(r) (thin

lines) and (b) b for r0 5 1, 2, and 10; larger r0 solutions correspond

to cases with smaller viscosity.

6 Based on a volume integration of the relevant thermal-wind

equation (›rb 5 r21›zy2), it may be shown that Db } y2
m.
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(m̂, ŝ) transported upward from the boundary layer;

the recalculated interior flow would in turn require a

recalculation of the boundary layer and so on until

boundary layer and interior flow are mutually adjusted.

This process of mutual adjustment for barotropic rotating-

flow boundary layers is well known in the fluid dynamics

literature (Rott and Lewellen 1966, 132–133). The major

difference between the classic barotropic case and the

baroclinic hurricane is that, in the former, the first ap-

proximation to the interior flow is usually given whereas

in the moist, baroclinic hurricane, it must be constructed

through considerable labor.

Based on the BR09b simulations with lh $ 1000 m, we

conjecture that a boundary layer calculation including

both partial-slip and horizontal diffusion would a) counter

the tendency of the boundary layer ŷ to overshoot V‘ and

b) produce a smaller V‘ after a recalculation of the in-

terior flow as the horizontally diffuse distribution of m̂

is transported upward (Fig. 3h). Evidence for the lat-

ter point can be seen in Fig. 1f where there is a clear

dependence of E-PI on (primarily) lh indicating an ad-

justment of both interior and boundary layer flow pa-

rameters.

7. Comparison with observations

Inasmuch as the parameters (ly, lh) are not known

from independent measurements, we look to some re-

cent observations to see if reasonable choices (ly, lh) can

describe the data. Zhang et al. (2011) analyzed a great

number of dropsondes to produce a composite picture of

the radial and azimuthal boundary layer hurricane ve-

locities. Our Fig. 10 shows several cases from the BR09b

simulations in the same manner as was done in Fig. 10 of

Zhang et al. (2011) with the radius nondimensionalized

by r̂m, the radial velocity by the absolute value of its

minimum, and the azimuthal velocity by its maximum;

the height scale is dimensional. Cases with ly 5 50–100 m

seem to produce very comparable vertical structures to

those observed but for brevity we show here just cases

with ly 5 50 m. The cases with lh 5 750 and 1500 m and

lh 5 300 m have almost identical structure when plotted in

this manner and provides another piece of evidence that

the scaling (12) is correct; the primary difference between

these cases is in the scaling velocities ûmin and ŷmax.

At a more detailed level, Fig. 10 indicates that the

ratio of the heights of maximum azimuthal and radial

velocities ẑm/ẑu
m is roughly 7, which is in agreement with

the Zhang et al. (2011) composites. Furthermore, Fig. 10

indicates that the surface inflow angle b at r̂
m

is 288, 228,

and 228 for the cases when lh 5 750, 1500, and 3000 m,

respectively, while the Zhang et al. (2011) composite for

all storms has b ’ 248, which is in agreement with Powell

et al. (2009) in which an average inflow angle b ’ 238 was

found from dropsonde data. We note from Table 1 that

the K71 solutions have z
m

/zu
m ’ 7 for K 5 1.75, for which

ym 5 1.06, and that b ’ 238 for K 5 1, for which ym 5 1.11;

these data add further support to the idea that overshoot

in natural storms is probably modest.

While the BR09b experiments were conducted fol-

lowing earlier studies with the ratio of enthalpy to mo-

mentum flux coefficients Ck/Cd 5 1.0, recent studies

indicate a ratio that depends on wind speed and as-

ymptotic values closer to 0.5 for large wind speeds (Haus

et al. 2010; Bell 2010). Bryan (2012) has conducted

a parameter sensitivity experiment varying lh, ly and

Ck/Cd over wide ranges and finds that the settings lh ’

1000 m, ly ’ 50 m, and Ck/Cd ’ 0.5 produce the most

reasonable match by a variety of measures of the present

axisymmetric model solutions to observational studies

of hurricanes.

Although the boundary layer parameterization used

by BR09b is much simpler than the more complex

schemes that have been used (Braun and Tao 2000; Smith

and Thomsen 2010; Nolan et al. 2009a,b), the compari-

sons made here suggest that solutions accurate to within

observational uncertainty are produced for certain com-

binations of the mixing lengths (ly, lh).

8. Conclusions

In the present paper we have taken a closer look at the

effects of parameterized diffusion on the nearly steady

axisymmetric numerical simulations of hurricanes pre-

sented in BR09a. In that paper it was concluded that

horizontal diffusion was the most important control

factor on the maximum simulated hurricane intensity.

Through budget analysis (section 3) we have shown fur-

ther that horizontal diffusion is a major contributor to the

angular momentum budget, primarily in the hurricane

boundary layer. We have provided a new scale analysis

(section 2), one that explicitly recognizes the anisotropic

nature of the parameterized model diffusion, showing

why the horizontal diffusion plays such a dominant role.

A simple analytical model (section 5), we believe, cap-

tures the essence of the effect.

A detailed examination of the role of vertical diffu-

sion in the BR09b simulations (section 4) shows that the

boundary layer in these simulations is consistent with

known analytical solutions. Specifically for fixed lh, the

BR09b boundary layers increase in depth and decrease

in the amount of ‘‘overshoot’’ ŷ
m

/ŷ
g,m

with increasing ly.

However, ŷ
m

itself is relatively insensitive to ly and the

overshoot variation with ly mainly comes from changes

in ŷg,m with ly. Both ŷm and ŷg,m are strong decreasing

functions of lh.
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Finally we offer an interpretation of the discussion in

the literature of the E86 theory and its relation to

boundary layer dynamics (section 6). We argue that the

E86 theory (and its extensions) is for the interior flow

V‘(r, z) (i.e., the flow away from the lower frictional

boundary); the theory relies on a mixed-layer model to

obtain a relation between entropy and angular mo-

mentum at the boundary layer top but should be con-

sidered as being silent on the radial–vertical boundary

layer flow. In agreement with SMV we believe to obtain

the radial–vertical boundary layer flow consistent with

the E86 outer flow, a boundary layer model should used;

however the evidence presented here suggests that

horizontal diffusion be included in that boundary layer

model. If horizontal diffusion effects are strong enough

to counteract the tendency for overshooting, the E86

model plus the boundary layer correction give a rea-

sonably accurate picture of the nearly steady axisym-

metric hurricane. Observational evidence (Emanuel

2000; Bell and Montgomery 2008; see also section 7

herein) suggests that the latter view is not far from the

truth.

FIG. 10. Solutions for radial and azimuthal velocity normalized as in the composite observations shown in Fig. 10 of

Zhang et al. (2011) for (a),(b) lh 5 750 m, ly 5 50 m, (c),(d) lh 5 1500 m, ly 5 50 m, and (e),(f) lh 5 3000 m, ly 5 50 m.

Contour interval 5 0.1 for the radial velocity and 0.05 for the azimuthal velocity. Color bar labeled in percentage.
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Although the nearly steady axisymmetric numerical

model of a hurricane is a considerable simplification of

a very complex three-dimensional, time-dependent re-

ality, it is still complex enough to provoke a continuing

discussion in the literature of its basic mechanics. In this

spirit the present paper has analyzed the far-ranging

effects of diffusion in the simulated hurricane boundary

layer. In a recent study Emanuel and Rotunno (2011)

investigated the possible effects on steady-state vortex

structure of turbulent mixing in the hurricane upper-

outflow layer looking at how adjustments at remote dis-

tances can affect the low-level vortex structure. Clearly

the steady-state axisymmetric model has yet to give up all

its secrets.
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APPENDIX

Similarity Solutions Following K71

The boundary layer for a fluid of infinite radius in solid-

body rotation possesses a similarity solution (Schlichting

1968, 213–218). The radial, azimuthal, and vertical equa-

tions of motion become (11.6) of Schlichting (1968) for

the similarity functions F(z), G(z), H(z) representing the

radial, azimuthal, and vertical velocities, respectively. To

allow for partial slip following K71, the lower boundary

condition in (11.7) of Schlichting (1968) is replaced by

(14), which translates to

z 5 0 : F 5 KF9, G 5 KG9, H 5 0, (A1)

where the prime denotes differentiation with respect

to the similarity coordinate z.

The numerical solution for (F, G, H) is found fol-

lowing the procedure outlined in White (1974, 163–170)

for the analogous problem of the boundary layer on disc

of infinite radius rotating below a flow with no horizontal

motion as z / ‘. The numerical procedure is basically

a ‘‘shooting’’ method in which one guesses the de-

rivatives of F and G at z 5 0 and then integrates (here

using the Runge–Kutta method) the nonlinear ordinary

differential equations to a large value of z 5 zl and tries

to ‘‘hit’’ the boundary conditions as z / ‘; the guess is

corrected using the Newton–Raphson method and the

procedure continued until convergence is reached. For

the calculations reported herein zl 5 10 and double

precision was required for satisfactory convergence of

the solutions.
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